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Introduction

• Success of the SM: Discovery of Higgs in 2012


• Unsolved Problems in the SM


1. Naturalness problem


2. Dark matter (DM)


• Any Applications of Fermion Production? 



Introduction
Naturalness Problem


• Hierarchy between the electroweak scale and Plank scale


• Solutions


1. Symmetries: SUSY, Composite Higgs, etc.


2. Dynamics: relaxation

vEW ≪ MP

new particles are expected to be observed at LHC.

no signal for new particles at LHC motivates such a scenario 



Relaxation

• Relaxion potential


• Its shift symmetry is softly broken by a small dimensionful coupling to the 
Higgs.

V(ϕ) = (Λ2 − gϕ) h
2

+ (−gΛ2ϕ + . . . ) + Λ4
c(⟨h⟩)cos ( ϕ

f )
Higgs mass potential slope periodic potential

unbroken phase

broken phase

ϕ =
Λ2

g

Relaxion: axion-like-particle which is 
responsible for the dynamical relaxation of 
the weak scale.

Mechanism originally suggested by Peter W. Graham, David E. 
Kaplan and Surjeet Rajendran to set the Higgs mass to be naturally 
much smaller than the cutoff. (1504.07551)



GKR Model

Conditions


• trapping:


• slow-roll:


• field excursion:


• e-folding number:


• vacuum energy > relaxion energy:

gΛ2 ≤
Λ4

c(v)
f

V(ϕ) = (Λ2 − gϕ) h
2

+ (−gΛ2ϕ + . . . ) + Λ4
c(⟨h⟩)cos ( ϕ

f )

3H ·ϕ +
dV
dϕ

≃ 0 → ·ϕ ∼
gΛ2

H
∼ const

Δϕ ∼ ·ϕΔt ∼ ·ϕ
Ne

H
∼

gΛ2

H2
Ne >

Λ2

g
→ Ne >

H2

g2

Δϕ ∼ 𝒪 ( Λ2

g )

H2M2
P > Λ4

Hubble expansion as major friction



GKR Model

Problems


• O(1) theta parameter: O(f) shift of the local minimum of the QCD relaxion


• After the relaxion is trapped into its local minimum, the reheating era 
starts. The reheating temperature should be low enough not to melt its 
potential barriers. Otherwise, that can lead to the second rolling.

V(ϕ) = (Λ2 − gϕ) h
2

+ (−gΛ2ϕ + . . . ) + Λ4
c(⟨h⟩)cos ( ϕ

f )

δϕmin ∼ 𝒪( f ) → θQCD ∼ 𝒪(1)



GKR Model
Problems


• small soft-breaking coupling for the QDC relaxion:


1. large e-folding number:


2. super-Plankian field excursion:


Solution


• Hubble friction is inefficient to dissipate the relaxion energy.


• we need a way for more efficient dissipation: particle production.

g ∼ 10−31GeV

Ne ∼
H2

g2
≫ 100

Δϕ ∼
Λ2

g
≫ MP



Hook Model
Differences from GKR model


• start from the broken phase, Higgs-independent potential barrier


• exponential particle production: tachyonic mode of gauge bosons

V(ϕ) = (Λ2 − gϕ) h
2

+ (gΛ2ϕ + . . . ) + Λ4
c cos ( ϕ

f ) +
ϕ
f′�

FF̃

··A± + (k2 + m2
A ± k ·ϕ

f′� ) A± = 0 → A± ∼ exp[iω±t], ω2
± = k2 + m2

A ± k ·ϕ
f′�

suggested by Anson Hook and 

Gustavo Marques-Tavares (1607.01786)



Hook Model

• Exponential particle production is so strong that Hook model does not 
need slow-roll.


Suggestion!


• Is there any way to achieve slow-roll with particle production?


• Fermions cannot be produced exponentially due to Pauli-blocking.


• Friction from fermion production may support slow-rolling of relaxion.

V(ϕ) = (Λ2 − gϕ) h
2

+ (gΛ2ϕ + . . . ) + Λ4
c cos ( ϕ

f ) +
ϕ
f′�

FF̃

Peter Adshead,a Lauren Pearce,a Marco Peloso,b Michael A. Roberts,c Lorenzo Sorboc (1803.04501)



Goals

• Fermion production is major friction for slow-roll.


• To solve naturalness problem


• Not too small coupling


• To avoid super-Plankian excursion and large e-folding


• Reheating temperature not to melt the periodic potential



Model
• Fermion action with derivative coupling to axial current


with FRW metric for simplicity:


•

ΔS = ∫ d4x −g ψ̄ (ieμ
a γaDμ − mψ −

∂μϕ

fψ
eμ

a γaγ5) ψ

ds2 = dt2 − a2 dx2 = a2 (dτ2 − dx2)

We expect the fermion production 
through the derivative coupling.

Fermion production as Drag force



Model

• with proper scaling and rotation for calculations,


• Fermionic occupation number and energy density are 
well-defined in this new basis without derivative coupling.

ΔS = ∫ d4x −g ψ̄ (ieμ
a γaDμ − mψ −

∂μϕ

fψ
eμ

a γaγ5) ψ

ψ → a−3/2ψ, ψ → e−iγ5ϕ/fψψ

Δℒ = ψ̄ (iγμ∂μ − mr + imIγ5) ψ

mR = mψa cos ( 2ϕ
fψ ), mI = mψa sin ( 2ϕ

fψ )

ℋ = ψ̄ (−iγi∇i + mR − imIγ5) ψ

massless fermion cannot be produced 
from the relaxion rolling.



Model

• Equation of motion and fermionic back-reaction


• In the certain limit

··ϕ + 3H ·ϕ +
∂V
∂ϕ

(ϕ) = ℬ, ·ϕ ≡
∂ϕ
∂t

ℬ =
2mψ

a3f
⟨ψ sin ( 2ϕ

fψ ) + iγ5 cos (
2ϕψ

f ) ψ⟩

μ2 ≡
m2

ψ

H2
≪ ξ, ξ ≡

·ϕ
2Hfψ

≫ 1,

ℬ ∼ −
H4μ2ξ2

fψ

heavier fermions are more efficiently produced in this limit.

(this statement is no longer valid for too heavy fermion.)

V(ϕ) = (−Λ2 + gϕ) h
2

+ (gΛ2ϕ + . . . ) + Λ4
c cos ( ϕ

f )



Model

• Strong back-reaction: fermion production is major friction.


• Slow-roll condition:

··ϕ + 3H ·ϕ +
∂V
∂ϕ

(ϕ) = ℬ

V(ϕ) = (−Λ2 + gϕ) h
2

+ (gΛ2ϕ + . . . ) + Λ4
c cos ( ϕ

f )

ℬ > 3H ·ϕ → mψ > 6
Hf3/2

ψ

Λ g1/2

∂V
∂ϕ

≃ ℬ → ·ϕ ∼
g1/2Λ f3/2

ψ

mψ
∼ const

the size of  fermionic back-reaction is determined by potential slope g.

(significant fermion production is related to not-too-small g.)

Relaxtion trapped at gΛ2 =
Λ4

c

f



Model

• Constraints


1. strong back-reaction:


2. EFT validity:


3. fermion energy density < total energy density:


4. relaxion kinetic energy density < total energy density:

ℬ > 3H ·ϕ → mψ > 6
Hf3/2

ψ

Λ g1/2

·ϕ < Λ2 → mψ > 2
g1/2 f3/2

ψ

Λ

ρψ ∼ 16π2H4μ2ξ3 < H2M2
P → mψ >

Λ3 g3/2 f3/2
ψ

H3M2
P

·ϕ2 < H2M2
P → mψ > 2

Λ g1/2 f3/2
ψ

HMP Λ4 < H2M2
P

automatically satisfied 
by



Model
• Constraints


1. e-folding number:


2. sub-Plankian field excursion:


3. classical rolling > quantum spreading:


4. precision of Higgs mass:


5. T(SM) < Higgs VEV not to scan termal Higgs mass

MP > Δϕ → mψ > 2Ne
Λg1/2 f3/2

ψ

HMP

·ϕΔt > H → mψ <
Λ g1/2 f3/2

ψ

H2

Δm2
h ∼ gΔϕ ∼ 2πgf < m2

h ∼ (100GeV )2

Δϕ ∼ ·ϕΔt ∼ ·ϕ
Ne

H
>

Λ2

g
→ mψ < 2Ne

g3/2 f3/2
ψ

HΛ

to select the effective Higgs mass with the enough precision 
not to overshoot the electroweak scale.



Model
• By combining upper and lower bounds on fermion mass, 

we can obtain inequalities of cut-off scale.

Λ < min [(Ne /3)1/10M1/5
p Λ4/5

c , (1/6)1/7M3/7
P Λ4/7

c , N1/5
e M1/5

P Λ4/5
c ]

with O(100)-size of e-folding number

EXCLUDED

Ne ∼ 100

for little hierarchy, the cut-off scale fixed to

Λ ∼ 104−5GeV



Model
• Different new physics models predict different forms of 

the periodic potentials.


• with single scalar


1. QCD relaxion model: strong CP problem, fixed barrier height


2. non-QCD relaxion model: model-dependent barrier height


• with multiple scalars: double scanner model

model-dependent Λc

introducing extra scalar in addition to relaxion



Non-QCD Model
• new massive fermions charged under new gauge group which gets 

strongly coupled in the low energy scale


• Very light right-handed neutrino forms a condensate below the 
confinement scale.

Δℒnon−QCD = mLLLc + mNNNc + yhLNc + ỹh†LcN + (ϕ/f )G′ �G̃′ �

L: lepton doublet, N: right-handed neutrino with mL > vEW, mL ≫ fπ′� ≫ mN

meff
N eiϕ/f NNc + h . c . → meff

N ⟨NNc⟩cos(ϕ/f ) ∼ meff
N (4πf3

π′�) cos(ϕ/f )

Λ4
c = 4πf3

π′�m
eff
N ∼ 4πf3

π′�
yỹ⟨h⟩2

mL
mN(⟨h⟩) :

Higgs-dependent potential barrier

(1504.07551)

Λ ≫ 4π fπ′� to suppress Higgs-independent contribution to cosine potential



Non-QCD Model
• Excluded region by constraints

Benchmark point

Λ = 104GeV, H = 5 × 10−6GeV

mψ = 10−6GeV, fψ = 0.5GeV

mϕ = 5 × 10−2GeV, f = 3.4 × 104GeV

g = 10−6GeV, yỹ = 1.5 × 10−2

mL = 300GeV, fπ′� = 45GeV



Non-QCD Model

• Problems


1. EFT inconsistency between two scales: 


2. reheating: the energy released from fermion production can be 
transferred to the visible sector, and then the barrier may disappear.

fψ ≪ Λ

The second rolling ruins relaxation mechanism.

solution: double scanner model.

Fermion thermalizes relaxion sector, then relaxion thermalizes SM sector.

Fermion is quickly thermalized to achieve its thermal bath



Double Scanner Model
• Suggested by J.R. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. 

Pujolas, G. Servant to solve the thermalization problem during reheating.


• We add fermion sector:

V(ϕ, σ) = (−Λ2 + gϕ) h
2

+ (gΛ2ϕ + gσΛ2σ) + A(ϕ, σ, h) cos(ϕ/f )

A(ϕ, σ, h) ≡ ϵΛ4 (β + cϕ
gϕ
Λ2

− cσ
gσσ
Λ

+
|h |2

Λ2 )
∂μϕ

fψ
ψ̄γμγ5ψ +

∂μσ

fσ
ψ̄γμγ5ψ + mψψ̄ ψ

effective Higgs mass linear potential slope periodic potential

barrier height:confinement scale ~ cut-off scale:

Potential barriers are not erased 
during the reheating era due to 
the existence of extra scalar

deep potential barriers form after 
step-4 (sigma stops its rolling)



Double Scanner Model
• Excluded region by constraints

benchmark points in GeV except for epsilonkeV-scale fermion is allowed



Prospect for DM
• with the benchmark point in the double scanner model,


• the relaxion can always decay into the fermion and anti-
fermion before the Big Bang Nucleosynthesis.

mψ = 1keV, mϕ = 100GeV

∂μϕ

fψ
ψ̄γμγ5ψ → Γϕ→ψ ψ̄ =

1
2π

m2
ψ

f 2
ψ

mϕ 1 −
4m2

ψ

m2
ϕ

m2
ϕ =

ϵΛ4

f 2
∼

gΛ4

v2f

mψ

fψ

Γψ ψ̄→ϕϕ ∼
m2

ψ

f4
ψ

T3, T ≫ mϕ, mψ



Prospect for DM
• controlling non-universal couplings to scalars


• Lyman-alpha constraint on thermal WDM mass


• Fermion relic abundance


• WDM candidate?

slow-roll of sigma via Hubble friction while that of phi by fermion production

fσ = 5GeV → Λ ∼ 105GeV, fψ = 5GeV decoupling temperature of fermion: Td ∼ mϕ ∼ 100GeV

mWDM ≥ 5keV × ( g*S(Td) ∼ 𝒪(102)
g*S(T ≪ MeV ) )

−1/3

∼ 1keV
keV scale WDM is favored

Ωψ
0 h2 ∼

ρψ

ρc
∼ 0.12 ( mψ

3 × 10−3keV ) ×
g*S(T0)
g*S(Td)

×
1
S

∼ 𝒪(10−1) for keV scale fermion

entropy dilution

fermion decouples while it is highly relativistic.



Conclusion
• Cosmological relaxation through the fermion production can solve the 

naturalness problem.


• Fermion production is a more efficient friction source than the Hubble 
expansion.


1. no extremely small g


2. sub-Plankian field excursion, small e-folding number


• Good application of fermion production playing major role


• EFT inconsistency is still generic problem. fψ ≪ Λ



Conclusion
• Cosmological relaxation through the fermion production can solve the 

naturalness problem.


• Fermion production is a more efficient friction source than the Hubble 
expansion.


1. no extremely small g


2. sub-Plankian field excursion, small e-folding number


• Good application of fermion production playing major role


• EFT inconsistency is still generic problem.

THANK YOU
fψ ≪ Λ



Back-up slides



Relaxation

V(ϕ) = (Λ2 − gϕ) h
2

+ (−gΛ2ϕ + . . . ) + Λ4
c(⟨h⟩)cos ( ϕ

f )

unbroken phase broken phase
ϕ =

Λ2

g

ϕ >
Λ2

g
→ μ2 ≡ Λ2 − gϕ < 0, ⟨h⟩ ≠ 0, Λ4

c ∝ ⟨h⟩#

ϕ <
Λ2

g
→ μ2 ≡ Λ2 − gϕ > 0, ⟨h⟩ = 0

unbroken phase

broken phase

squared Higgs mass and Higgs VEV

Λ4
c ∝ ⟨h⟩#



Model
• EFT inconsistency between two scales: fψ ≪ Λ

cannot form their own thermal baths respectively

Γψ ψ̄→sm ∼ g2v2
m2

ψ

f 2
ψ

T−3 ≪ H

Γψ ψ̄→ϕϕ ∼
m2

ψ

f4
ψ

T3 > H Γϕϕ→hh ∼ ϵ2 Λ4

f4
T > H

fermions thermalize relaxion, and then relaxtion thermalize Higgs successively.

fermion, relaxion, Higgs are in the same thermal bath.



Prospect for DM
mψ = 1keV, mϕ = 100GeV, fψ = 5GeV, g = 10−6GeV

Γψ ψ̄→ϕϕ ∼
m2

ψ

f4
ψ

T3, T ≫ mϕ, mψ

relaxions can thermally be produced from fermions as,

Γψ ψ̄→ϕϕ ∼
m2

ψ

f4
ψ

T3 > H ∼
T2

MP
→ Td = 10−6GeV valid only for T ≫ mϕ, mψ

mψ ≪ mϕ → Td ∼ mϕ ∼ 100GeV kinematically



Fermion Production

!33

Peter Adshead, Lauren Pearce, Marco Peloso (1803.04501)

ℒ = −g[ψ̄ (ieμ
aγaDμ − m −

1
f

eμ
aγaγ5∂μϕ) ψ +

1
2

(∂μϕ)2 − V(ϕ)]
ds2 = dt2 − a(t)2dx2 = a2 (dτ2 − dx2)

ℒ = ψ̄ (iγμ∂μ − ma −
1
f

γμγ5∂μϕ) ψ +
1
2

a2ημν∂μϕ∂νϕ − a4V(ϕ)

ψ → a−3/2ψ

Model with derivative coupling to fermion

for FRW metric with conformal time :

After rescaling the field,



!34

ψ → e−iγ5ϕ/f ψ

ℒ = ψ̄ (iγμ∂μ − mR + i mI γ5) ψ +
1
2

a2ημν∂μϕ∂νϕ − a4V(ϕ)

Hamiltonian Formalism

ℒ = ψ̄ (iγμ∂μ − ma −
1
f

γμγ5∂μϕ) ψ +
1
2

a2ημν∂μϕ∂νϕ − a4V(ϕ)

Πψ = iψ† , Πϕ = a2 ·ϕ

ℋ = ψ̄ (−iγi∂i + mR − i mI γ5) ψ +
1
2

a2 ·ϕ2 + a4V(ϕ)

mR = ma cos ( 2ϕ
f ) , mI = ma sin ( 2ϕ

f )

Field redefinition

= ℋψ

,where

derivative coupling

mass terms
Field redefinition or rotation :

Conjugate momenta :

: Hamiltonian density only for the fermion

quadratic order of psi
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Field quantization

ψ = ∫
d3k

(2π)3/2
eik⋅x ∑

r=±
[Ur(k, τ)ar(k) + Vr(−k, τ)b†

r (−k)]

Ur(k, τ) =
1

2 ( ur χr
r vr χr) =

1

2 ( ur
r vr) ⊗ χr ≡ ξr(k, τ) ⊗ χr(k)

ℋψ = ∑
r=±

∫ d3k (a†
r (k), br(−k)) (Ar(τ) B*r (τ)

Br(τ) −Ar(τ)) (
ar(k)

b†
r (−k))

Ar(τ) =
1
2 [mr ( |ur |2 − |vr |2 ) + 2kℜ (u*r vr) + 2rmIℑ (u*r vr)]

Br(τ) =
reirθk

2 [2mrurvr − k (u2
r − v2

r ) − irmI (u2
r + v2

r )]

ℋψ = ∑
r=±

∫ d3k (a†
r (k, τ), br(−k, τ)) (ω 0

0 −ω) (
ar(k, τ)

b†
r (−k, τ))

ω = k2 + m2a2

Matrix diagonalization

chiral 

part

helicity 

part

useful tensor decomposition :

Bogolybov transformation with eigenvalues ±ω,

 absorbed time-dependency into the ladder operators



!36

To define a vacuum state

nr,k(τ) = ⟨0 | a†
r (k, τ) ar(k, τ) |0⟩

=
1
2

−
mR

4ω ( |ur |2 − |vr |2 ) −
k

2ω
ℜ (u*r vR) −

rmI

2ω
ℑ (u*r vr)

ar(k, τ0) |0⟩ = ar(k) |0⟩ = 0

Fermion number density

nr,k(τ0) = ⟨0 | a†
r (k, τ0) ar(k, τ0) |0⟩ = ⟨0 | a†

r (k) ar(k) |0⟩ = 0

A state which vanishes by annihilation operators at the initial time

defined by ladder operators :
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Hamiltonian Formalism

ℒ = ψ̄ (iγμ∂μ − ma −
1
f

γμγ5∂μϕ) ψ +
1
2

a2ημν∂μϕ∂νϕ − a4V(ϕ)

Πψ = iψ† , Πϕ = a2 ·ϕ −
1
f

ψ̄γ0γ5ψ

ℋ = ψ̄ (−iγi∂i + ma +
1
f

γ0γ5 ·ϕ) ψ −
1

2a2
(ψ̄γ0γ5ψ)2

f 2
+

1
2a2

Π2
ϕ + a4V(ϕ)

Without Field Rotation

= ℋψ

Conjugate momenta :

: Hamiltonian density only for the fermion

quadratic and quartic orders of psi

we cannot use Bogolybov transformation.

undefined number density, energy density


