2019 IBS-Busan Joint workshop on Physics beyond the SM

Inert Doublet Model with U(1) symmetry

Jeonghyeon Song (Konkuk University, Korea)

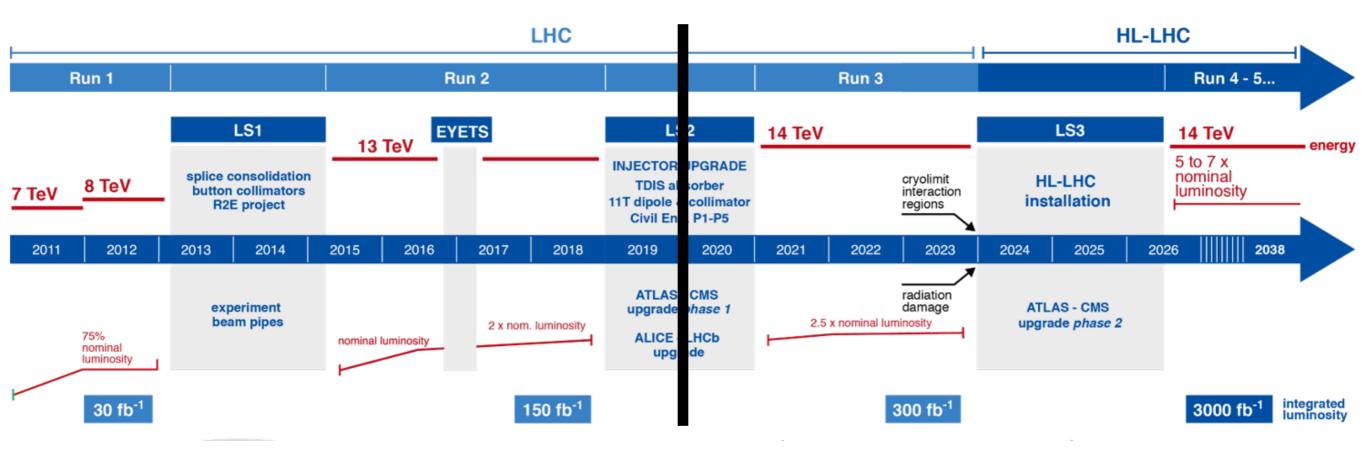
w/ Jin Heung Kim, Soojin Lee, So Young Shim

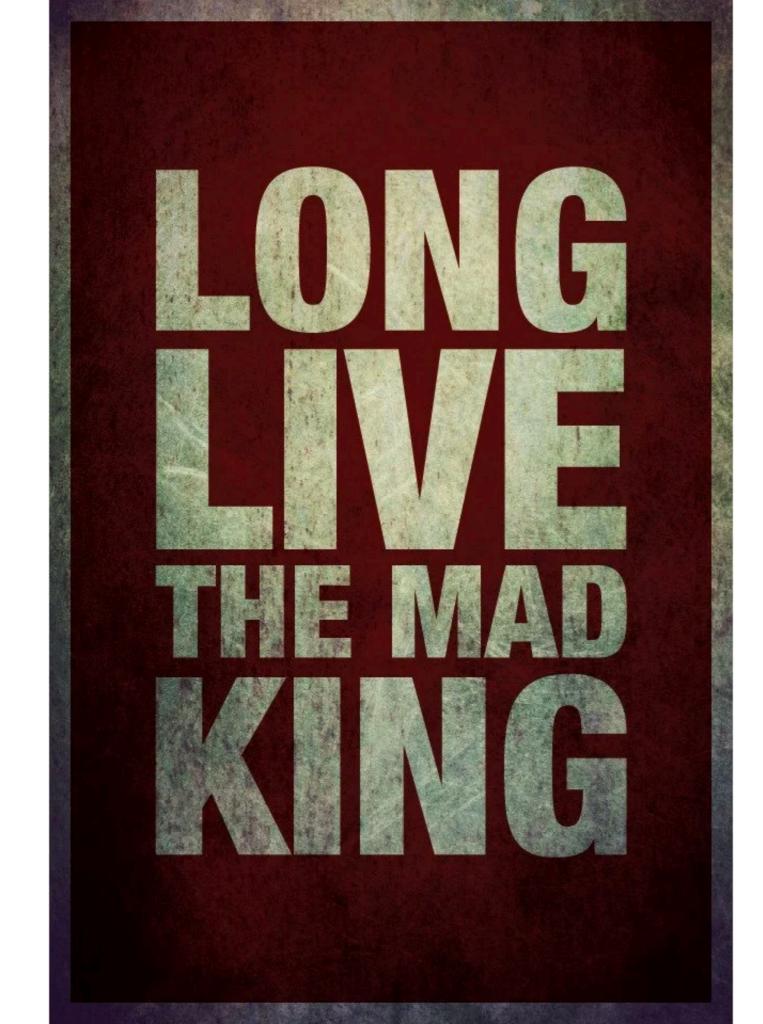
Paradise Hotel Busan, 2019. 12. 6.

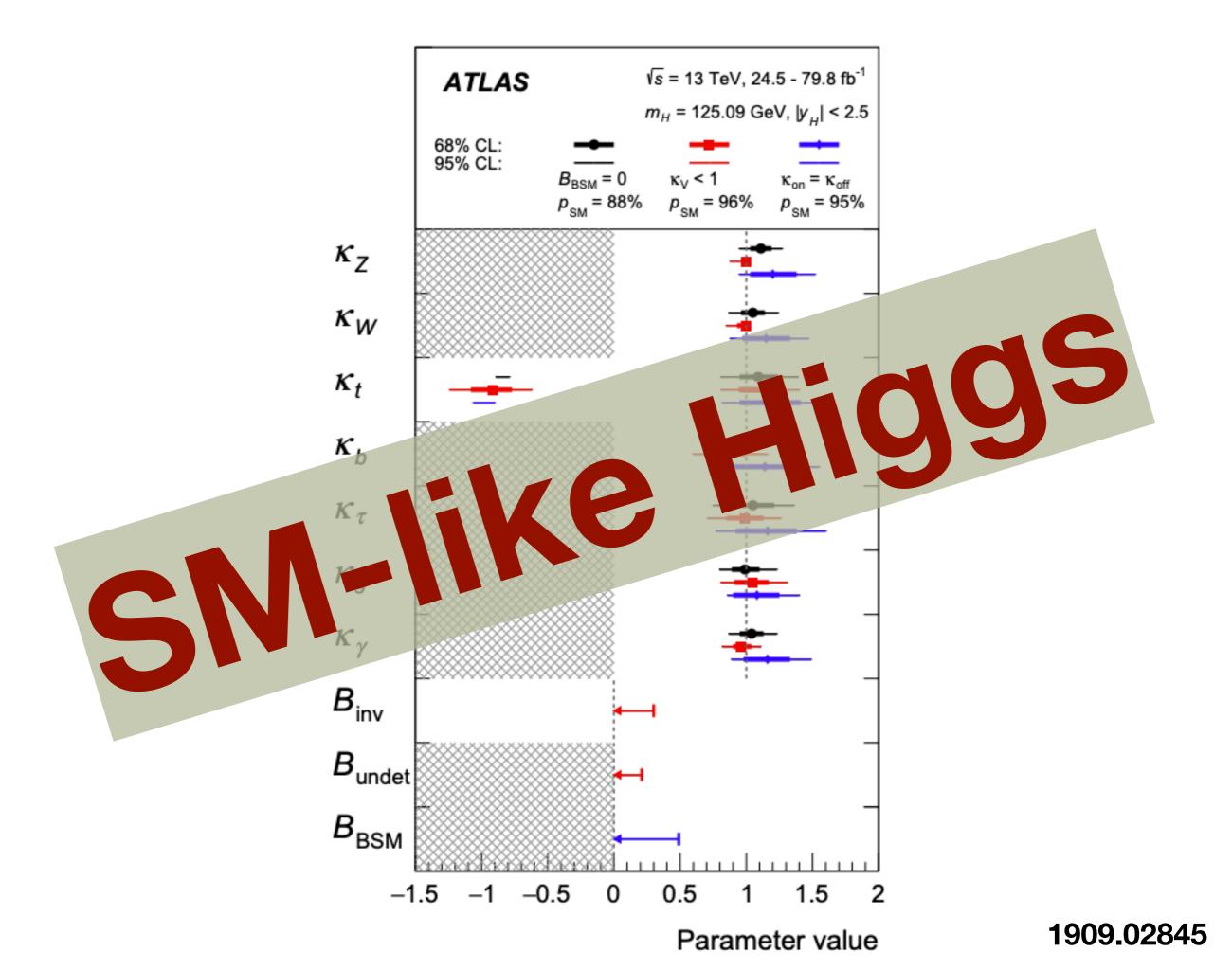
- 1. Motivation: Where are we?
- 2. Inert Doublet Model with Z2 parity
- 3. Inert Doublet Model with U(1) symmetry
- 4. Constraints on the IDM with U(1)
- 5. LHC phenomenology of the IDM with U(1)
- 6. Conclusions

1. Motivation: Where are we?

LHC/ HL-LHC plan

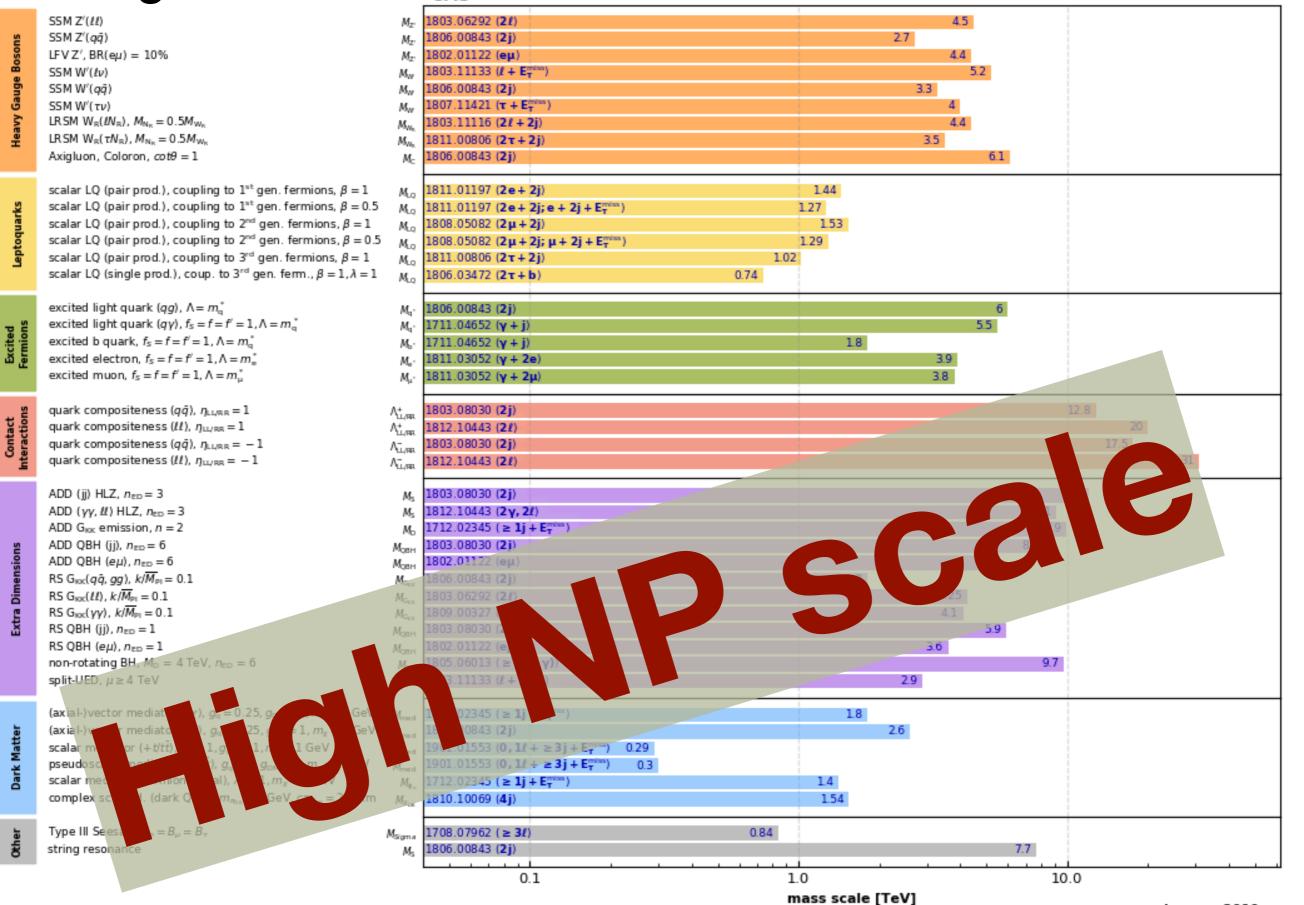




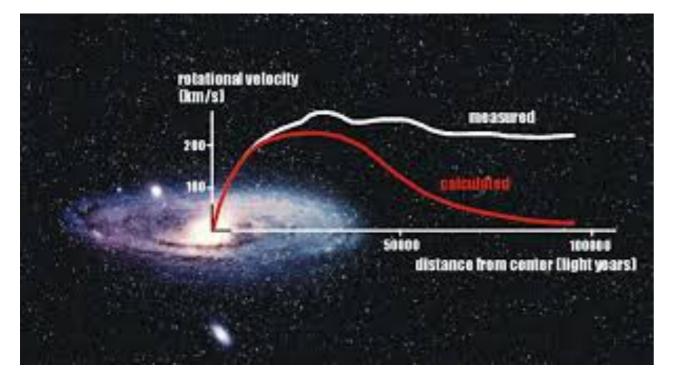


Higher NP scale

36 fb⁻¹ (13 TeV)

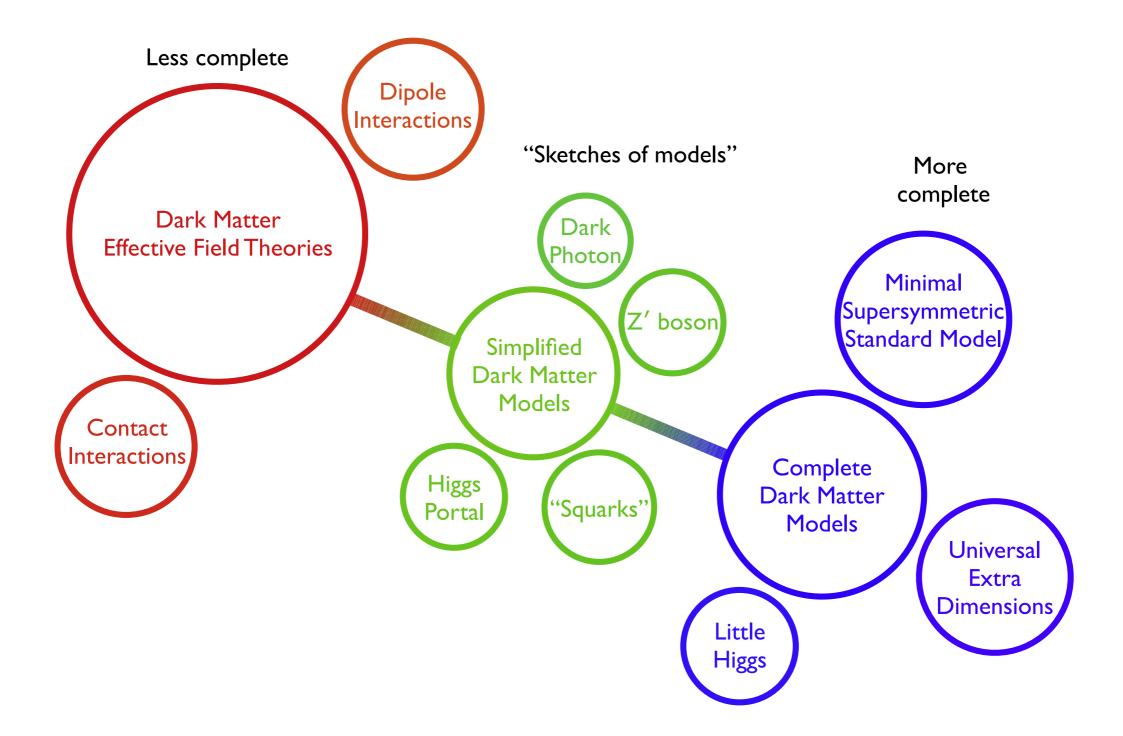


Dark Matter

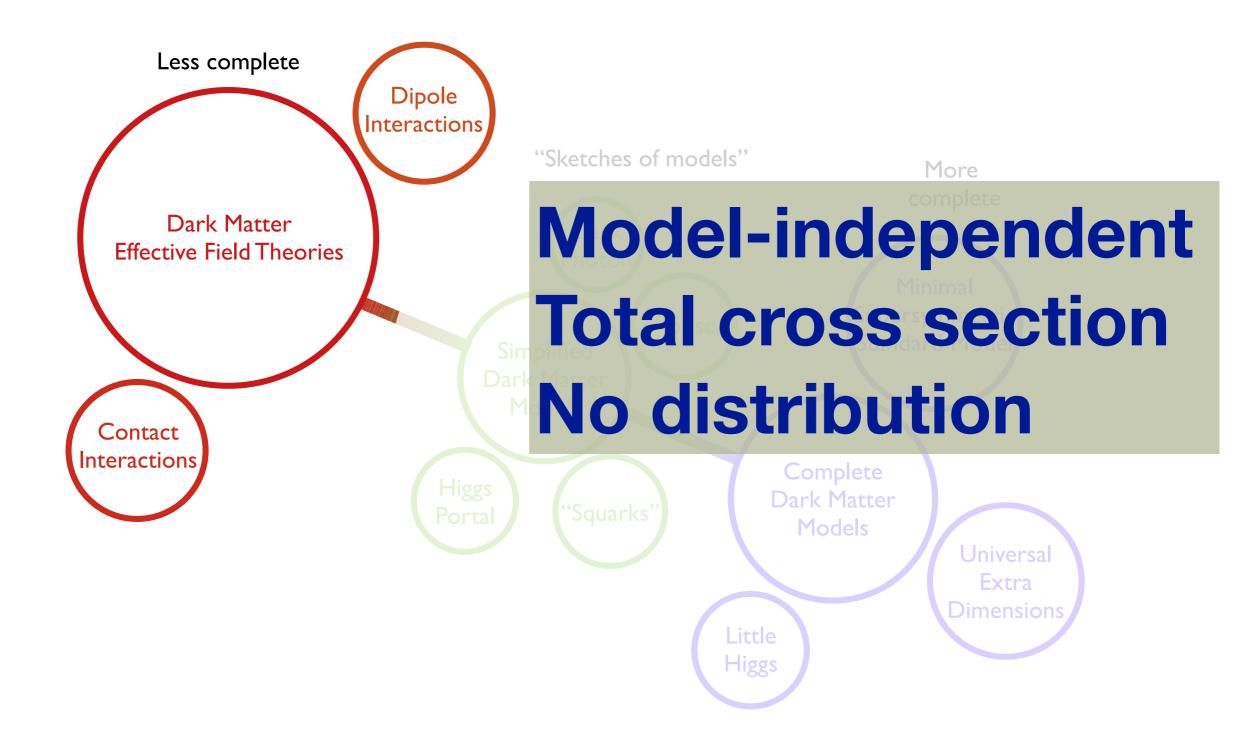




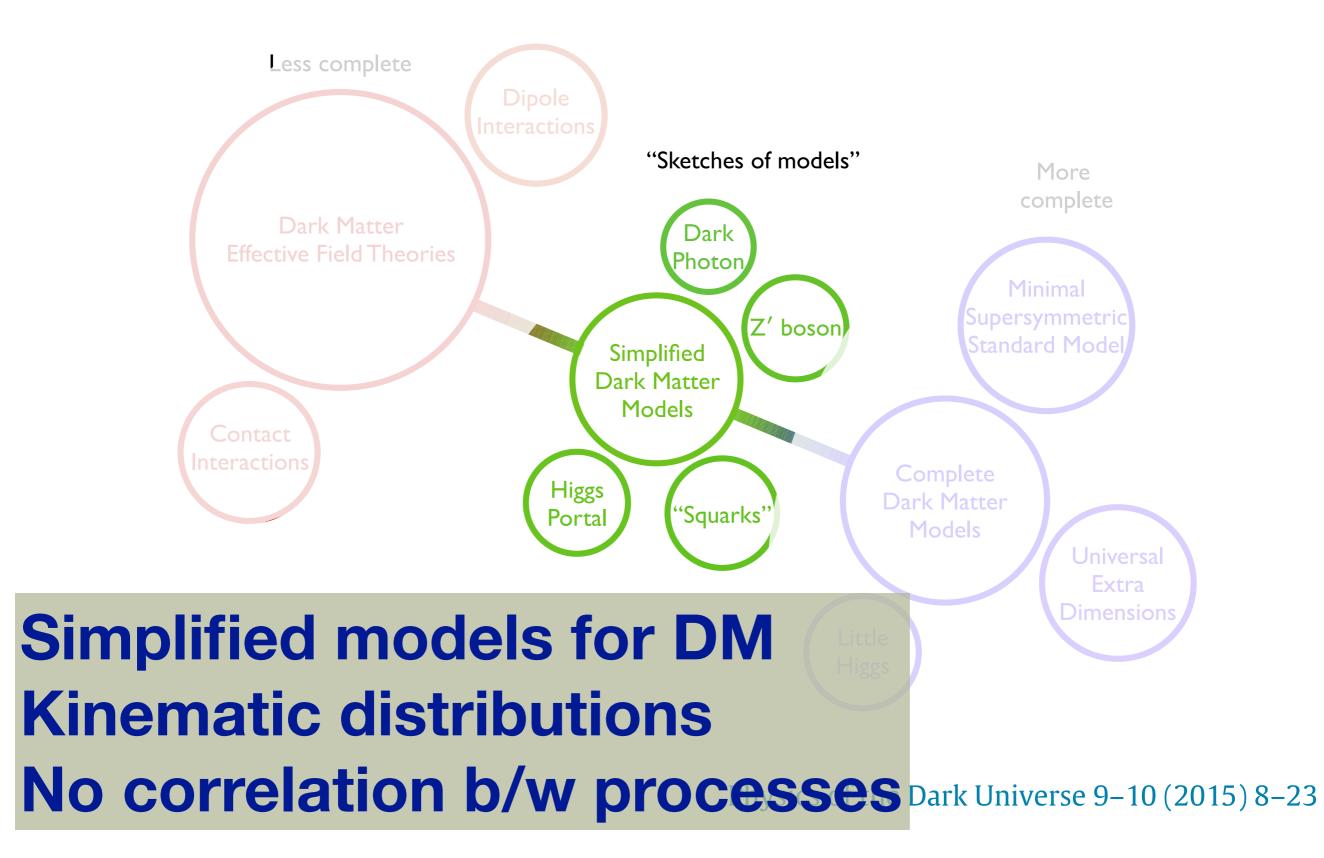
3 approaches

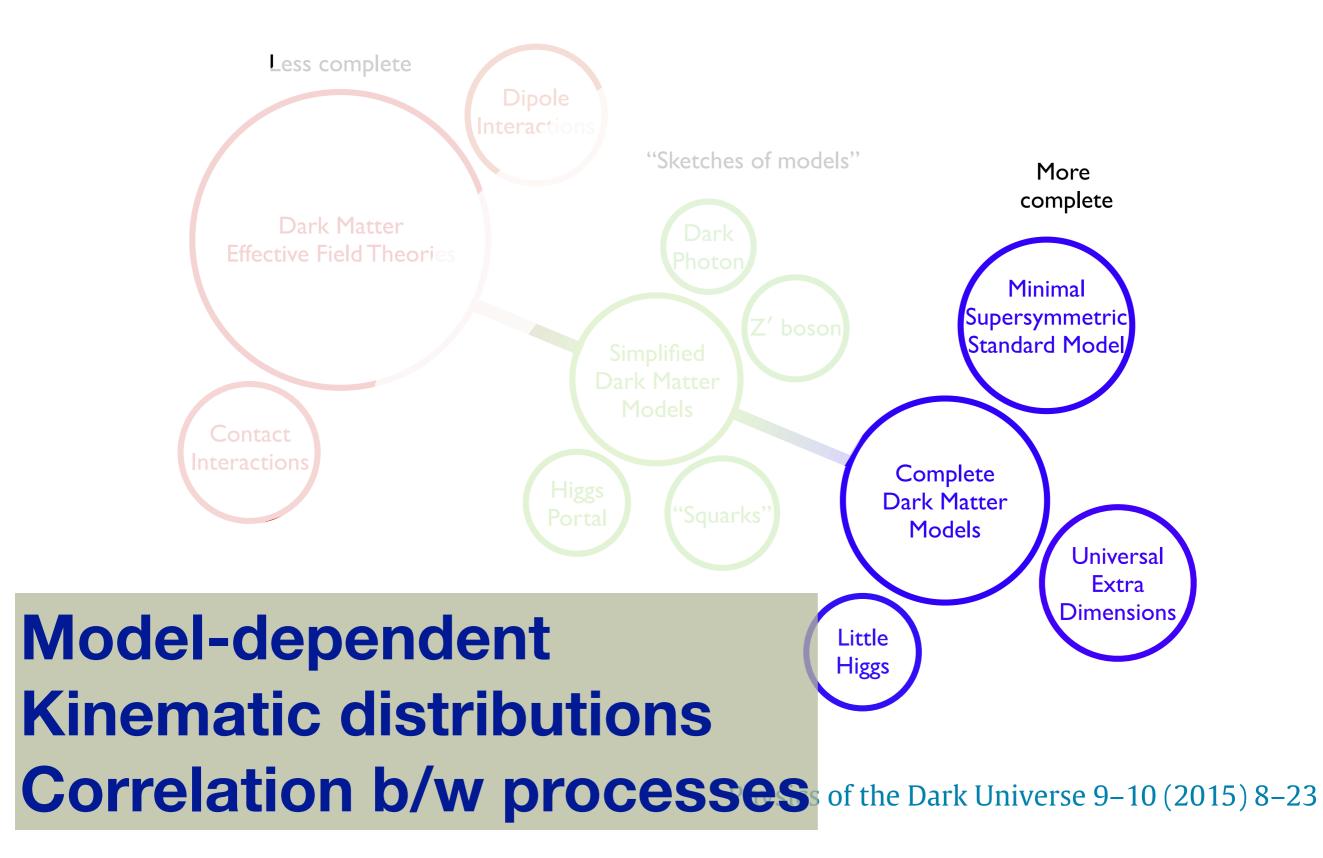


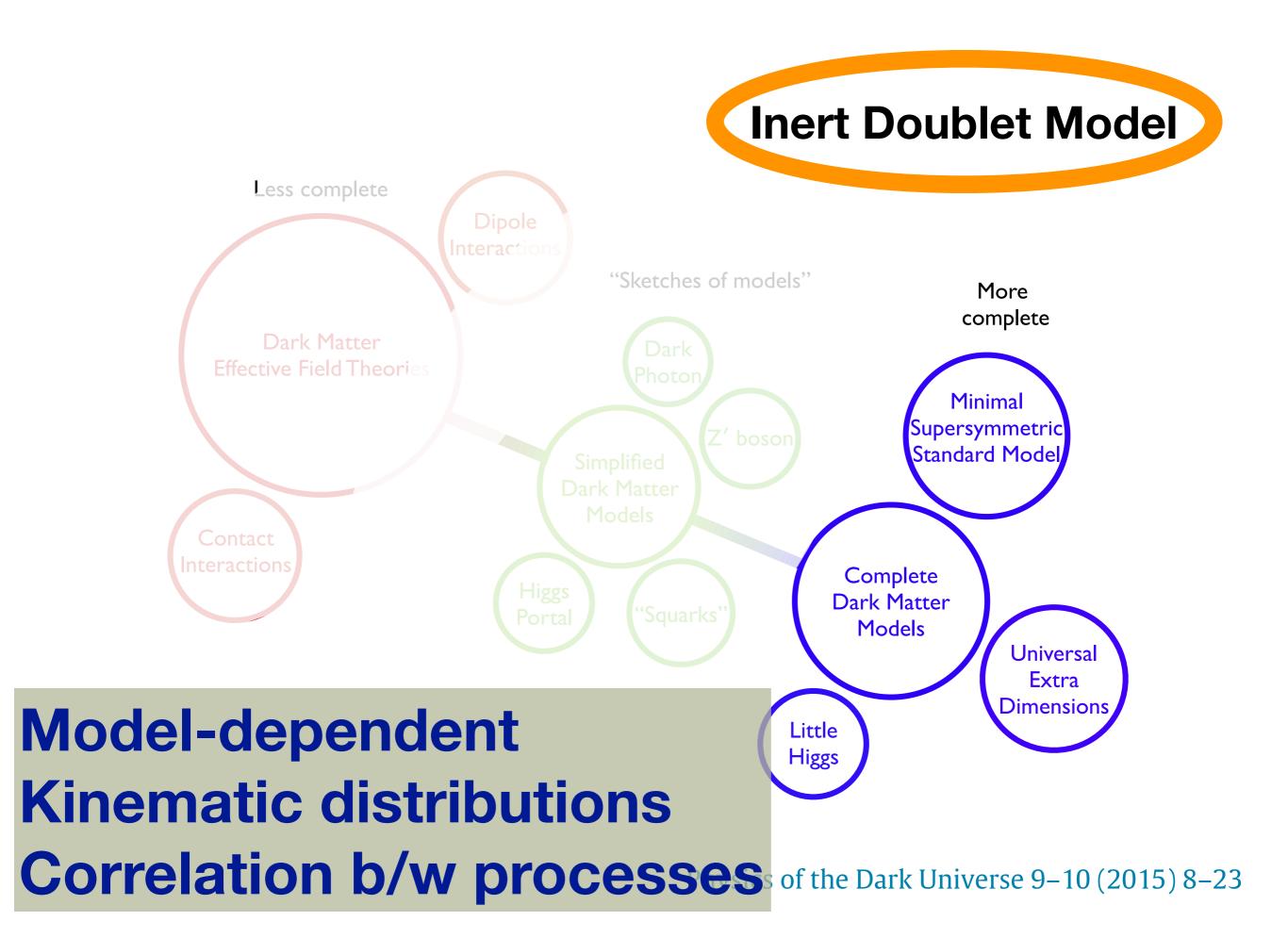
Physics of the Dark Universe 9–10 (2015) 8–23



Physics of the Dark Universe 9–10 (2015) 8–23







2. Inert Doublet Model with discrete Z₂ parity

SM Higgs boson ϕ_1 & another Higgs doublet ϕ_2

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix} \quad Z_2\text{-even} \quad \text{All the SM particles}$$
$$\phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}h^+ \\ h_1 + ih_2 \end{pmatrix} \quad Z_2\text{-odd}$$

New scalar bosons

Two neutral scalar: $h_1 \& h_2$ charged scalars: H^{\pm}

New scalar bosons

Two neutral scalar: $h_1 \& h_2$ charged scalars: H^{\pm}

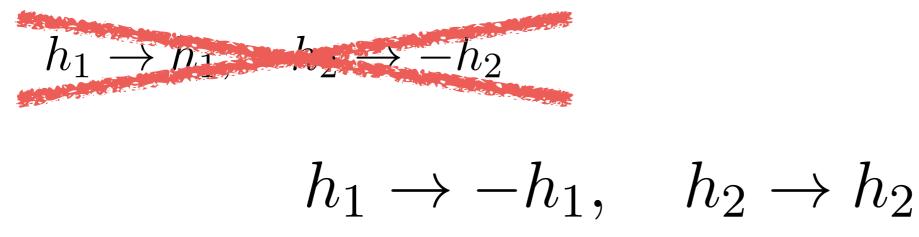
- $h_1 \& h_2$: opposite CP parities
- Impossible to tell which is CP-even.
- Under CP transformation

 $h_1 \rightarrow h_1, \quad h_2 \rightarrow -h_2$

New scalar bosons

Under the rephasing $\phi_2 \rightarrow i\phi_2$

- $h_1 \& h_2$: opposite CP parities
- Impossible to tell which is CP-even.
- Under CP transformation



The scalar potential allowed by Z₂ symmetry

$$\begin{split} V &= -m_1^2 (\phi_1^{\dagger} \phi_1) - m_2^2 (\phi_2^{\dagger} \phi_2) + \lambda_1 (\phi_1^{\dagger} \phi_1)^2 + \lambda_2 (\phi_2^{\dagger} \phi_2)^2 \\ &+ \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_2^{\dagger} \phi_1) (\phi_1^{\dagger} \phi_2) \\ &+ \frac{\lambda_5}{2} [(\phi_1^{\dagger} \phi_2)^2 + (\phi_2^{\dagger} \phi_1)^2]. \end{split}$$

- No mixing b/w H and $h_{1,2}$
- $\bullet\,$ No Yukawa coupling b/w new scalars & SM fermions

Masses of the new scalars

$$egin{aligned} M_{H}^{2}&=2\lambda_{1}v^{2}=2m_{1}^{2}, \qquad M_{h^{+}}^{2}=rac{1}{2}\lambda_{3}v^{2}-m_{2}^{2}, \ M_{h_{1}}^{2}&=rac{1}{2}(\lambda_{3}+\lambda_{4}-|\lambda_{5}|)v^{2}-m_{2}^{2}, \ M_{h_{2}}^{2}&=rac{1}{2}(\lambda_{3}+\lambda_{4}+|\lambda_{5}|)v^{2}-m_{2}^{2}>M_{h_{1}}^{2}. \end{aligned}$$

3. Inert Doublet Model with U(1)

continuous U(1) symmetry, not spontaneously broken by the vacuum.

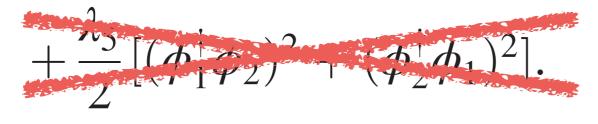
$$\phi_1 \to \phi_1, \quad \phi_2 \to e^{i\theta}\phi_2$$

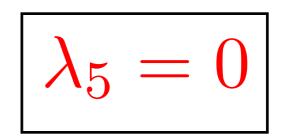
ARXIV EPRINT: 1808.08629

The scalar potential allowed by U(1) symmetry

$$\phi_1 \to \phi_1, \quad \phi_2 \to e^{i\theta}\phi_2$$

$$V = -m_1^2(\phi_1^{\dagger}\phi_1) - m_2^2(\phi_2^{\dagger}\phi_2) + \lambda_1(\phi_1^{\dagger}\phi_1)^2 + \lambda_2(\phi_2^{\dagger}\phi_2)^2 + \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_4(\phi_2^{\dagger}\phi_1)(\phi_1^{\dagger}\phi_2)$$





The scalar potential allowed by U(1) symmetry

$$\phi_1 \to \phi_1, \quad \phi_2 \to e^{i\theta}\phi_2$$

$$V = -m_1^2(\phi_1^{\dagger}\phi_1) - m_2^2(\phi_2^{\dagger}\phi_2) + \lambda_1(\phi_1^{\dagger}\phi_1)^2 + \lambda_2(\phi_2^{\dagger}\phi_2)^2 + \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_4(\phi_2^{\dagger}\phi_1)(\phi_1^{\dagger}\phi_2)$$

$$+ \frac{\lambda_3}{2} [(\phi_1^{\dagger} \phi_2)^2 + (\phi_2^{\dagger} \phi_1)^2]. \qquad \lambda_5 = 0$$

$$M_{h_1}^2 = \frac{1}{2} (\lambda_3 + \lambda_4 - |\lambda_5|) v^2 - m_2^2,$$

$$M_{h_2}^2 = \frac{1}{2} (\lambda_3 + \lambda_4 + |\lambda_5|) v^2 - m_2^2$$

$$M_{h_1} = M_{h_2}$$
 by $U(1)$ symmetry

The mass degeneracy is protected even at loop level.

Q. Phenomenological characteristics of $IDM_{U(1)}$?

Inert Higgs couplings

$$\begin{aligned} \mathscr{L}_{VHH} &= \frac{1}{2} g_Z Z^{\mu} h_2 \overleftrightarrow{\partial}_{\mu} h_1 - \frac{g}{2} \left[i W^+ H^- \overleftrightarrow{\partial}_{\mu} (h_1 + i h_2) + \text{H.c.} \right] \\ &\left[i e A^{\mu} + i g_Z \left(\frac{1}{2} - s_W^2 \right) Z^{\mu} \right] H^+ \overleftrightarrow{\partial}_{\mu} H^- \right] \\ \mathscr{L}_{VVHH} &= \left(\frac{1}{4} g^2 W^+_{\mu} W^{-\mu} + \frac{1}{8} g_Z^2 Z_{\mu} Z^{\mu} \right) (h_1^2 + h_2^2) \\ &+ \left[\frac{1}{2} g^2 W^+_{\mu} W^{-\mu} + e^2 A_{\mu} A^{\mu} + g_Z^2 \left(\frac{1}{2} - s_W^2 \right)^2 Z_{\mu} Z^{\mu} \right. \\ &\left. + 2 g_Z e \left(\frac{1}{2} - s_W^2 \right) A_{\mu} Z^{\mu} \right] H^+ H^- \\ &+ \left[\left(\frac{1}{2} e g A^{\mu} W^+_{\mu} - \frac{1}{2} g_Z^2 s_W^2 Z^{\mu} W^+_{\mu} \right) H^- (h_1 + i h_2) + h.c. \right] \end{aligned}$$

w/ two inert scalars

,

Inert Higgs couplings

$$\begin{aligned} \mathscr{L}_{3h} &= -\frac{1}{2}\lambda_{34}vH(h_1^2 + h_2^2) - \lambda_3vHH^+H^- \\ \mathscr{L}_{4h} &= -\frac{\lambda_{34}}{4}H^2(h_1^2 + h_2^2) - \frac{\lambda_3}{2}H^2H^+H^- \\ &- \frac{\lambda_2}{4}(h_1^2 + h_2^2)^2 - \lambda_2H^+H^-(h_1^2 + h_2^2 + H^+H^-). \end{aligned}$$

$$\lambda_{34} = \lambda_3 + \lambda_4$$

Inert Higgs couplings

$$\begin{aligned} \mathscr{L}_{3h} &= -\frac{1}{2} \lambda_{34} v H(h_1^2 + h_2^2) - \lambda_3 v H H^+ H^-, \\ \mathscr{L}_{4h} &= -\frac{\lambda_{34}}{4} H^2(h_1^2 + h_2^2) - \frac{\lambda_3}{2} H^2 H^+ H^- \\ &- \frac{\lambda_2}{4} (h_1^2 + h_2^2)^2 - \lambda_2 H^+ H^- (h_1^2 + h_2^2 + H^+ H^-). \end{aligned}$$

• λ_{34}, λ_3 : couplings with the Higgs boson.

 $\lambda_2 = 0$

• λ_2 : couplings among inert scalars.

Three model parameters

 $\{M_S, M_{H^{\pm}}, \lambda_{34}\}$

$$\lambda_{1} = \frac{m_{H}^{2}}{2v^{2}},$$

$$\lambda_{3} = \lambda_{34} + \frac{2}{v^{2}} \left(M_{H^{\pm}}^{2} - M_{S}^{2} \right),$$

$$\lambda_{4} = -\frac{2}{v^{2}} \left(M_{H^{\pm}}^{2} - M_{S}^{2} \right) < 0,$$

$$M_{h_{1}} = M_{h_{2}} = M_{S}.$$

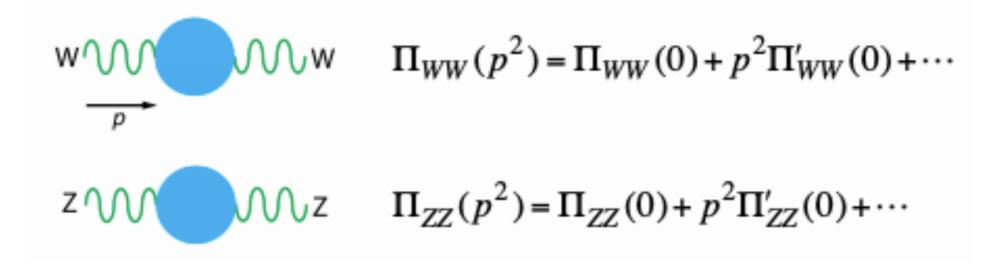
Decays of inert scalars

- h_1 , h_2 : stable
- $H^{\pm} \rightarrow W^{\pm}h_1, W^{\pm}h_2$

4. Constraints on the IDM with U(1)

- 1. EWPD oblique parameters: S, T
- 2. Theoretical constraints including vacuum stability
- 3. LEP data
- 4. LHC Higgs data
- 5. Relic density & Direct dark matter detection

EWPD constraints



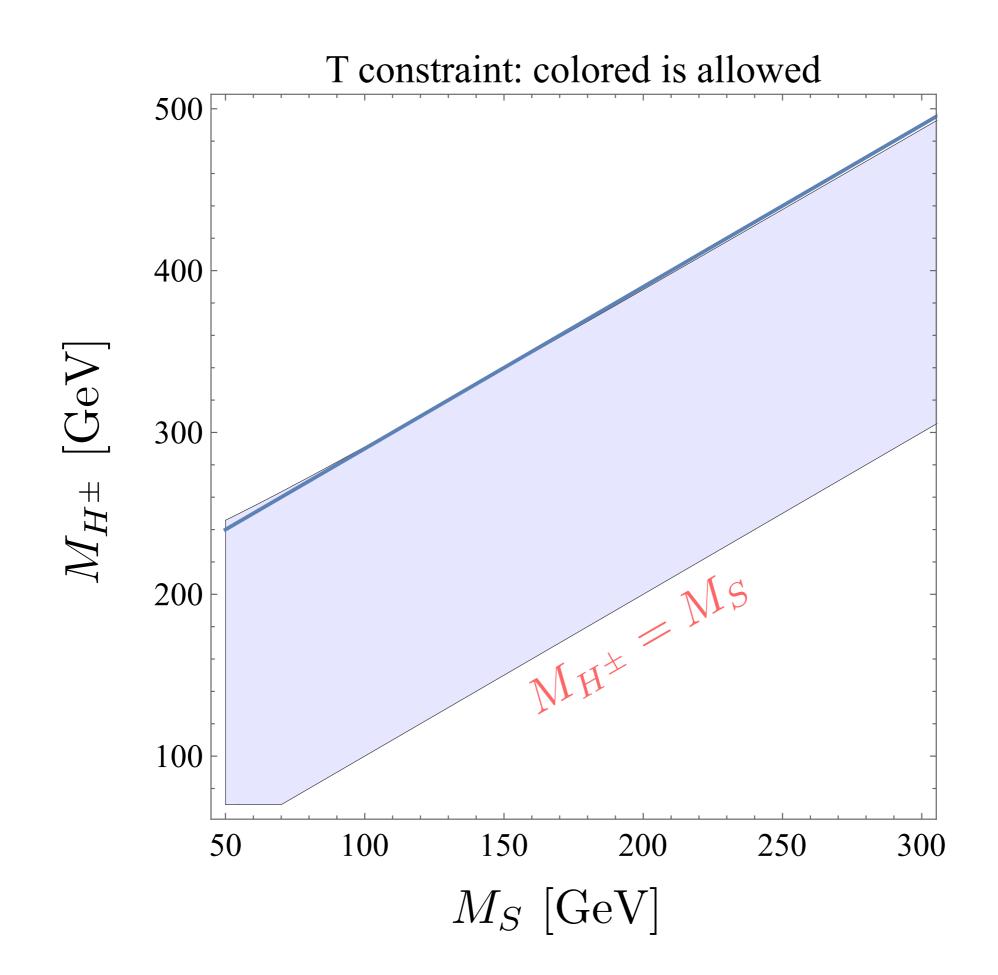
$$\begin{split} \alpha S &= 4 \, s^2 c^2 \Biggl[\Pi'_{ZZ}(0) - \frac{c^2 - s^2}{sc} \Pi'_{Z\gamma}(0) - \Pi'_{\gamma\gamma}(0) \Biggr] \\ \alpha T &= \frac{\Pi_{WW}(0)}{M_W^2} - \frac{\Pi_{ZZ}(0)}{M_Z^2} \end{split}$$

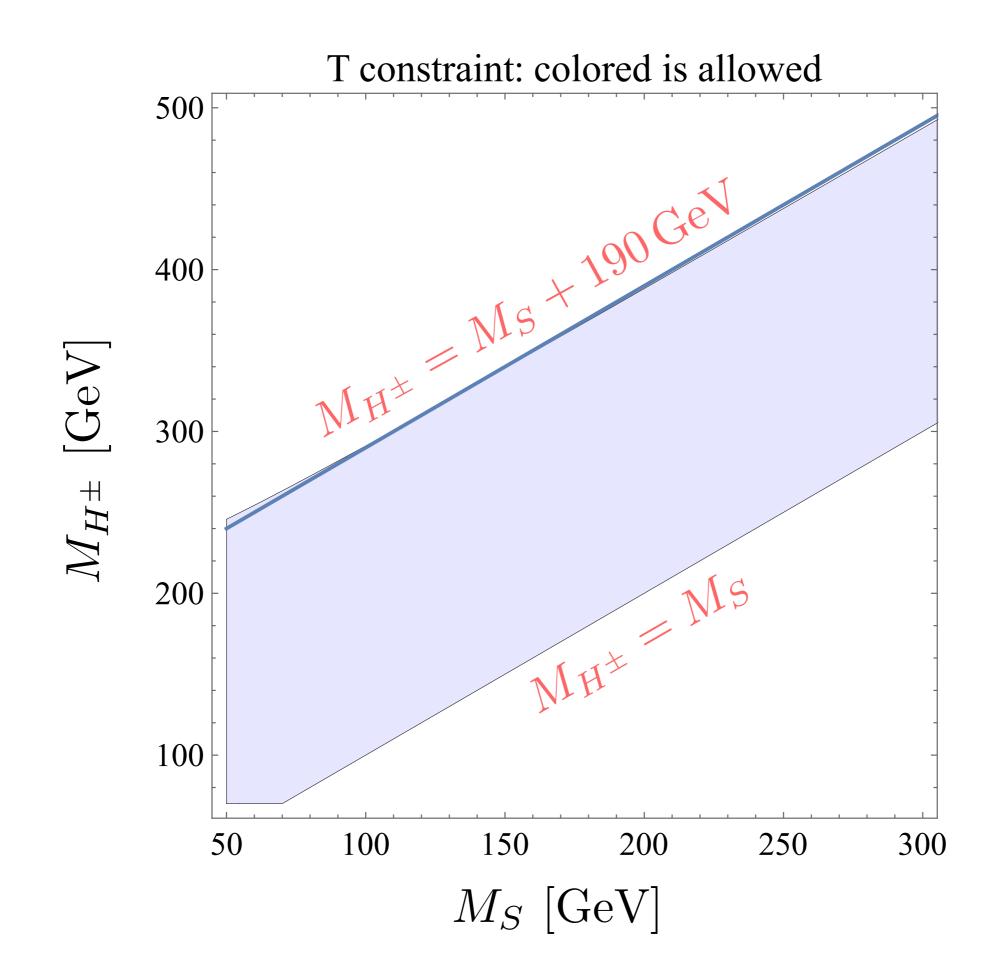
T: decisive constraint

$$\begin{split} T = & \frac{1}{32\pi^2 \alpha v^2} [f_c(M_{h^+}^2, M_{h_2}^2) + f_c(M_{h^+}^2, M_{h_1}^2) \\ & - f_c(M_{h_2}^2, M_{h_1}^2)], \end{split}$$

$$f_c(x,y) = \begin{cases} \frac{x+y}{2} - \frac{xy}{x-y} \log(\frac{x}{y}), & x \neq y \\ 0, & x = y \end{cases}$$

$$S = 0.06 \pm 0.09, \qquad T = 0.1 \pm 0.07$$





Two benchmark points

1. $M_{H^{\pm}} = M_S + 190 \,\text{GeV}$ 2. $M_{H^{\pm}} = M_S + 10 \,\text{GeV}$

3 missing scalars at the LHC: h1, h2, H+

2. $M_{H^{\pm}} = M_S + 10 \,\text{GeV}$

$$H^{\pm} \to W^{\pm *} h_{1,2} \to f \bar{f'} h_{1,2}$$

The object selection

Leptons

 $p_{\rm T} > 7 \,\,{\rm GeV}$

 $|\eta| < 2.47(2.7)$ for $e(\mu)$,

excluding $1.37 < |\eta^e| < 1.52$

ATLAS, mono-V, 1810.04995

Charged Higgs: missing signal

Theoretical constraints

1. Perturbativity:

 $|\lambda_i| \le 8\pi.$

2. Vaccum stability:

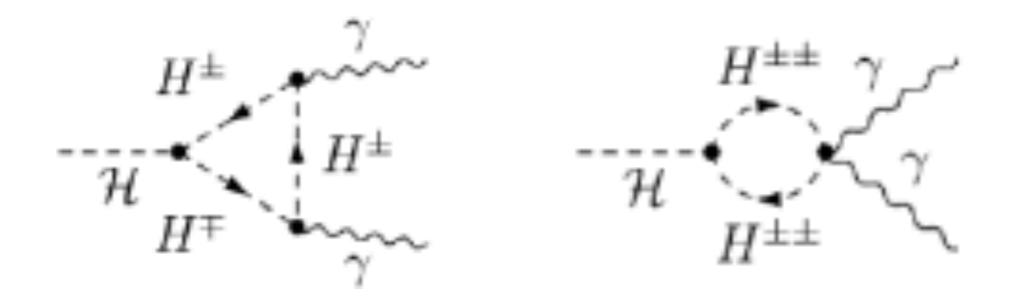
 $\lambda_{34} > 0.$

3. Tree level unitarity:

 $|a_i| \le 8\pi$

$$a_{1,2} = \lambda_3 \pm \lambda_4, \quad a_3 = \lambda_3, \quad a_4 = \lambda_3 + 2\lambda_4, \\a_{5,6} = -\lambda_1 - \lambda_2 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + \lambda_4^2}, \\a_{7,8} = -3\lambda_1 - 3\lambda_2 \pm \sqrt{9(\lambda_1 - \lambda_2)^2 + (2\lambda_3 + \lambda_4)^2}, \\a_9 = -2\lambda_1, \quad a_{10} = -2\lambda_2.$$

LHC Higgs precision data (1) diphoton rate

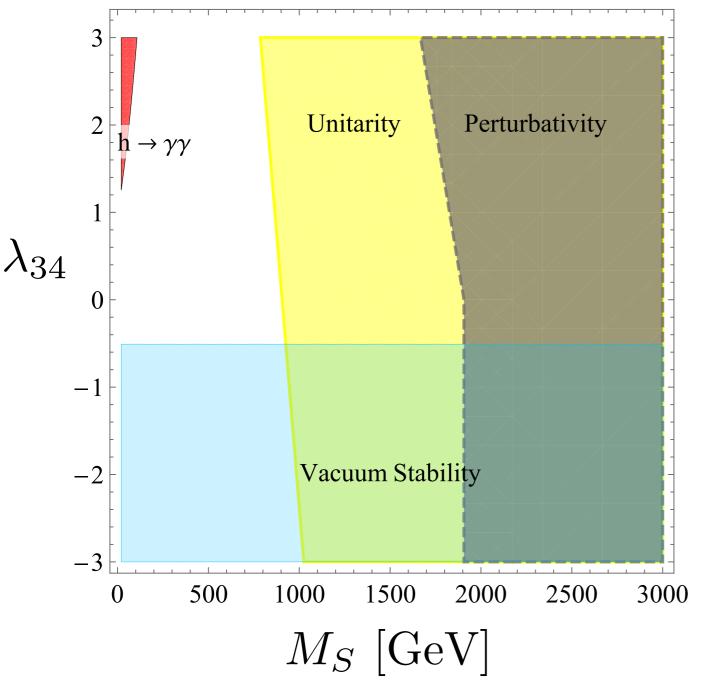


$$\begin{split} &\Gamma(h \to \gamma \gamma) \\ &= \frac{\alpha^2 G_F m_h^2}{128 \sqrt{2} \pi^3} \left| \sum_i N_{ci} Q_i^2 F_i + g_{hH^{\pm}H^{\mp}} \frac{m_W^2}{m_{H^{\pm}}^2} F_0(\tau_{H^{\pm}}) \right|^2, \end{split}$$

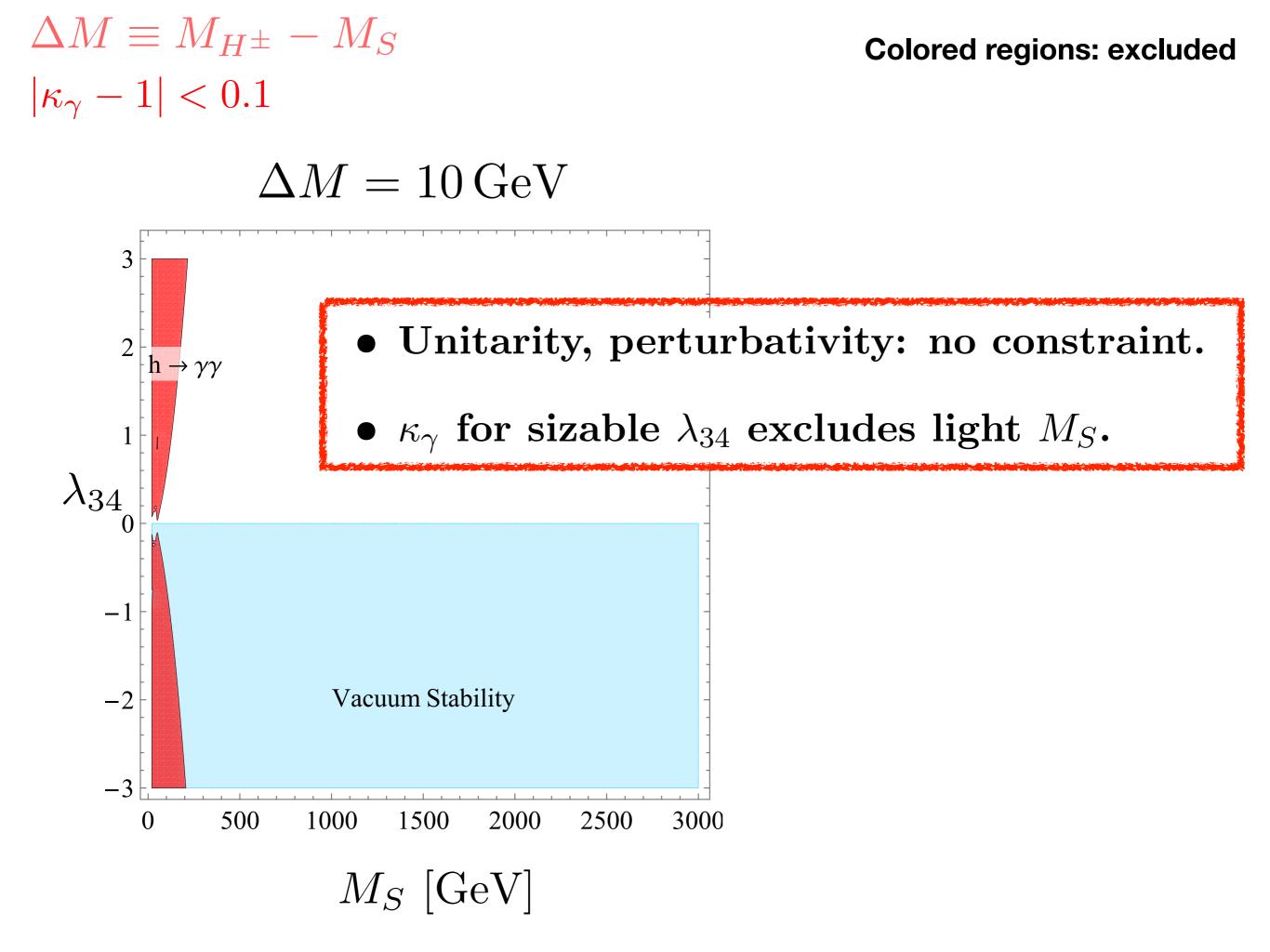
 $\Delta M \equiv M_{H^{\pm}} - M_S$ $|\kappa_{\gamma} - 1| < 0.1$

Colored regions: excluded

$\Delta M = 190 \,\mathrm{GeV}$



- κ_{γ} : weakly constraining to light M_S
- Upper bounds on M_S



LHC Higgs precision data (2) Higgs invisible decay

When $M_S < m_h/2$,

$\mathcal{B}_{inv} < 0.28$ [ATLAS JHEP 08 (2016) 045]

- For $M_S \ll m_H$, $|\lambda_{34}| < 0.019$.
- For $M_S \simeq 60$ GeV, $|\lambda_{34}| < 0.036$.

Relic density

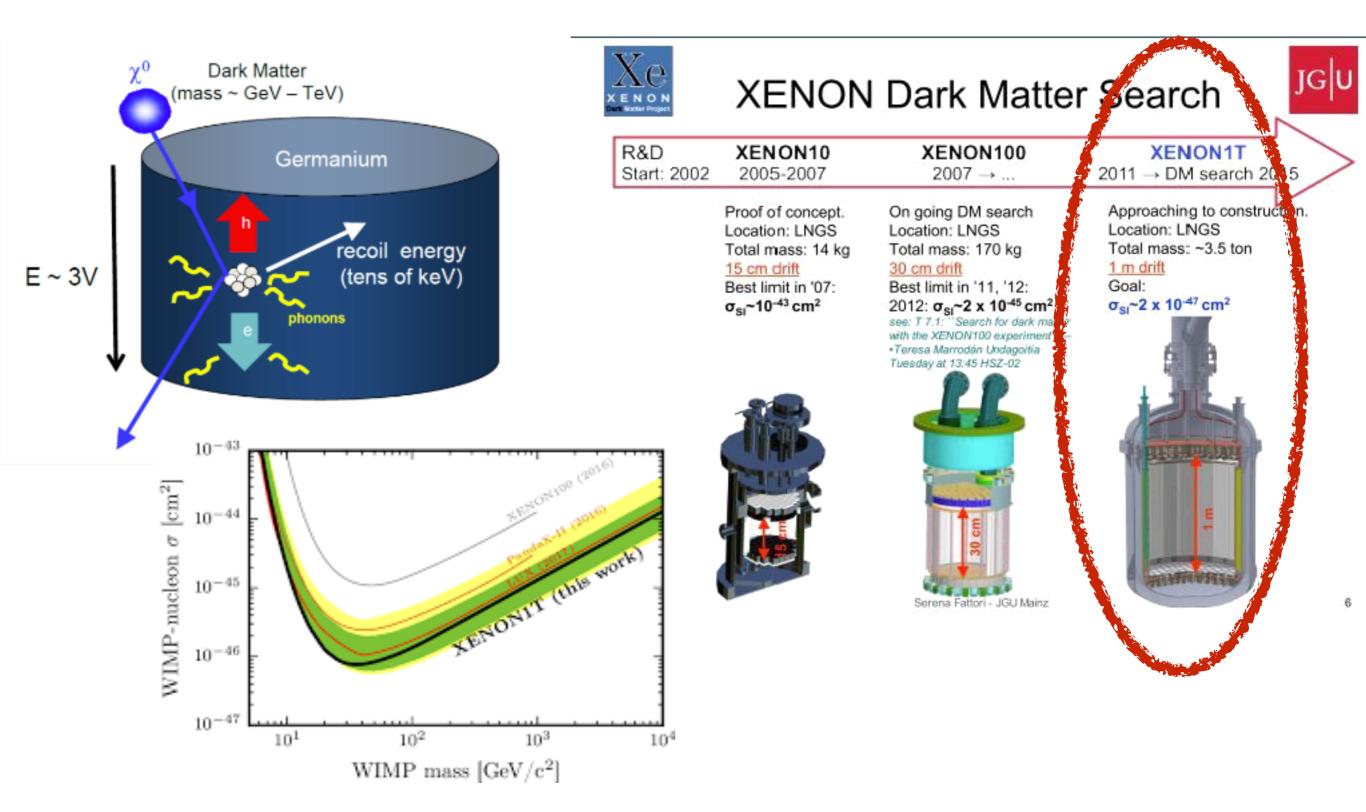
Planck, Astron. Astrophys. 594 (2016) A13,

$$\Omega_{\rm DM}^{\rm Planck} h^2 = 0.1184 \pm 0.0012$$

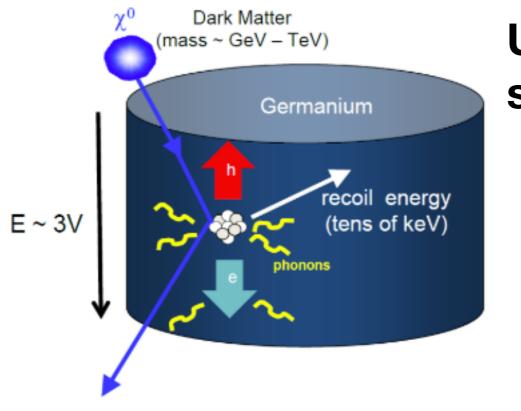
Avoid the over-closure of the Universe,

$$\Omega_{H,A}h^2 < \Omega_{\rm DM}^{\rm Planck}h^2$$

Direct detection of DM

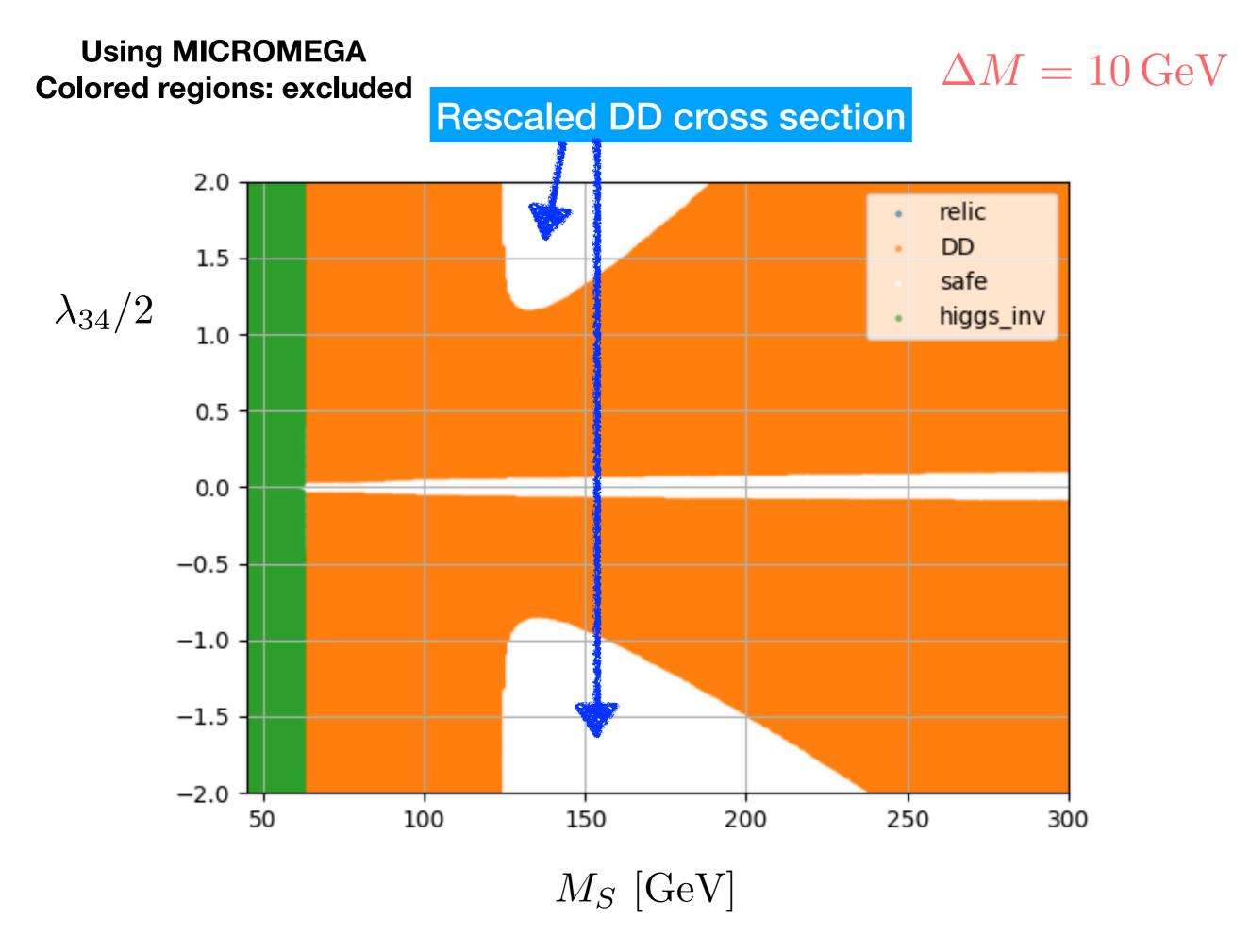


Direct detection of DM

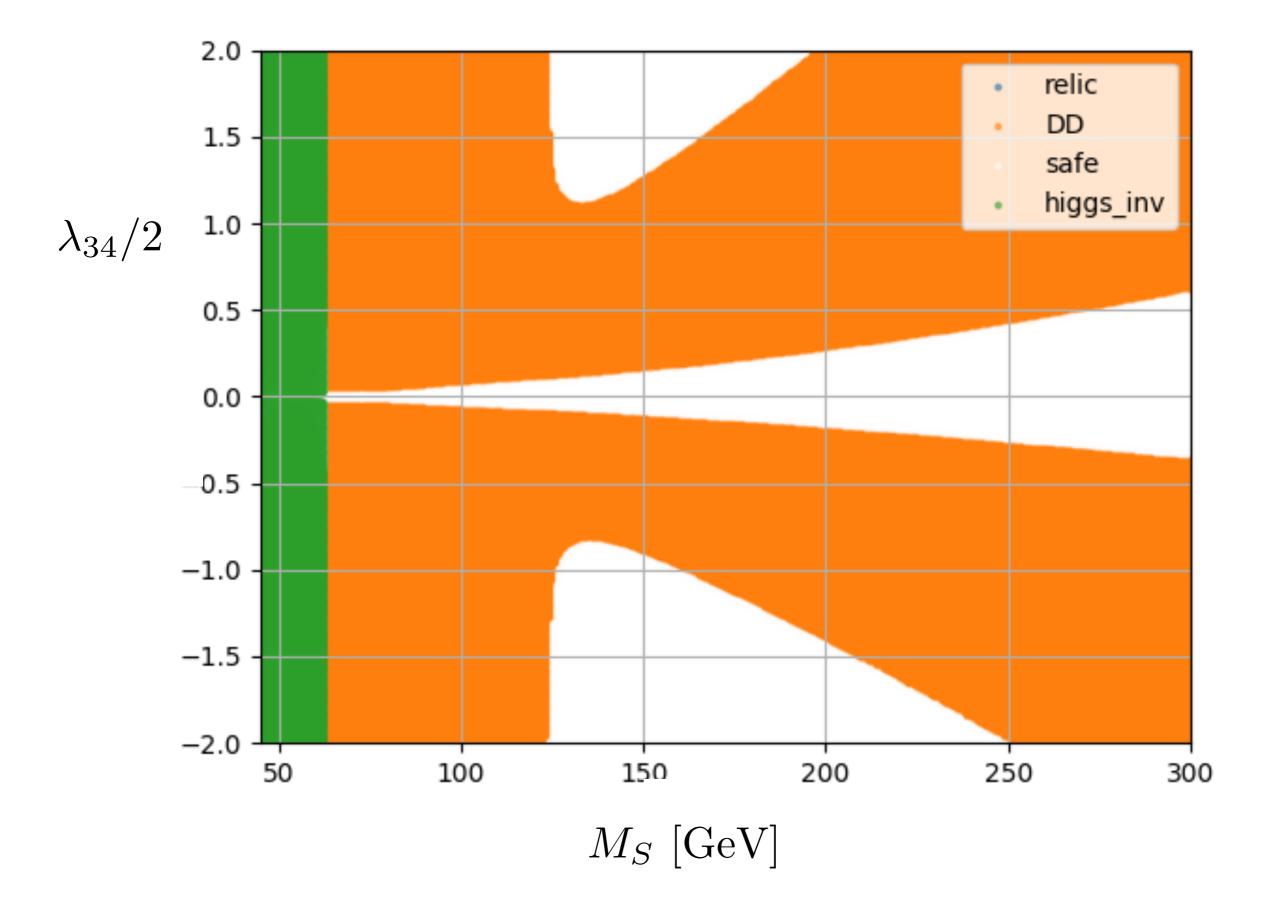


Use the rescaled DM cross section since the inert DM is only a part of DM.

$$\hat{\sigma}_{\rm SI} = \frac{\Omega_{\rm DM}}{\Omega_{\rm DM}^{\rm Planck}} \sigma_{\rm SI}$$



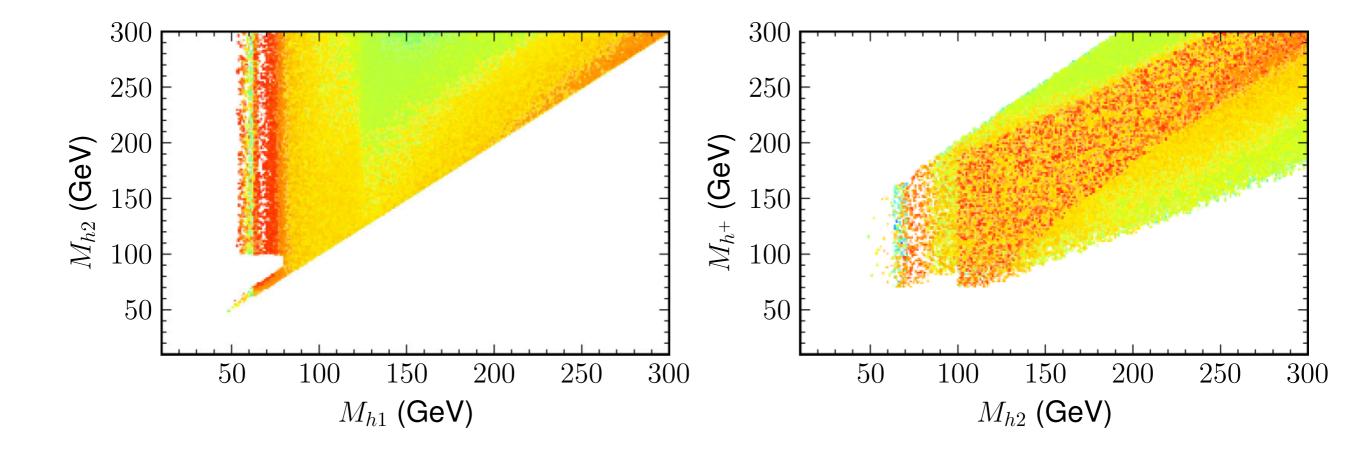
$\Delta M = 190\,{\rm GeV}$



5. LHC phenomenology of the IDM with U(1)

Q. Characteristic LHC signals of IDM_{U(1)}, distinct from IDM_{Z2}

- One DM particle, h_1 .
- $M_{h_1} = M_{h_2}$: broken at loop level.
- $M_{H^{\pm}}$: much heavier than the DM mass.

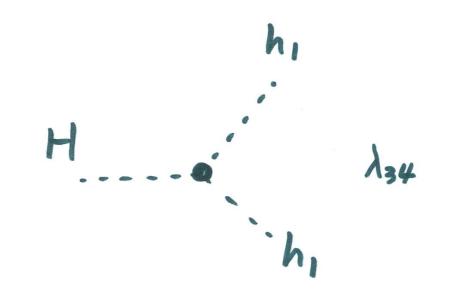


PHYS. REV. D 97, 035011 (2018)

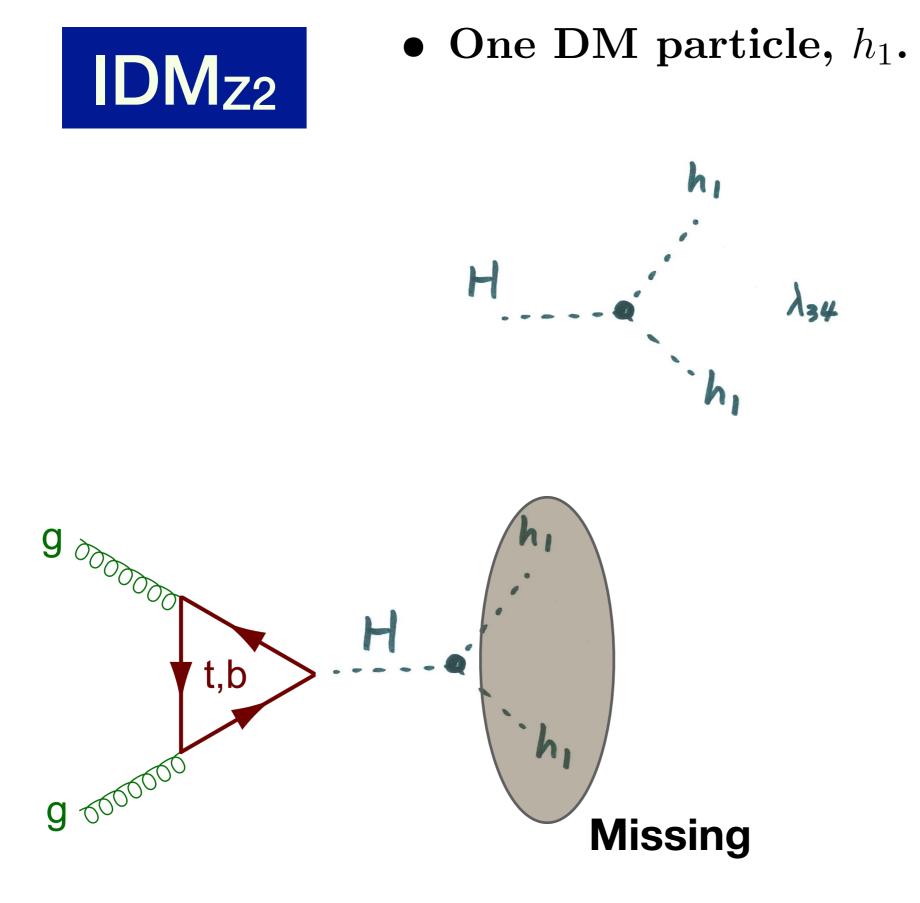
- One DM particle, h_1 .
- $M_{h_1} = M_{h_2}$: broken at loop level.
- $M_{H^{\pm}}$: much heavier than the DM mass.

- Two DM particles, h_1 or h_2 .
- $M_{h_1} = M_{h_2}$: protected by U(1) symmetry
- $M_{H^{\pm}}$: within 190 GeV from the DM mass.

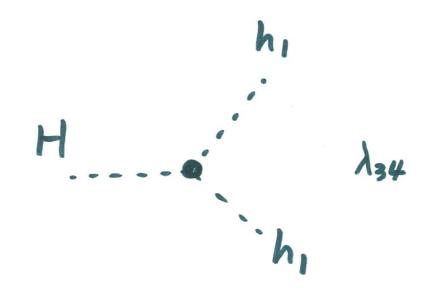
• One DM particle, h_1 .

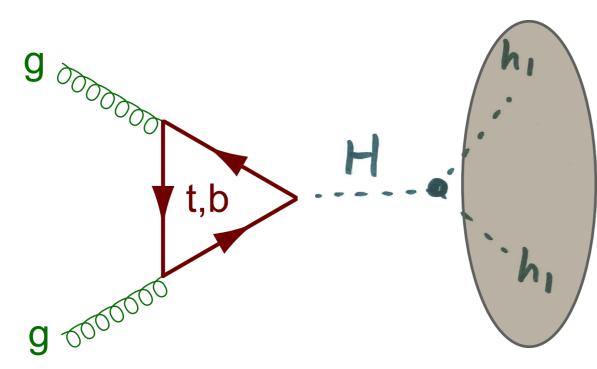


۲

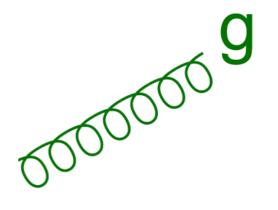


• One DM particle, h_1 .

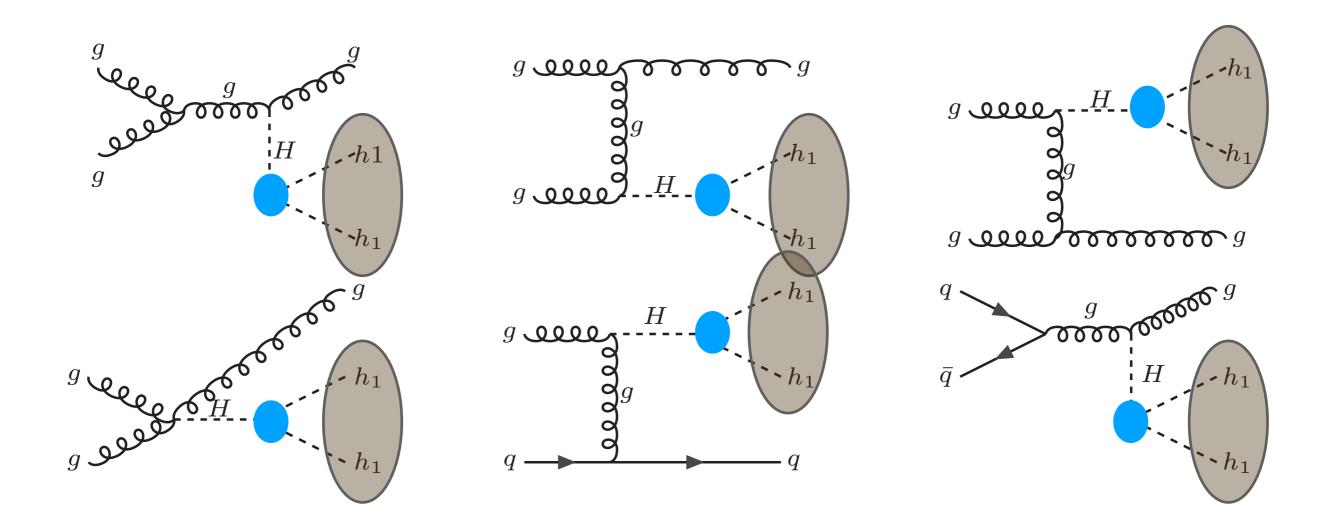




Main tagging particle



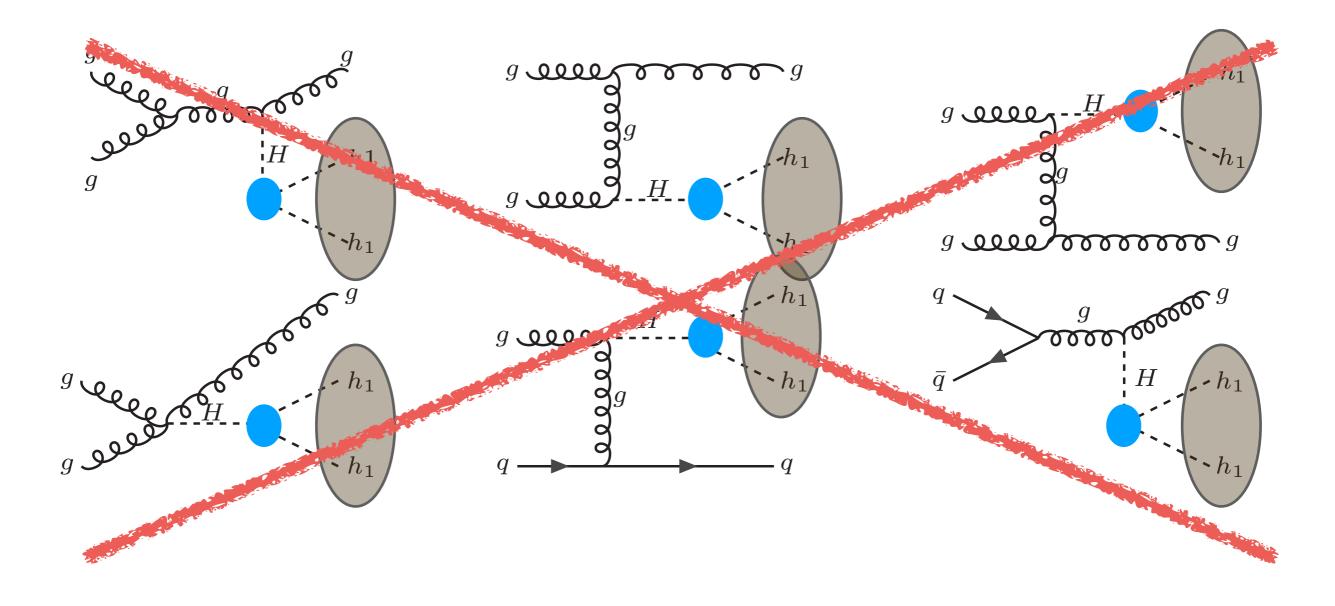
Mono-jet signal at the LHC



 λ_{34} -dependent

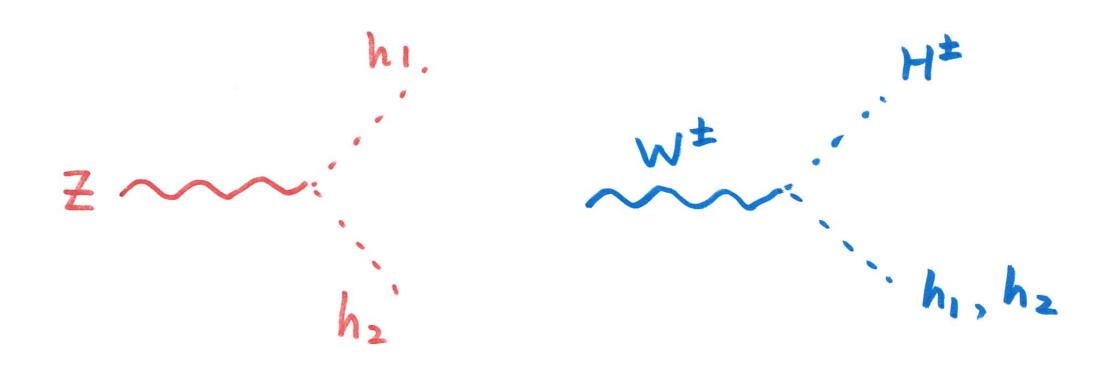
Mono-jet signal at the LHC

IDM_{Z2}

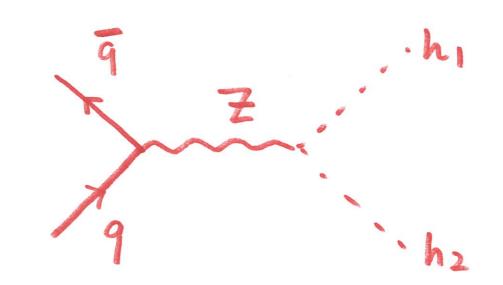


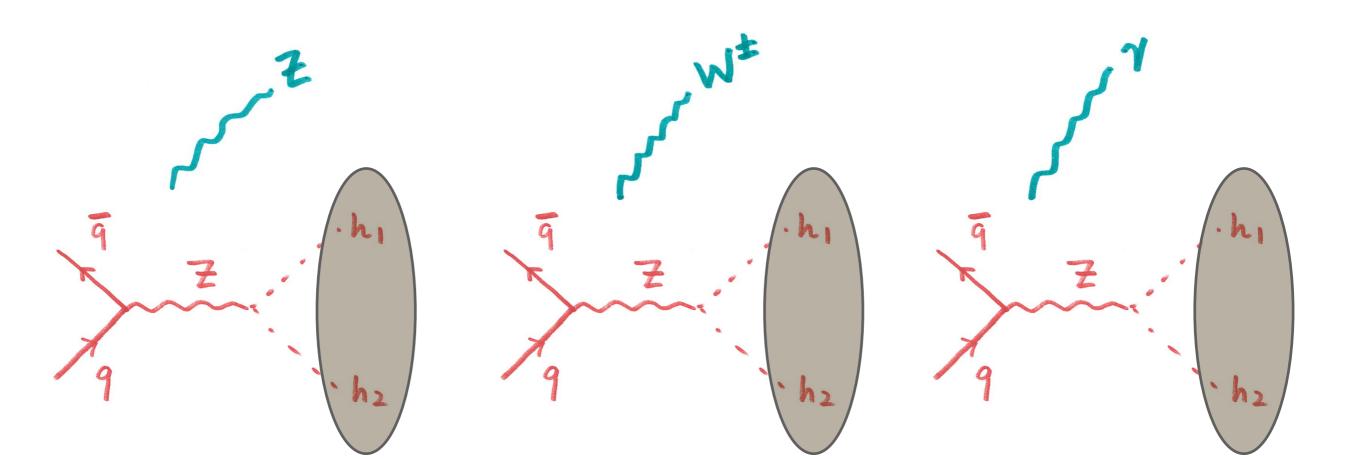
If $\lambda_{34} = 0$

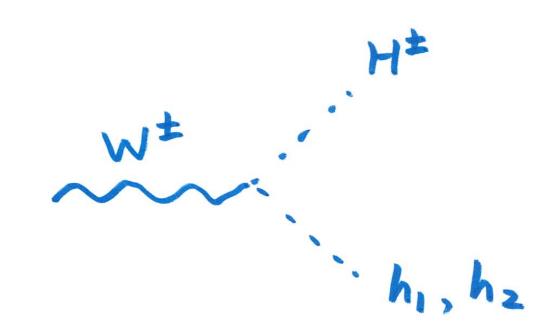
- Two DM particles, h_1 or h_2 .
- $M_{h_1} = M_{h_2}$: protected by U(1) symmetry
- $M_{H^{\pm}}$: within 190 GeV from the DM mass.



origin: gauge couplings



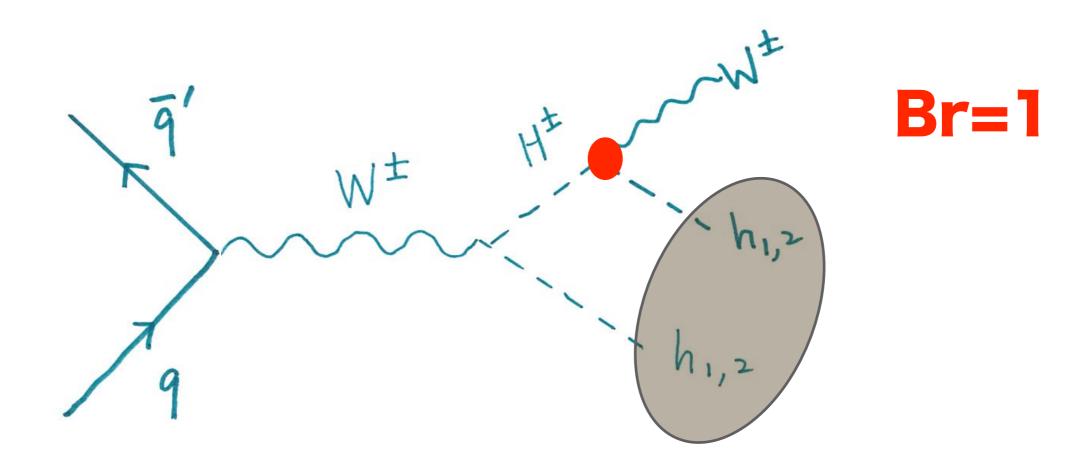




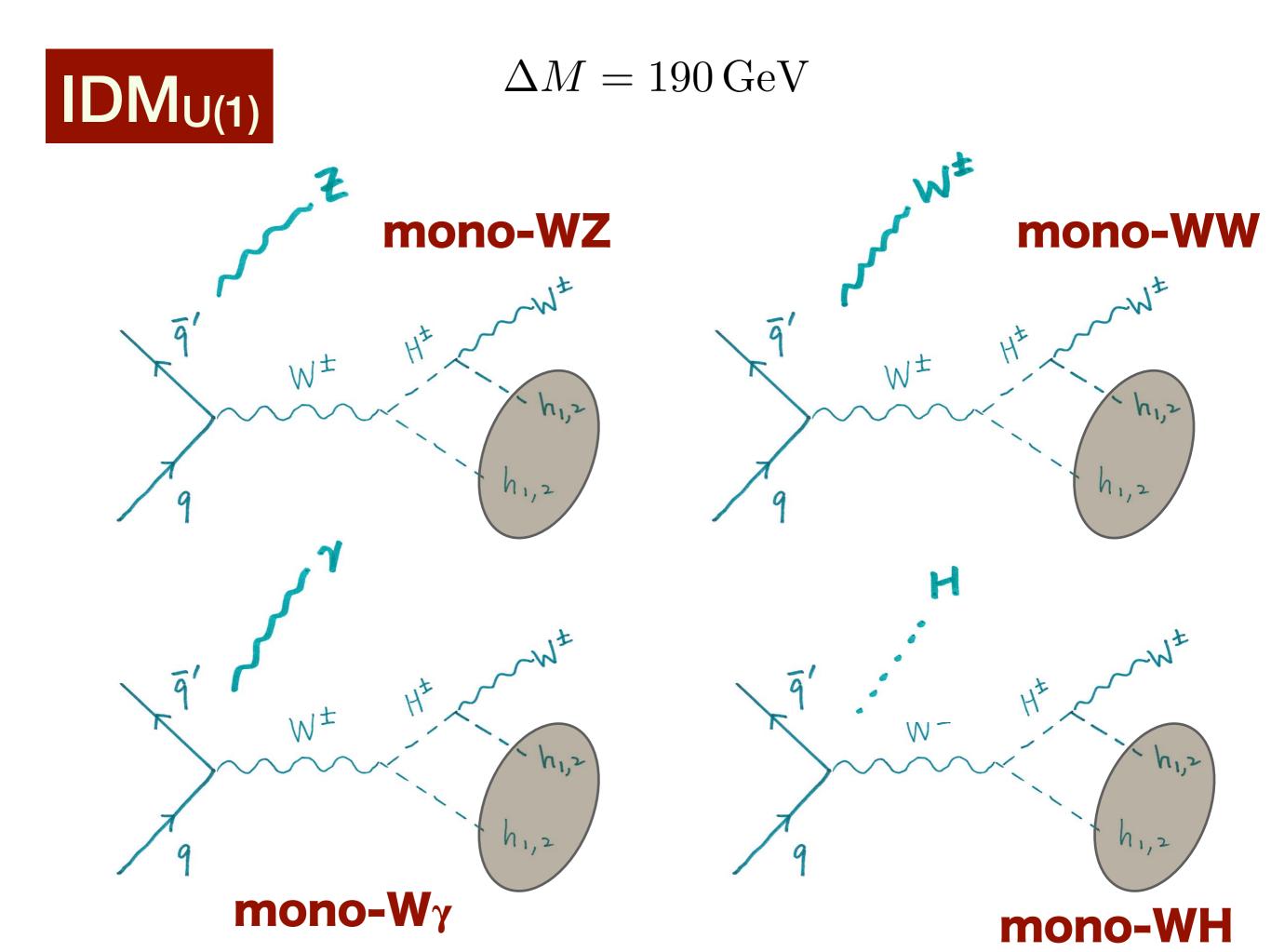
Two different signals, according to ΔM .

IDM_{U(1)}

 $\Delta M = 190 \,\mathrm{GeV}$



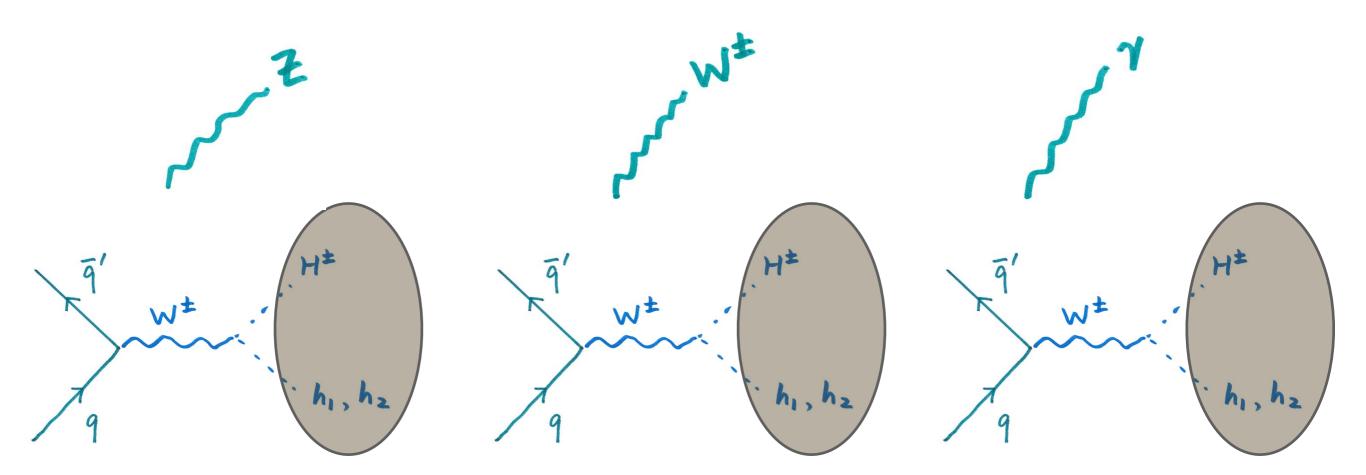
mono-W: 2→2 process



$\Delta M = 10 \, {\rm GeV}$



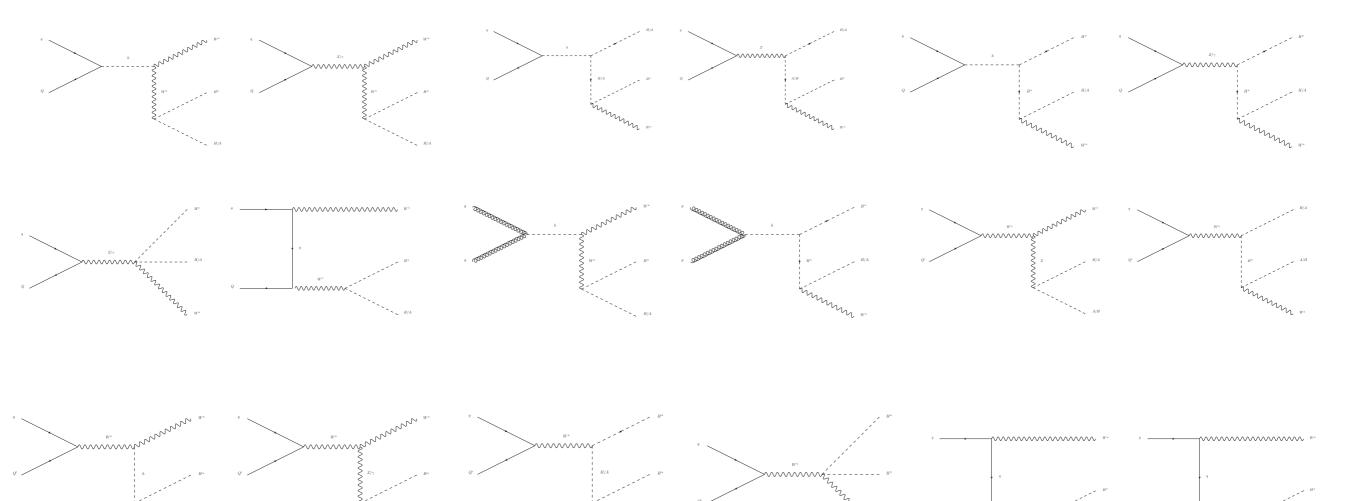
 $\Delta M = 10 \,\mathrm{GeV}$



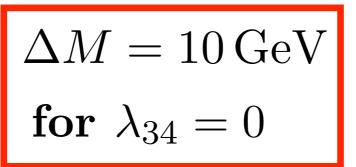
mono-Z mono-W mono-γ

Full processes are much more involved.

eg. mono-W



NNNN



Missing: $h_1h_1, h_1h_2, h_2h_2, H^+H^-, H^\pm h_1, H^\pm h_2$

M_S	mono-Z	mono- γ	mono-W
	(no-cut)	$(E_T^{\gamma} > 10 \mathrm{GeV}, \eta < 2.5)$	(no-cut)
60	8.13	13.91	17.88
70	5.60	9.09	12.35
200	0.40	0.43	0.86

- High pT cut reduces the significance
- Even intermediate inert DM is difficult to probe.

 $\Delta M = 190 \,\mathrm{GeV}$ for $\lambda_{34} = 0$

Missing: h_1h_1, h_1h_2, h_2h_2

significance $\mathcal Z$

M_S	mono-Z	mono- γ	mono-W	mono-WW
	(no-cut)	$(E_T^{\gamma} > 10 { m GeV}, \eta < 2.5)$	(no-cut)	(no-cut)
50	4.34	6.92	120.47	90.66
70	1.56	1.87	77.85	68.23
200	0.10	0.07	9.35	14.81

7. Conclusions

- IDM with U(1) is well-motivated simple model for DM.
- There are two DM particles, neutral scalar and pseudo-scalar bosons, because the mass degeneracy between them is protected by U(1).
- The distinctive features are from Z-h1-h2 and W-H+-h1.
- mono-W and mono-WW shall lead to smoking-gun signatures.