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Introduction

Heavy quark in QGP and Heavy DM in early universe

e heavy quarks in QGP

e heavy DM (stronlgy interacting via Nonabelian GT) in early universe

e “chemical equilibration in thermal environment”
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Introduction

Heavy quark in QGP and Heavy DM in early universe

e importance of ¢ T and a(M)

e and rough estimate of decoupling temperature is for dark matter is,
Hubble rate ~ annihilation rate
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for o0 ~ 0.01, ng

e bottom quark (~ 4.5 GeV) and the temperature reachable in heavy
ion collisions (~ 600 MeV) and os(M) ~ v ~ 0.3

e heavy particle in this situation is “non-relativistic
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Introduction

Heavy quark in QGP and Heavy DM in early universe

e “Sommerfeld effect” enhances annihilation (heavy quark annihilation
in QGP and dark matter (WIMP/SIMP) annihilation in cosmology) (e.g,
Hisano et al, hep-ph/0612049)

o thermal effect (producing mass shift, thermal width, mixing angle
modification) can be O(1) effect

e bound states can be disturbed by this O(1) effect

e such effects can be studied through the change of spectral
function/or thermal correlator

o these effects can be “strong”



Introduction

Heavy quark in QGP and Heavy DM in early universe

o for example, modification of heavy quark potential in thermal
environment (cf. M. Laine et al, hep-ph/0611300).

V(r) = o [mﬁ M]

and

B > X _sin(xmpr)
r(r)= ZOCST/O dx(1 ) [1 o ]

4/19



Introduction
Number density evolution

e B.W. Lee and S. Weinberg, PRL39 (1977) 165 (Lee-Weinberg
equation)

on
§+3Hn:—<6v>(n2—n§q)

e SK and M. Laine, JHEP1607 (2016) 143

on
ot
With [chem = 2 < OV > ngq

+3Hn = —T chem (N — Neg) + O(N— Neg)?

cf. linear response theory



Introduction
Number density evolution

o T. Binder, L. Covi, and K. Mukaida, PRD98 (2018) 115023

on ()
5 H3Hn=— <ov> G

cf. Saha equation
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Introduction
Number density evolution

e for QCD, non-perturbative definition for the chemical/kinetic
equilibration rate is necessary

e equilibriation rate is a real-time quantity
e |attice gauge theory is a method which can calculate
non-perturbative quantities using first principles of quantum field

theory

e |attice gauge theory is defined on a Euclidean space and has
difficulty in calculating real-time quantity
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Introduction
Number density evolution

e |attice study for heavy quark/anti-quark pair annihilation in QGP —
NRQCD (E.Braaten et al, hep-ph/9407339) in non-zero temperature

e applying QCD result to heavy dark matter annihilation in early
universe

e strongly interacting system

e caveat: continuum extrapolation not performed



Introduction

Non-linear susceptibility

o T. Binder, L. Covi, and K. Mukaida, PRD98 (2018) 115023

on (n)
o F8Hn =~ <ov> (e
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Introduction

Non-linear susceptibility

) on
n(:u) = a_zv X= Ta

since p = pg + p1 P + poe®Pi ...
20,6 ~ T(y — n).
with p2 = Pong, T,

5 — J¢{ (Re TrG;Re TrG,) — (Re TrG,)" }
2(Re TGy )

since ngq = 2(Re TrGy)
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Method

e use lattice NRQCD for heavy quark in thermal equilibrium (light
quarks and gluons are in thermal equilibrium)

e calculate “quarkonium” correlators

e obtain “matrix elements”
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Method

e anisotropic Euclidean lattices (i.e., the time direction lattice spacing
is different from the space direction lattice spacing, as/a; = 3.5),

as =0.1227(8) fm

o Ny =241 light quark flavors (M ~ 400 MeV, Mk ~ 500 MeV)

o 243 x N lattices

o T, =185 MeV, agM =2.92

e lattices used for bottomonium at T # 0 study (G. Aarts et al, JHEPO7

(2014) 097) and electric conductivity of QGP (G. Aarts et al, JHEP-2
(2015) 186)
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Method

G°0,x;) = 8%6,
Sax) = (1-22) G (1-22) @),
G(t+a,x-) = <1—at2'{;6> U (t,x) <1—%> (1—ad#) G,

where U, is a time-direction gauge link. The lowest-order Hamiltonian

reads
A

oM’

where A is a discretized gauge Laplacian.
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Method

The higher order correction is

(A®) igy(V-E—E-V) g,6-(VXE—ExV)
T 8M2 8M2
~ go'B 2AW  a(AR)?
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Method

1 N -
P1 = Wre <Gga,,([3,0;0,0)>’

1 = 0 3-0 3
Po = o (Glny(B,0:0,0)Gi,(8,6:0,0))

— = = 0 - —
Py = N2< e (B O;O’O)Gy;;ji(B’O;an»-

e singlet Sommerefeld factor

e octet channel Sommerefeld factor

Qe N§P3_P2
GEDE
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Method

e P-wave Sommerfeld factor

- Pp

% = M2 P2
with
pp=Tr(A\Gy(B,0;0,0:1)G'(B,6:0,0)) — Tr(Gv(B,8:0,8;/)A,G' (B.5;0,0))
e non-linear susceptibility

5 J¢{ (Re TrtG,Re TrG,) — (Re TrG,)" }
i 2(Re TGy )
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Result and Discussion
Thermally averaged Sommerfeld factor

e “chemical equilibration rate” as a transport peak
e Sommerfeld factorat T # 0
e SK, M. Laine (JHEP1607 (2016) 143, PLB795 (2019) 469)

M, =147 M, =147
T T T T

-—-- resummed §< E ----- resummed §p

0
T

o
T

averaged Sommerfeld factor
1S) S
T T
L Ll
averaged Sommerfeld factor
1S) S
T T
L]

=)
T
b\
N
\Y
|
=)
T
@
LR
A\

B latice S, @ [laticeS,

L g
L~

10 20 30 10 20 30

17/19



Result and Discussion
NR particle number susceptibility

e Non-relativistic particle number susceptibility

e S.Biondini, SK, M.Laine, arXiv:1908.07541 (to be published in JCAP)

M, = 14A
T
ol vacuum coupling
10 E|---- thermal coupling .
[| @ lattice result =
-
= o'E ® |
L, E . |
- »
10-2 Eami ol ]
|
10 5 il
Mk' / T
n

18/19



Result and Discussion
Discussion

e |attice NRQCD study of heavy quark chemical equilibration rate in
QGP is possible

e subtle interplay of thermal effect in strongly interacting system with
bound states in T #0

e applicable to heavy dark matter annihilation in early universe —
insight to SIMP?

e continuum extrapolation is needed due to the limitation of the current
lattice setup
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