Neutrino self-interaction effect in signals from Blazar TXS 0506+056

Yongsoo Jho (Yonsei University)

Collaboration with Jongkuk Kim (KIAS), Dong Woo Kang (KIAS), Jong-Chul Park (Chungnam Nat. Univ.) and Seong Chan Park (Yonsei Univ.)

> IBS-PNU joint Workshop 5 Dec 2019, Busan Republic of Korea

Fig. from C. Rott's talk @NEPLES 2019

- ν self-interaction with light mediator

- ν self-interaction with light mediator

• Successive ν -cascades modify event spectrum significantly.

> Similar to EM cascades with bkg photons (EBL&CMB) in High-E gamma-ray propagation.

Obtaining the modified flux with simple neutrino cascades

during the propagation,

$$E_1 \sim E_0 / 2^{N_c}$$
$$\Phi_1 \sim 2^{N_c} \Phi_0$$

• Blazar : Active Galactic Nuclei (AGN) with relativistic jets (mostly energetic p^+ , e^- above PeV energies)

synchrotron or bkg photon O(10) keV

energetic jets (nuclei, electrons) O(10) PeV

CM frame scale of γ and ν production

 $\sqrt{s} = \sqrt{2E_{jet}E_{\gamma}} \sim \mathcal{O}(1-10) \text{ GeV}$

- Blazar : AGN w/ relativistic jets (mostly energetic p⁺, e⁻ above PeV energies)
- By the scatterings with bkg γ and synchrotron radiations,

• Photo-Pion prod.
$$p\gamma_{bkg} \rightarrow p\pi^0, n\pi^+$$
 $n \rightarrow pe\nu_e$
 $\pi^0 \rightarrow \bigcirc \pi^+ \rightarrow \mu^+ \nu_\mu$
 $\mu \rightarrow e \overline{\nu} \overline{\nu}$ • Inverse Compton $e\gamma_{bkg} \rightarrow e \bigcirc$

 Usually both energetic neutrino around O(100) TeV - O(100) PeV and multi-wavelength (from optical to gamma-rays) photon fluxes are expected.

 ν flare in TXS 0506+056 (2017) : O(1 the first complete set of multi-messenger observation including both photon and neutrinos from the same astrophysical source.

 $E_{\nu} = 290 \text{ TeV}$ high E muon neutrino 183 TeV $\leq E_{\nu} \leq 4.3 \text{ PeV}$ at 90% C.L.

• Leptonic vs. Hadronic model

	Leptonic model	Hadronic model
Low energy photon (< O(1) GeV)	electron synchrotron	proton synchrotron
High energy photon (1 GeV ~ 100 TeV)	inverse compton + EM cascade	photopion production + neutral pion decay + EM cascade
high energy neutrino (100 TeV ~ 10 PeV)	no neutrino in pure leptonic _ model	photopion production + charged pion decay + muon, neutron decay (no cascade during propag.)

• Leptonic vs. Hadronic model

	Leptonic model	Hadronic model
Low energy photon (< O(1) GeV)	electron synchrotron	proton synchrotron
High energy photon (1 GeV ~ 100 TeV)	inverse compton + EM cascade	photopion production + neutral pion decay + EM cascade
high energy neutrino (100 TeV ~ 10 PeV)	no neutrino in pure leptonic _ model	photopion production + charged pion decay + muon, neutron decay (no cascade during propag.)
Additio amount (Lept	nal small t of protons to-hadronic model) Favored (TXS 0506	(<mark>but not enough)</mark> to explain +056 photon/neutrino spectrun

A. Keivani et al. [1807.04537]

• The leptonic model scenarios are favored to explain EM multi-wavelength obs.

- The leptonic model scenarios are favored to explain EM multi-wavelength obs.
- Most events are expected at O(100) PeV energies and Event rate at 100 TeV 1 PeV energy is suppressed as ~ $10^{-3} 10^{-2}/yr$

- The leptonic model scenarios are favored to explain EM multi-wavelength obs.
- Most events are expected at O(100) PeV energies and Event rate at 100 TeV 1 PeV energy is suppressed as ~ $10^{-3}-10^{-2}/{\rm yr}$
 - Obtaining O(1)/yr event rate at IceCube is very tough within simplest astrophysical models.

Propagation of messengers in astrophysical events

Fig. from C. Rott's talk @NEPLES 2019

Propagation of messengers in astrophysical events

Fig. from C. Rott's talk @NEPLES 2019

Obtaining the modified flux with simple neutrino cascades

Event spectrum at IceCube

- Enhancement of neutrino flux at 100 TeV 1 PeV $\simeq O(10 100)$ without changing any EM component spectrum
- Suppression of neutrino flux at ~ 3-10 PeV by resonance
 The absence (or suppression) of multi-PeV neutrino events

Event spectrum at IceCube

Conclusion

- The neutrino flare at TXS 0506+056 is a first complete set of multi-messenger observation including photons and neutrinos.
- Pure hadronic models are disfavored and Leptonic models are suffered from the explanation of IceCube neutrino obs.
- Neutrino self-interaction with a light hidden mediator (m ~ 10-50 MeV) enhances in O(100) TeV neutrinos and suppresses O(1-10) PeV neutrinos due to the neutrino cascade during propagation that can explain the observed anomaly.
- Future multi-messenger observation will increase the statistics for the test of this scenarios, providing the detailed features of low energy neutrino sector.

backup slides