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Neutrino Oscillation

For	two-body	case,

As you can see, the oscillatory behaviour comes from the di↵erence in the energy eigenvalues of
|⌫1 > and |⌫2 > (E2 � E1), which we interpret as coming from di↵erent masses for each of the mass
eigenvalues.

A plot of this function is shown in Figure 7 for a particular set of parameters : �m
2 = 3⇥10�3

eV
2,

sin
2(2✓) = 0.8 and E⌫ = 1GeV. At L = 0, the oscillation probability is zero and the corresponding

survival probability is one. As L increases the oscillatios begin to switch on until 1.27�m
2 L
E = ⇡

2
or L = 400 km. At this point the oscillation is a maximum. However, the mixing angle is just
sin

2(2✓) = 0.8 so at maximal mixing, only 80% of the initial neutrinos have oscillated away. As L
increases furthur, the oscillation dies down until, around L = 820 km, the beam is entirely composed
of the initial neutrino flavour. If sin2(2✓) = 1.0, the oscillations would be referred to as maximal,
meaning that at some point on the path to the detector 100% of the neutrinos have oscillated.

Figure 7: The oscillation probability as a function of the baseline, L, for a given set of parameters :
�m

2 = 3⇥ 10�3
eV

2, sin2(2✓) = 0.8 and E⌫ = 1GeV.

As a side comment, the derivation of the oscillation probability depends on two assumptions : that
the neutrino flavour and mass states are mixed and that we create a coherent superposition of mass
states at the weak vertex. This coherent superposition reflects the fact that we can’t experimentally
resolve which mass state was created at the vertex. One might ask oneself what we would expect
to see if we did know which mass state was created at the vertex. If we knew that, we would know
the mass of the neutrino state that propagates to the detector. There would be no superposition, no
phase di↵erence and no flavour oscillation. However there would be flavour change. Suppose that at
the vertex we create a lepton of flavour ↵ and a specific mass state, |⌫k >. Mixing implies that we’ve
picked out the k

th mass state from the ↵ flavour state. The probability of doing this is just

| < ⌫k|⌫↵ > |2 = U
2
k↵ (47)

This mass state then propagates to the detector, and is detected as a neutrino of flavour � with
probability | < ⌫�|⌫k > |2 = |U�k|2. The flavour change probability is then the incoherent sum

P (⌫↵ ! ⌫�)
mixing =

X

k

| < ⌫�|⌫k > e
�i�k < ⌫k|⌫↵ > |2 =

X

k

|U↵k|2|U�k|2 (48)

In the two-flavour approximation, we would have a ⌫e flavour transition probability of

16

The identification of dark matter is one of the most important problem of
modern cosmology. I will talk about the candidates of dark matter beyond
standard WIMPs, especially for the gravitino and axino dark matter and its
relation to the early Universe and collider experiments.
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In	the	matter,	due	to	the	interaction	with	matter,	the	neutrino	
mixing	changes	and	adiabatic	conversion	occurs.

16!

in matter differ from those of muon-neutrinos and tau-neutrinos, depending on the varying 
electron density (the number of electrons per unit volume) and the neutrino energy, and can 
give rise to large effects through resonant enhancement. In the simplest case of oscillations 
between two neutrino species and assuming a constant matter density, the modification of 

!!!!

€

P(να →ν β )  due to MSW can be described in terms of an effective mixing angle θM and an 
effective mass difference squared 

€

P(να →ν β )= sin22θM sin2( ΔmM
2 x

4E )

where 

€

sin22θM ≡
sin22θ

sin22θ +(cos2θ − x)2 , ΔmM
2 ≡ Δm2 sin22θ +(cos2θ − x)2

with the vacuum mixing angle θ and 

€

x ≡
2 2GFNeE

Δm2  in terms of electron density Ne, neutrino 

energy E, and the mass difference squared in vacuum Δm2. GF is the Fermi constant. At 
resonance, i.e. when !!!

€

x = cos2θ , the amplitude of the oscillations becomes 1 and total 
transitions between the two flavours can occur. 

The MSW effect has to be taken into account when analysing solar neutrino data. This applies 
both to flavour transitions during propagation through solar matter and to possible νe 
regeneration in the Earth resulting in a day/night effect. It also plays a role for the analysis of 
atmospheric neutrino data [36, 64]. 

Neutrino oscillation parameters 

The experimental results are used to obtain the mass differences Δm2 and the mixing angles θ. 
This is done using global fits including all available experimental data – observations of solar 
and atmospheric neutrinos, and neutrinos studied in reactor and accelerator experiments. The 
MSW effect is taken into account. Recent values of the parameters of the PMNS matrix based 
on a global analysis of all available oscillation data assuming a three-neutrino mixing scheme 
can be found in [36]. All entries, except Ue3, turn out to be large which is very different from 
the quark mixing matrix. 

Why neutrino oscillations matter 

Observation of the quantum mechanical phenomenon of neutrino oscillations implies that at 
least two neutrino species have non-zero mass. The mechanism which generates neutrino 
masses is still unknown, and the Standard Model must be extended to include this new 
physical reality. 

Although mass differences between neutrino flavours have been determined with precision, 
no one has yet succeeded in actually measuring the neutrino mass itself. The best upper limits 
derived from laboratory experiments give  
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MSW Mechanism
1986	Mikheev	and	Smirnov	proposed	a	mechanism,	which	enhance	neutrino	
adiabatic	conversion	in	solar	matter	based	on	a	theory	developed	by	
Wolfenstein.	-MSW	mechanism

Neutrino Oscillations in Dark Matter
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We study neutrino oscillations in a medium of dark matter which generalizes the standard matter
e↵ect. A general formula is derived to describe the e↵ect of various mediums and their mediators to
neutrinos. Neutrinos and anti-neutrinos receive opposite contributions from asymmetric distribution
of (dark) matter and anti-matter, and thus it could appear in precision measurements of neutrino
or anti-neutrino oscillations. Furthermore, neutrino oscillations can occur from the symmetric dark
matter e↵ect even for massless neutrinos.

PACS numbers:

Introduction: When neutrinos propagate in matter,
neutrino oscillations are a↵ected by their coherent for-
ward elastic scattering in which the matter remains un-
changed and its e↵ect is described by an e↵ective (mat-
ter) potential [1]. This can lead to a dramatic impact
in neutrino oscillation, with a resonance enhancement of
the e↵ective mixing parameter [2], which is recognized as
the MSW e↵ect and confirmed as the source of the solar
neutrino deficit.

Recently various medium e↵ects have been considered
extensively to study its impact on neutrino oscillations or
fit experimental data better in a medium of dark matter
(DM) [3–21], or dark energy [22–27]. However, there has
not been a systematic study of the general medium e↵ect
on neutrino oscillations.

In this article, we derive a general formula describ-
ing the medium e↵ect which can be applied to various
dark matter models with di↵erent mediators to neutrinos.
The medium e↵ect includes modifications of the neu-
trino mass and potential which are di↵erent for neutrinos
and anti-neutrinos in a medium of asymmetric dark mat-
ter. Remarkably, the neutrino oscillation phenomena can
arise solely from the symmetric medium e↵ect in a cer-
tain model parameter space.

FIG. 1: Feynman diagrams for the scattering of neutrino with
electron or positron through the W boson exchange in SM.
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Standard matter e↵ect in a medium of electrons and
positrons: Let us begin by revisiting the standard cal-
culation of the matter e↵ect driven by the charged cur-
rent interaction of the Standard Model (SM). For this, we
consider neutrino/anti-neutrino propagation in a general
background densities of electrons Ne and positrons Nē.
Calculating the coherent forward scattering for the u and
s channel processes in Fig. 1, one can find the generalized
matter potential:

V
SM
⌫,⌫̄ =

p

2GF (Ne +Nē)
±✏m

4
W � 2m2

WmeE⌫

m
4
W � 4m2

eE
2
⌫

, (1)

where GF ⌘ g
2
/(4

p
2m2

W ) is the Fermi constant, and ✏ ⌘

(Ne�Nē)/(Ne+Nē) describes the asymmetry of electron
and positron distributions. Note that it reduces to the
Wolfenstein potential ±

p
2GFNe for neutrinos and anti-

neutirnos, respectively in the ordinary situation: ✏ = 1
(Nē = 0) and m

2
W � 2meE⌫ . Furthermore, we notice

that the matter potential at high energy takes the form:

V
SM
⌫,⌫̄ ⇡

p
2GFm

2
W (Ne +Nē)

2meE⌫
, (2)

which mimics the standard oscillation parameter
�m

2
/2E⌫ acting in the same way for neutrinos and anti-

neutrinos. The basic formula Eq. (1) already describes
main features of a more general medium e↵ect, which will
be described below.

Variant models of medium and mediator: Staying close
to the Standard Model case, we can consider a model of
(Dirac) fermionic dark matter fi and dark photon X as
its messenger to neutrinos:

Lint = g↵if̄i�µPL⌫↵X
µ + h.c. (3)

Introducing the flavor-dependent couplings, we will get
a flavor-dependent medium potential generalized from
Eq. (1) with me = mfi and mW = mX .
The second model consists of fermionic dark matter f

and bosonic messenger �i:

Lint = g↵if̄PL⌫↵�
⇤
i + h.c. (4)
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Neutrino	Mass	Difference

I. INTRODUCTION

Neutrino mass parameters [1]

�m2
� = (7.58+0.22

�0.26)⇥ 10
�5

eV
2,

|�m2
A| = (2.35+0.12

�0.09)⇥ 10
�3.

(1)

We define

�m2
ab ⌘ m2

a �m2
b . (2)

Normal hierarchy

m1 < m2 < m3, �m2
A = �m2

31 > 0, �m2
� = �m2

21 > 0,

m2(3) = (m2
1 +�m2

21(31))
1/2.

(3)

For the lightest neutrino mass is massless,

m1 = 0,m2 = 0.00870632,m3 = 0.0484768,
X

m

= 0.057183 (4)

Inverted hierarchy

m3 < m1 < m2, �m2
A = �m2

32 < 0, �m2
� = �m2

21 > 0,

m2 = (m2
3 +�m2

23)
1/2, m1 = (m2

3 +�m2
23 ��m2

21)
1/2.

(5)

For the lightest neutrino mass is massless,

m1 = 0.047688,m2 = 0.0484768,m3 = 0,
X

m

= 0.0961654 (6)

When the sum of neutrino is given we can find the mass spectrum.

Case A :
P

m⌫ = 0.06 eV

NH : m1 = 0.002425, m2 = 0.00904, m3 = 0.0485 ,

IH : not available.

Case B :
P

m⌫ = 0.1 eV

NH : m1 = 0.02247, m2 = 0.024098, m3 = 0.05343 ,

IH : m1 = 0.047822, m2 = 0.048608, m3 = 0.0035699.

Case C :
P

m⌫ = 0.15 eV

NH : m1 = 0.0423667, m2 = 0.0432521, m3 = 0.0643812 ,

IH : m1 = 0.0580903, m2 = 0.0587391, m3 = 0.0331705.
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solar	neutrino

atm.	neutrino

Three	masses	with	two	conditions:	one	is	free	parameter.

14. Neutrino mixing 49

Table 14.7: The best-fit values and 3σ allowed ranges of the 3-neutrino
oscillation parameters, derived from a global fit of the current neutrino oscillation
data (from [174]) . The values (values in brackets) correspond to m1 < m2 < m3
(m3 < m1 < m2). The definition of ∆m2 used is: ∆m2 = m2

3 − (m2
2 +m2

1)/2. Thus,
∆m2 = ∆m2

31 − ∆m2
21/2 > 0, if m1 < m2 < m3, and ∆m2 = ∆m2

32 + ∆m2
21/2 < 0

for m3 < m1 < m2.

Parameter best-fit (±1σ) 3σ

∆m2
21 [10−5 eV 2] 7.54+0.26

−0.22 6.99 − 8.18

|∆m2| [10−3 eV 2] 2.43 ± 0.06 (2.38 ± 0.06) 2.23 − 2.61 (2.19 − 2.56)

sin2 θ12 0.308 ± 0.017 0.259 − 0.359

sin2 θ23, ∆m2 > 0 0.437+0.033
−0.023 0.374 − 0.628

sin2 θ23, ∆m2 < 0 0.455+0.039
−0.031, 0.380 − 0.641

sin2 θ13, ∆m2 > 0 0.0234+0.0020
−0.0019 0.0176− 0.0295

sin2 θ13, ∆m2 < 0 0.0240+0.0019
−0.0022 0.0178− 0.0298

δ/π (2σ range quoted) 1.39+0.38
−0.27 (1.31+0.29

−0.33) (0.00 − 0.16) ⊕ (0.86 − 2.00)

((0.00− 0.02) ⊕ (0.70 − 2.00))

phases in the neutrino mixing matrix is available. Thus, the status of CP symmetry in
the lepton sector is unknown. With θ13 ≠ 0, the Dirac phase δ can generate CP violation
effects in neutrino oscillations [43,55,56]. The magnitude of CP violation in νl → νl′ and
ν̄l → ν̄l′ oscillations, l ≠ l′ = e, µ, τ , is determined, as we have seen, by the rephasing
invariant JCP (see Eq. (14.19)), which in the “standard” parametrisation of the neutrino
mixing matrix (Eq. (14.78)) has the form:

JCP ≡ Im (Uµ3 U∗
e3 Ue2 U∗

µ2) =
1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ . (14.79)

Thus, given the fact that sin 2θ12, sin 2θ23 and sin 2θ13 have been determined
experimentally with a relatively good precision, the size of CP violation effects in
neutrino oscillations depends essentially only on the magnitude of the currently not well
determined value of the Dirac phase δ. The current data implies |JCP |! 0.040 | sin δ|,
where we have used the 3σ ranges of sin2 θ12, sin2 θ23 and sin2 θ13 given in Table 14.7.
For the best fit values of sin2 θ12, sin2 θ23 and sin2 θ13 and δ we find in the case of
∆m2

31(2) > 0 (∆m2
31(2) < 0): JCP

∼= − 0.032 (− 0.029). Thus, if the indication that

δ ∼= 3π/2 is confirmed by future more precise data, the CP violation effects in neutrino
oscillations would be relatively large.

As we have indicated, the existing data do not allow one to determine the sign of
∆m2

A = ∆m2
31(2). In the case of 3-neutrino mixing, the two possible signs of ∆m2

31(2)
correspond to two types of neutrino mass spectrum. In the widely used conventions of
numbering the neutrinos with definite mass in the two cases, the two spectra read:
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effects in neutrino oscillations [43,55,56]. The magnitude of CP violation in νl → νl′ and
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Thus, given the fact that sin 2θ12, sin 2θ23 and sin 2θ13 have been determined
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neutrino oscillations depends essentially only on the magnitude of the currently not well
determined value of the Dirac phase δ. The current data implies |JCP |! 0.040 | sin δ|,
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For the best fit values of sin2 θ12, sin2 θ23 and sin2 θ13 and δ we find in the case of
∆m2

31(2) > 0 (∆m2
31(2) < 0): JCP

∼= − 0.032 (− 0.029). Thus, if the indication that

δ ∼= 3π/2 is confirmed by future more precise data, the CP violation effects in neutrino
oscillations would be relatively large.

As we have indicated, the existing data do not allow one to determine the sign of
∆m2

A = ∆m2
31(2). In the case of 3-neutrino mixing, the two possible signs of ∆m2

31(2)
correspond to two types of neutrino mass spectrum. In the widely used conventions of
numbering the neutrinos with definite mass in the two cases, the two spectra read:
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Why are the Neutrino Oscillations Important?

Two	mixing	angles	requires	at	least	two	neutrinos	have	non-zero	mass.

Standard	Model	is	NOT	correct.

Standard	Model	must	be	extended	to	include	this	new	physical	reality.

The	mechanism	which	generates	neutrino	masses	is	still	unknown.

The	actual	mass	of	neutrino	is	still	unknown.

The	phase	of	neutrino	mixing	matrix	is	still	unknown.

Neutrino	is	Dirac	or	Majorana?
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t1/2 ~	1026 yr

t1/2 ~	1027 yr

t1/2 ~	1029 yr

nEXO,	NEXT-2.0,	PandaX-III	1t,	Kamland2-ZEN,	SNO+-II,	LEGEND-1000,	CUPID
~	1	ton	next	generation	experiments:

Dream	detector

[From Sunny Seo’s slide]

Neutrino Mass Measurements

1.1eV

KATRIN
1909.06048
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Matter

NeutrinoDark Matter

weak interaction

Interaction between Matters

gravity
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Back to the standard MSW effect

Neutrino Oscillations in Dark Matter

Ki-Young Choi,1, ⇤ Eung Jin Chun,2, † and Jongkuk Kim2, ‡

1Department of Physics, BK21 Physics Research Division,
Institute of Basic Science, Sungkyunkwan University, 16419 Korea

2Korea Institute for Advanced Study, Seoul 02455, Korea

We study neutrino oscillations in a medium of dark matter which generalizes the standard matter
e↵ect. A general formula is derived to describe the e↵ect of various mediums and their mediators to
neutrinos. Neutrinos and anti-neutrinos receive opposite contributions from asymmetric distribution
of (dark) matter and anti-matter, and thus it could appear in precision measurements of neutrino
or anti-neutrino oscillations. Furthermore, neutrino oscillations can occur from the symmetric dark
matter e↵ect even for massless neutrinos.

PACS numbers:

Introduction: When neutrinos propagate in matter,
neutrino oscillations are a↵ected by their coherent for-
ward elastic scattering in which the matter remains un-
changed and its e↵ect is described by an e↵ective (mat-
ter) potential [1]. This can lead to a dramatic impact
in neutrino oscillation, with a resonance enhancement of
the e↵ective mixing parameter [2], which is recognized as
the MSW e↵ect and confirmed as the source of the solar
neutrino deficit.

Recently various medium e↵ects have been considered
extensively to study its impact on neutrino oscillations or
fit experimental data better in a medium of dark matter
(DM) [3–21], or dark energy [22–27]. However, there has
not been a systematic study of the general medium e↵ect
on neutrino oscillations.

In this article, we derive a general formula describ-
ing the medium e↵ect which can be applied to various
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Standard matter e↵ect in a medium of electrons and
positrons: Let us begin by revisiting the standard cal-
culation of the matter e↵ect driven by the charged cur-
rent interaction of the Standard Model (SM). For this, we
consider neutrino/anti-neutrino propagation in a general
background densities of electrons Ne and positrons Nē.
Calculating the coherent forward scattering for the u and
s channel processes in Fig. 1, one can find the generalized
matter potential:

V
SM
⌫,⌫̄ =

p

2GF (Ne +Nē)
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W ) is the Fermi constant, and ✏ ⌘

(Ne�Nē)/(Ne+Nē) describes the asymmetry of electron
and positron distributions. Note that it reduces to the
Wolfenstein potential ±
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2GFNe for neutrinos and anti-

neutirnos, respectively in the ordinary situation: ✏ = 1
(Nē = 0) and m
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W � 2meE⌫ . Furthermore, we notice

that the matter potential at high energy takes the form:
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which mimics the standard oscillation parameter
�m

2
/2E⌫ acting in the same way for neutrinos and anti-

neutrinos. The basic formula Eq. (1) already describes
main features of a more general medium e↵ect, which will
be described below.

Variant models of medium and mediator: Staying close
to the Standard Model case, we can consider a model of
(Dirac) fermionic dark matter fi and dark photon X as
its messenger to neutrinos:

Lint = g↵if̄i�µPL⌫↵X
µ + h.c. (3)

Introducing the flavor-dependent couplings, we will get
a flavor-dependent medium potential generalized from
Eq. (1) with me = mfi and mW = mX .
The second model consists of fermionic dark matter f

and bosonic messenger �i:

Lint = g↵if̄PL⌫↵�
⇤
i + h.c. (4)
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Standard matter e↵ect in a medium of electrons and
positrons: Let us begin by revisiting the standard cal-
culation of the matter e↵ect driven by the charged cur-
rent interaction of the Standard Model (SM). For this, we
consider neutrino/anti-neutrino propagation in a general
background densities of electrons Ne and positrons Nē.
Calculating the coherent forward scattering for the u and
s channel processes in Fig. 1, one can find the generalized
matter potential:
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neutrinos. The basic formula Eq. (1) already describes
main features of a more general medium e↵ect, which will
be described below.

Variant models of medium and mediator: Staying close
to the Standard Model case, we can consider a model of
(Dirac) fermionic dark matter fi and dark photon X as
its messenger to neutrinos:
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µ + h.c. (3)

Introducing the flavor-dependent couplings, we will get
a flavor-dependent medium potential generalized from
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Standard matter e↵ect in a medium of electrons and
positrons: Let us begin by revisiting the standard cal-
culation of the matter e↵ect driven by the charged cur-
rent interaction of the Standard Model (SM). For this, we
consider neutrino/anti-neutrino propagation in a general
background densities of electrons Ne and positrons Nē.
Calculating the coherent forward scattering for the u and
s channel processes in Fig. 1, one can find the generalized
matter potential:
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its messenger to neutrinos:
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(Ne�Nē)/(Ne+Nē) describes the asymmetry of electron
and positron distributions. Note that it reduces to the
Wolfenstein potential ±

p
2GFNe for neutrinos and anti-

neutirnos, respectively in the ordinary situation: ✏ = 1
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Variant models of medium and mediator: Staying close
to the Standard Model case, we can consider a model of
(Dirac) fermionic dark matter fi and dark photon X as
its messenger to neutrinos:

Lint = g↵if̄i�µPL⌫↵X
µ + h.c. (3)

Introducing the flavor-dependent couplings, we will get
a flavor-dependent medium potential generalized from
Eq. (1) with me = mfi and mW = mX .
The second model consists of fermionic dark matter f

and bosonic messenger �i:

Lint = g↵if̄PL⌫↵�
⇤
i + h.c. (4)
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PACS numbers:

Introduction: When neutrinos propagate in matter,
neutrino oscillations are a↵ected by their coherent for-
ward elastic scattering in which the matter remains un-
changed and its e↵ect is described by an e↵ective (mat-
ter) potential [1]. This can lead to a dramatic impact
in neutrino oscillation, with a resonance enhancement of
the e↵ective mixing parameter [2], which is recognized as
the MSW e↵ect and confirmed as the source of the solar
neutrino deficit.

Recently various medium e↵ects have been considered
extensively to study its impact on neutrino oscillations or
fit experimental data better in a medium of dark matter
(DM) [3–21], or dark energy [22–27]. However, there has
not been a systematic study of the general medium e↵ect
on neutrino oscillations.

In this article, we derive a general formula describ-
ing the medium e↵ect which can be applied to various
dark matter models with di↵erent mediators to neutrinos.
The medium e↵ect includes modifications of the neu-
trino mass and potential which are di↵erent for neutrinos
and anti-neutrinos in a medium of asymmetric dark mat-
ter. Remarkably, the neutrino oscillation phenomena can
arise solely from the symmetric medium e↵ect in a cer-
tain model parameter space.

FIG. 1: Feynman diagrams for the scattering of neutrino with
electron or positron through the W boson exchange in SM.
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Standard matter e↵ect in a medium of electrons and
positrons: Let us begin by revisiting the standard cal-
culation of the matter e↵ect driven by the charged cur-
rent interaction of the Standard Model (SM). For this, we
consider neutrino/anti-neutrino propagation in a general
background densities of electrons Ne and positrons Nē.
Calculating the coherent forward scattering for the u and
s channel processes in Fig. 1, one can find the generalized
matter potential:

V
SM
⌫,⌫̄ =

p

2GF (Ne +Nē)
±✏m

4
W � 2m2

WmeE⌫

m
4
W � 4m2

eE
2
⌫

, (1)

where GF ⌘ g
2
/(4

p
2m2

W ) is the Fermi constant, and ✏ ⌘

(Ne�Nē)/(Ne+Nē) describes the asymmetry of electron
and positron distributions. Note that it reduces to the
Wolfenstein potential ±

p
2GFNe for neutrinos and anti-

neutirnos, respectively in the ordinary situation: ✏ = 1
(Nē = 0) and m

2
W � 2meE⌫ . Furthermore, we notice

that the matter potential at high energy takes the form:

V
SM
⌫,⌫̄ ⇡

p
2GFm

2
W (Ne +Nē)

2meE⌫
, (2)

which mimics the standard oscillation parameter
�m

2
/2E⌫ acting in the same way for neutrinos and anti-

neutrinos. The basic formula Eq. (1) already describes
main features of a more general medium e↵ect, which will
be described below.

Variant models of medium and mediator: Staying close
to the Standard Model case, we can consider a model of
(Dirac) fermionic dark matter fi and dark photon X as
its messenger to neutrinos:

Lint = g↵if̄i�µPL⌫↵X
µ + h.c. (3)

Introducing the flavor-dependent couplings, we will get
a flavor-dependent medium potential generalized from
Eq. (1) with me = mfi and mW = mX .
The second model consists of fermionic dark matter f

and bosonic messenger �i:

Lint = g↵if̄PL⌫↵�
⇤
i + h.c. (4)

Neutrinos	can	interact	with	electrons	and	positrons	in	matter.

-	for	anti-neutrino
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where we introduced di↵erent flavors in the mediator �i

instead of the dark matter f for simplicity. This model
also leads to the same kind of medium potential with
me = mf and mW = m�i .

The third model which is of our particular interest has
bosonic dark matter � and fermionic messenger fi:

Lint = g↵if̄iPL⌫↵�
⇤ + h.c. (5)

which generates the medium potential as well as correc-
tions to the neutrino mass as we will see later.

For all the cases, we will use the unified notations of
mDM for the dark matter mass, ⇢DM = mDM (NDM +
NDM ) for the total dark matter energy density, and

✏ ⌘
NDM �NDM

NDM +NDM

, (6)

for the asymmetry between the dark matter and anti-
dark matter number densities.

General formulation: Neutrino/anti-neutrino propaga-
tion in a medium can be described by the following min-
imal form of the equations of motion in the momentum
space:

(/p� /⌃)uL = (M† + ⌃†
0)uR,

(/p� ⌃̄/)(vc)R = (M + ⌃̄0)(v
c)L,

(7)

where M is the symmetric (Majorana) neutrino mass
matrix; /⌃ ⌘ ⌃µ�

µ, ⌃̄/ ⌘ ⌃̄µ�
µ, ⌃0, and ⌃̄0 are corrections

coming from the e↵ect of coherent forward scattering of
neutrinos/anti-neutrinos within medium. Here ⌃µ, ⌃̄µ

are hermitian matrices.
In a Lorenz invariant medium, ⌃/ and ⌃̄/ can be ex-

pressed by

⌃/ = p/⌃1 + k/⌃2; ⌃̄/ = p/ ⌃̄1 + k/ ⌃̄2, (8)

where k is the energy-momentum of the dark matter
which we will take (k0,~k) = (k0,~0) corresponding to av-
eraging over random momentum distribution, and k0 be-
comes the dark matter mass mDM in the non-relativistic
medium. The scalar terms ⌃0/⌃̄0 appear in some situ-
ations [3–5, 10, 12, 13, 18], which will not be discussed
further in this article.

Recall that the SM matter e↵ect contributes to the vec-
tor current terms ⌃2/⌃̄2. Similar terms are generated in
the models in Eqs. (3,4,5) and thus a medium potential
similar to the standard matter potential Eq. (1) is pro-
duced. On the other hand, the correction to the neutrino
kinetic term, ⌃1/⌃̄1, arises only in Eq. (5).

The canonical basis of the kinetic term can be recov-
ered by the transformation

uL ! ũL ⌘

✓
1�

⌃1

2

◆
uL, ũR ⌘ uR,

(vc)R ! (ṽc)R ⌘

✓
1�

⌃̄1

2

◆
(vc)R (ṽc)L ⌘ (vc)L,

(9)

FIG. 2: Feynman diagrams for the scattering of neutrino and
complex scalar dark matter mediated by a fermion in the
scenario of Eq. (5).

taking the leading order in ⌃/⌃̄. This leads to the
medium-dressed neutrino mass matrix

M̃⌫ ⌘ (M + ⌃0)

✓
1�

⌃1

2

◆�1

,

M̃⌫̄ ⌘

 
1�

⌃̄†
1

2

!�1

(M + ⌃̄0),

(10)

and thus we obtain

(/p� /k⌃2)ũL = M̃
†
⌫ ũR,

(/p� /k⌃̄2)(ṽ
c)R = M̃⌫̄(ṽ

c)L.
(11)

This takes the same form as in the case of the SM matter
e↵ect and thus one obtains neutrino/anti-neutrino prop-
agation Hamiltonians

H⌫ = E⌫ +
M̃

†
⌫M̃⌫

2E⌫
+ k

0⌃2, (12)

H⌫̄ = E⌫ +
M̃⌫̄M̃

†
⌫̄

2E⌫
+ k

0⌃̄2,

in the ultra-relativisitc limit: |~p⌫ | ⇡ E⌫ .
In the case of the model in Eq. (5), the calculation of

the s and u channel diagrams in Fig. 2 for the forward
elastic scattering gives

⌃1 (or ⌃̄1) '
�
(T )

2

⇢DM

m
2
DM

±✏ 2mDME⌫ �m
2
X

m
4
X � 4m2

DME2
⌫

, (13)

⌃2 (or ⌃̄2) '
�
(T )

2

⇢DM

m
2
DM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

,

where the coupling matrix � is defined by �↵� ⌘ g
⇤
↵ig�i/2

for the transition ⌫� ! ⌫↵ and the same mass mX is as-
sumed for the mediators fi, and mDM = m� is the dark
matter mass. Notice that the limit mX ! 0 should cor-
respond to the case considered in [21]1. More explicitly

1
However we note that in [21] the sign is wrong and thus they

lead to di↵erent conclusion.

3

1 2

3 4

FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.09�↵�✏

✓
20meV

mDM

◆2 ✓100GeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(18)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (19)

⇡
3⇥ 10�3eV2

2E⌫
�
(T )

✓
20meV

mDM

◆2

,

which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
2m2

DM

⇢DM
U

⇤diag(�m
2)UT (20)

'

0

@
0.026 0.091 0.085
0.091 0.381 0.408
0.085 0.408 0.478

1

A
⇣

mDM

20meV

⌘2
✓
0.3GeV cm�3

⇢DM

◆
,
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where we introduced di↵erent flavors in the mediator �i

instead of the dark matter f for simplicity. This model
also leads to the same kind of medium potential with
me = mf and mW = m�i .

The third model which is of our particular interest has
bosonic dark matter � and fermionic messenger fi:

Lint = g↵if̄iPL⌫↵�
⇤ + h.c. (5)

which generates the medium potential as well as correc-
tions to the neutrino mass as we will see later.

For all the cases, we will use the unified notations of
mDM for the dark matter mass, ⇢DM = mDM (NDM +
NDM ) for the total dark matter energy density, and

✏ ⌘
NDM �NDM

NDM +NDM

, (6)

for the asymmetry between the dark matter and anti-
dark matter number densities.

General formulation: Neutrino/anti-neutrino propaga-
tion in a medium can be described by the following min-
imal form of the equations of motion in the momentum
space:

(/p� /⌃)uL = (M† + ⌃†
0)uR,

(/p� ⌃̄/)(vc)R = (M + ⌃̄0)(v
c)L,

(7)

where M is the symmetric (Majorana) neutrino mass
matrix; /⌃ ⌘ ⌃µ�

µ, ⌃̄/ ⌘ ⌃̄µ�
µ, ⌃0, and ⌃̄0 are corrections

coming from the e↵ect of coherent forward scattering of
neutrinos/anti-neutrinos within medium. Here ⌃µ, ⌃̄µ

are hermitian matrices.
In a Lorenz invariant medium, ⌃/ and ⌃̄/ can be ex-

pressed by

⌃/ = p/⌃1 + k/⌃2; ⌃̄/ = p/ ⌃̄1 + k/ ⌃̄2, (8)

where k is the energy-momentum of the dark matter
which we will take (k0,~k) = (k0,~0) corresponding to av-
eraging over random momentum distribution, and k0 be-
comes the dark matter mass mDM in the non-relativistic
medium. The scalar terms ⌃0/⌃̄0 appear in some situ-
ations [3–5, 10, 12, 13, 18], which will not be discussed
further in this article.

Recall that the SM matter e↵ect contributes to the vec-
tor current terms ⌃2/⌃̄2. Similar terms are generated in
the models in Eqs. (3,4,5) and thus a medium potential
similar to the standard matter potential Eq. (1) is pro-
duced. On the other hand, the correction to the neutrino
kinetic term, ⌃1/⌃̄1, arises only in Eq. (5).

The canonical basis of the kinetic term can be recov-
ered by the transformation

uL ! ũL ⌘

✓
1�

⌃1

2

◆
uL, ũR ⌘ uR,

(vc)R ! (ṽc)R ⌘

✓
1�

⌃̄1

2

◆
(vc)R (ṽc)L ⌘ (vc)L,

(9)

FIG. 2: Feynman diagrams for the scattering of neutrino and
complex scalar dark matter mediated by a fermion in the
scenario of Eq. (5).

taking the leading order in ⌃/⌃̄. This leads to the
medium-dressed neutrino mass matrix

M̃⌫ ⌘ (M + ⌃0)

✓
1�

⌃1

2

◆�1

,

M̃⌫̄ ⌘

 
1�

⌃̄†
1

2

!�1

(M + ⌃̄0),

(10)

and thus we obtain

(/p� /k⌃2)ũL = M̃
†
⌫ ũR,

(/p� /k⌃̄2)(ṽ
c)R = M̃⌫̄(ṽ

c)L.
(11)

This takes the same form as in the case of the SM matter
e↵ect and thus one obtains neutrino/anti-neutrino prop-
agation Hamiltonians

H⌫ = E⌫ +
M̃

†
⌫M̃⌫

2E⌫
+ k

0⌃2, (12)

H⌫̄ = E⌫ +
M̃⌫̄M̃

†
⌫̄

2E⌫
+ k

0⌃̄2,

in the ultra-relativisitc limit: |~p⌫ | ⇡ E⌫ .
In the case of the model in Eq. (5), the calculation of

the s and u channel diagrams in Fig. 2 for the forward
elastic scattering gives

⌃1 (or ⌃̄1) '
�
(T )

2

⇢DM

m
2
DM

±✏ 2mDME⌫ �m
2
X

m
4
X � 4m2

DME2
⌫

, (13)

⌃2 (or ⌃̄2) '
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(T )

2

⇢DM

m
2
DM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

,

where the coupling matrix � is defined by �↵� ⌘ g
⇤
↵ig�i/2

for the transition ⌫� ! ⌫↵ and the same mass mX is as-
sumed for the mediators fi, and mDM = m� is the dark
matter mass. Notice that the limit mX ! 0 should cor-
respond to the case considered in [21]1. More explicitly

1
However we note that in [21] the sign is wrong and thus they

lead to di↵erent conclusion.

with	DM	asymmetry

[arXiv:1909.10478, KYC, Eung Jin Chun and Jongkuk Kim]

cf) wrong sign in [1904.02518, Ge, Murayama]
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where we introduced di↵erent flavors in the mediator �i

instead of the dark matter f for simplicity. This model
also leads to the same kind of medium potential with
me = mf and mW = m�i .

The third model which is of our particular interest has
bosonic dark matter � and fermionic messenger fi:

Lint = g↵if̄iPL⌫↵�
⇤ + h.c. (5)

which generates the medium potential as well as correc-
tions to the neutrino mass as we will see later.

For all the cases, we will use the unified notations of
mDM for the dark matter mass, ⇢DM = mDM (NDM +
NDM ) for the total dark matter energy density, and

✏ ⌘
NDM �NDM

NDM +NDM

, (6)

for the asymmetry between the dark matter and anti-
dark matter number densities.

General formulation: Neutrino/anti-neutrino propaga-
tion in a medium can be described by the following min-
imal form of the equations of motion in the momentum
space:

(/p� /⌃)uL = (M† + ⌃†
0)uR,

(/p� ⌃̄/)(vc)R = (M + ⌃̄0)(v
c)L,

(7)

where M is the symmetric (Majorana) neutrino mass
matrix; /⌃ ⌘ ⌃µ�

µ, ⌃̄/ ⌘ ⌃̄µ�
µ, ⌃0, and ⌃̄0 are corrections

coming from the e↵ect of coherent forward scattering of
neutrinos/anti-neutrinos within medium. Here ⌃µ, ⌃̄µ

are hermitian matrices.
In a Lorenz invariant medium, ⌃/ and ⌃̄/ can be ex-

pressed by

⌃/ = p/⌃1 + k/⌃2; ⌃̄/ = p/ ⌃̄1 + k/ ⌃̄2, (8)

where k is the energy-momentum of the dark matter
which we will take (k0,~k) = (k0,~0) corresponding to av-
eraging over random momentum distribution, and k0 be-
comes the dark matter mass mDM in the non-relativistic
medium. The scalar terms ⌃0/⌃̄0 appear in some situ-
ations [3–5, 10, 12, 13, 18], which will not be discussed
further in this article.

Recall that the SM matter e↵ect contributes to the vec-
tor current terms ⌃2/⌃̄2. Similar terms are generated in
the models in Eqs. (3,4,5) and thus a medium potential
similar to the standard matter potential Eq. (1) is pro-
duced. On the other hand, the correction to the neutrino
kinetic term, ⌃1/⌃̄1, arises only in Eq. (5).

The canonical basis of the kinetic term can be recov-
ered by the transformation

uL ! ũL ⌘

✓
1�

⌃1

2

◆
uL, ũR ⌘ uR,

(vc)R ! (ṽc)R ⌘

✓
1�

⌃̄1

2

◆
(vc)R (ṽc)L ⌘ (vc)L,

(9)

FIG. 2: Feynman diagrams for the scattering of neutrino and
complex scalar dark matter mediated by a fermion in the
scenario of Eq. (5).

taking the leading order in ⌃/⌃̄. This leads to the
medium-dressed neutrino mass matrix

M̃⌫ ⌘ (M + ⌃0)

✓
1�

⌃1

2

◆�1

,

M̃⌫̄ ⌘

 
1�

⌃̄†
1

2

!�1

(M + ⌃̄0),

(10)

and thus we obtain

(/p� /k⌃2)ũL = M̃
†
⌫ ũR,

(/p� /k⌃̄2)(ṽ
c)R = M̃⌫̄(ṽ

c)L.
(11)

This takes the same form as in the case of the SM matter
e↵ect and thus one obtains neutrino/anti-neutrino prop-
agation Hamiltonians

H⌫ = E⌫ +
M̃

†
⌫M̃⌫

2E⌫
+ k

0⌃2, (12)

H⌫̄ = E⌫ +
M̃⌫̄M̃

†
⌫̄

2E⌫
+ k

0⌃̄2,

in the ultra-relativisitc limit: |~p⌫ | ⇡ E⌫ .
In the case of the model in Eq. (5), the calculation of

the s and u channel diagrams in Fig. 2 for the forward
elastic scattering gives

⌃1 (or ⌃̄1) '
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where the coupling matrix � is defined by �↵� ⌘ g
⇤
↵ig�i/2

for the transition ⌫� ! ⌫↵ and the same mass mX is as-
sumed for the mediators fi, and mDM = m� is the dark
matter mass. Notice that the limit mX ! 0 should cor-
respond to the case considered in [21]1. More explicitly

1
However we note that in [21] the sign is wrong and thus they

lead to di↵erent conclusion.
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Effective Hamiltonian

The	effective	Hamiltonian	for	the	neutrino	(anti-neutrino)	oscillation

2

FIG. 1: Feynman diagrams for the scattering of neutrino and
electron or positron in SM for Eq. (1).

For all the cases, we will use the unified notations of
mDM for the dark matter mass, ⇢DM = mDM (NDM +
NDM ) for the total dark matter energy density, and

✏ ⌘
NDM �NDM

NDM +NDM

, (7)

for the asymmetry between the dark matter and anti-
dark matter number densities.

General formulation: Neutrino/anti-neutrino propaga-
tion in a medium can be described by the equations of
motion in the momentum space:

(/p� /⌃)⌫L = (M† + ⌃̄0)⌫
c
R,

(/p� ⌃̄/)⌫cR = (M + ⌃0)⌫L,
(8)

where /⌃ ⌘ ⌃µ�
µ, ⌃̄/ ⌘ ⌃̄µ�

µ, ⌃0, and ⌃̄0 are corrections
coming from the e↵ect of coherent forward scattering of
neutrinos/anti-neutrinos within medium. Here ⌃µ, ⌃̄µ

are hermitian andM,⌃0 are symmetric matrix, satisfying

⌃̄0 = ⌃†
0 and ⌃̄/ = C /⌃

T
C

�1 (or ⌃̄µ = �⌃T
µ ) with the

complex conjugate operator C.
In a Lorenz invariant medium, ⌃/ can be expressed by

⌃/ = p/⌃1 + k/⌃2; ⌃̄/ = p/ ⌃̄1 + k/ ⌃̄2, (9)

for our models where k is the energy-momentum of the
dark matter which we will take (k0,~k) = (k0,~0) corre-
sponding to averaging over random momentum distribu-
tion, and k0 becomes the dark matter mass mDM in the
non-relativistic medium.

The scalar terms ⌃0/⌃̄0 appear in some situations con-
sidered in [3–9]. In our fourth model in Eq. (6), the
medium correction appears only in the mass term as

⌃0 ' �
2gfgij

m
2
� + 2mfE⌫

⇢DM

mf
✏, (10)

which depends on the DM asymmetry and decreases at
high energy of neutrino as E�1

⌫ .
Note that the SM matter e↵ect contributes to the vec-

tor current terms ⌃2/⌃̄2. Similar terms are generated in
the models in Eqs. (3,4,5) and thus a medium potential
similar to the standard matter potential Eq. (1) is pro-
duced. On the other hand, the corrections to the neutrino
kinetic term, ⌃1/⌃̄1, arise only in Eq. (5).

FIG. 2: Feynman diagrams for the scattering of neutrino and
complex scalar dark matter mediated by a fermion in the
scenario of Eq. (5).

The canonical basis of the kinetic term can be recov-
ered by the transformation

⌫L ! ⌫̃L ⌘

✓
1�

⌃1

2

◆
⌫L,

⌫
c
R ! ⌫̃

c
R ⌘

✓
1�

⌃̄1

2

◆
⌫
c
R,

(11)

taking the leading order in ⌃/⌃̄. This leads to correction
to the neutrino mass matrix

M̃ ⌘

✓
1 +

⌃̄1

2

◆
M

✓
1 +

⌃1

2

◆
, (12)

and thus we obtain

(/p� /k⌃2)⌫̃L = M̃
†
⌫̃
c
R,

(/p� /k⌃̄2)⌫̃
c
R = M̃ ⌫̃L.

(13)

This takes the same form as in the case of the SM matter
e↵ect and thus one obtains neutrino/anti-neutrino prop-
agation Hamiltonians

H⌫ = E⌫ +
M̃

†
M̃

2E⌫
+ V

DM
⌫ , (14)

H⌫̄ = E⌫ +
M̃M̃

†

2E⌫
+ V

DM
⌫̄ ,

in the ultra-relativisitc limit: |~p⌫ | ⇡ E⌫ .
In the case of the model in Eq. (5), the calculation of

the s and u channel diagrams in Fig. 2 for the forward
elastic scattering gives

⌃1 (or�⌃̄1) '
�
(T )

2

⇢DM

m
2
DM

±✏ 2mDME⌫ �m
2
X

m
4
X � 4m2

DME2
⌫

, (15)

⌃2 (or�⌃̄2) '
�
(T )

2

⇢DM

m
2
DM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

,

where the coupling matrix � is defined by �↵� ⌘ g
⇤
↵ig�i/2

for the transition ⌫� ! ⌫↵ and the same mass mX is
assumed for the mediators fi, andmDM = m� is the dark
matter mass. More explicitly the dark matter potentials
are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (16)
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.09�↵�✏

✓
20meV

mDM

◆2 ✓100GeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(18)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (19)

⇡
3⇥ 10�3eV2

2E⌫
�
(T )

✓
20meV

mDM

◆2

,

which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
2m2

DM

⇢DM
U

⇤diag(�m
2)UT (20)

'

0

@
0.026 0.091 0.085
0.091 0.381 0.408
0.085 0.408 0.478

1

A
⇣

mDM

20meV

⌘2
✓
0.3GeV cm�3

⇢DM

◆
,

3

1 2

3 4

FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.09�↵�✏

✓
20meV

mDM

◆2 ✓100GeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(18)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (19)

⇡
3⇥ 10�3eV2

2E⌫
�
(T )

✓
20meV

mDM

◆2

,

which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
2m2

DM

⇢DM
U

⇤diag(�m
2)UT (20)

'

0

@
0.026 0.091 0.085
0.091 0.381 0.408
0.085 0.408 0.478

1

A
⇣

mDM

20meV

⌘2
✓
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⇢DM

◆
,
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.09�↵�✏

✓
20meV

mDM

◆2 ✓100GeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(18)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (19)

⇡
3⇥ 10�3eV2

2E⌫
�
(T )

✓
20meV

mDM

◆2

,

which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
2m2

DM

⇢DM
U

⇤diag(�m
2)UT (20)

'

0

@
0.026 0.091 0.085
0.091 0.381 0.408
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FIG. 3: The schematic plot for the shape of the medium po-
tential for di↵erent regimes of mDM and Epeak

⌫ . In the small
boxes, we show the absolute value of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted vertical line denotes the reference neutrino en-
ergy scale Eref

⌫ in a certain experiment of interest.

distribution (✏ = 0) as the asymmetric medium distin-
quishes neutrinos (uL) and anti-neutrinos (uR) as shown
in (9).

Eq. (15) tells us that the medium (DM) potentials are
given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (16)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators. No-
tice that the case considered in [21] 1 should correspond
to the limit mX ! 0 in our formulation with ✏ = 0.
Like the medium e↵ect to the mass matrix, the medium
potentials for neutrinos and anti-neutrinos are the same
for a symmetric medium, and receive opposite contribu-
tions from the asymmetry (✏ 6= 0). This violation of
CPT symmetry due to the environmental matter e↵ect
needs to be distinguished from the theory with CPT vi-
olation [28–32].

The configurations of the medium potential (16) are
presented in the small boxes of Fig. 3. One can con-
sider four di↵erent regions depending on whether E

peak
⌫

defined by

E
peak
⌫ =

m
2
X

2mDM
, (17)

1 The sign of the anti-neutrino potential was opposite to ours. But
the authors agreed with our result in a private communication.

is larger or smaller than the reference neutrino energy
E

ref
⌫ and also whether the medium potential at high en-

ergy is larger or smaller than �m
2
/2E⌫ , that is,

m
2
DM >

�⇢DM

2|�m2|
, or m

2
DM <

�⇢DM

2|�m2|
. (18)

In the region 1 and 2, the medium potential is sub-
dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is in
the range of 1 MeV –100 GeV, there would appear a high
distortion in various standard neutrino oscillation data
and thus it is strongly disfavored. In region 4, there is
no signals at low energy data, however the future exper-
iments of neutrino oscillation at high energy can probe
this region. The boundary of the regions 1 and 3 (the
dashed line) with E

peak
⌫ ⌧ 1MeV is of particular inter-

est as the medium potential mimics the SM mass term
and can explain the neutrino oscillation data even with
massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (19)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.01�↵�✏

✓
20meV

mDM

◆2 ✓1TeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(20)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [33–36], which is applicable to the case 2 or
4 in Fig. 3. Considering a rough bound of |"| . 0.01, we
find the allowed region of mDM :

mDM & 20 meV|✏|
1/2

|�|
1/2

✓
TeV

E
peak
⌫

◆1/2

. (21)

An independent bound comes from the medium mass
dressed by ⌃1/⌃̄1. Requiring the correction is less than
about 1%, we get

mDM & 10�4 meV|�|
1/3

✓
TeV

E
peak
⌫

◆1/3

. (22)

Given specific value of � and ✏, the stronger limit is to
be taken.
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (23)

⇡
3⇥ 10�3eV2

2E⌫
�
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✓
20meV

mDM

◆2

,
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.09�↵�✏

✓
20meV

mDM

◆2 ✓100GeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(18)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (19)

⇡
3⇥ 10�3eV2

2E⌫
�
(T )

✓
20meV

mDM

◆2

,

which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
2m2

DM

⇢DM
U

⇤diag(�m
2)UT (20)
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.09�↵�✏

✓
20meV

mDM

◆2 ✓100GeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(18)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (19)
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
2m2

DM

⇢DM
U

⇤diag(�m
2)UT (20)
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
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⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:
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(18)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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, (19)
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
2m2
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U

⇤diag(�m
2)UT (20)
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FIG. 3: The schematic plot for the shape of the medium po-
tential for di↵erent regimes of mDM and Epeak

⌫ . In the small
boxes, we show the absolute value of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted vertical line denotes the reference neutrino en-
ergy scale Eref

⌫ in a certain experiment of interest.

distribution (✏ = 0) as the asymmetric medium distin-
quishes neutrinos (uL) and anti-neutrinos (uR) as shown
in (9).

Eq. (15) tells us that the medium (DM) potentials are
given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (16)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators. No-
tice that the case considered in [21] 1 should correspond
to the limit mX ! 0 in our formulation with ✏ = 0.
Like the medium e↵ect to the mass matrix, the medium
potentials for neutrinos and anti-neutrinos are the same
for a symmetric medium, and receive opposite contribu-
tions from the asymmetry (✏ 6= 0). This violation of
CPT symmetry due to the environmental matter e↵ect
needs to be distinguished from the theory with CPT vi-
olation [28–32].

The configurations of the medium potential (16) are
presented in the small boxes of Fig. 3. One can con-
sider four di↵erent regions depending on whether E

peak
⌫

defined by

E
peak
⌫ =

m
2
X

2mDM
, (17)

1 The sign of the anti-neutrino potential was opposite to ours. But
the authors agreed with our result in a private communication.

is larger or smaller than the reference neutrino energy
E

ref
⌫ and also whether the medium potential at high en-

ergy is larger or smaller than �m
2
/2E⌫ , that is,

m
2
DM >

�⇢DM

2|�m2|
, or m

2
DM <

�⇢DM

2|�m2|
. (18)

In the region 1 and 2, the medium potential is sub-
dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is in
the range of 1 MeV –100 GeV, there would appear a high
distortion in various standard neutrino oscillation data
and thus it is strongly disfavored. In region 4, there is
no signals at low energy data, however the future exper-
iments of neutrino oscillation at high energy can probe
this region. The boundary of the regions 1 and 3 (the
dashed line) with E

peak
⌫ ⌧ 1MeV is of particular inter-

est as the medium potential mimics the SM mass term
and can explain the neutrino oscillation data even with
massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (19)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.01�↵�✏

✓
20meV

mDM

◆2 ✓1TeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(20)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [33–36], which is applicable to the case 2 or
4 in Fig. 3. Considering a rough bound of |"| . 0.01, we
find the allowed region of mDM :

mDM & 20 meV|✏|
1/2

|�|
1/2

✓
TeV

E
peak
⌫

◆1/2

. (21)

An independent bound comes from the medium mass
dressed by ⌃1/⌃̄1. Requiring the correction is less than
about 1%, we get

mDM & 10�4 meV|�|
1/3

✓
TeV

E
peak
⌫

◆1/3

. (22)

Given specific value of � and ✏, the stronger limit is to
be taken.
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (23)

⇡
3⇥ 10�3eV2

2E⌫
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✓
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,
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Dark Matter asymmetry 
in the neutrino oscillation

Asymmetric	oscillations	between	neutrino	and	anti-neutrino

	-	Neutrino	and	antineutrino	have	different	sign	in	the	potential,	
since	the	background	DM	is	asymmetric.

	-	Combined	with	SM	mass	term,	the	DM	potential	is	added	or		
subtracted,	which	changes	the	oscillation.

	-	Anomalous	asymmetry	in	the	neutrino	and	antineutrino	may	
give	hints	on	the	DM-neutrino	interaction	and	asymmetry	of	DM	
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Apparent CPT violation: The Lagrangian itself is CPT
invariant, but the medium of asymmetric DM is not.
Thus, the e↵ective neutrino mixing and mass-squared dif-
ferences are modified in a di↵erent way for neutrinos and
antineutrinos. Such a CPT violation may appear in pre-
cision measurement of neutrino oscillations, or is highly
constrained by the present data.

Two-flavor oscillation: Let us consider the two-flavor
(⌫µ–⌫⌧ ) oscillation described by the e↵ective Hamilto-
nian:

HM = Hvac +

✓
Vµµ Vµ⌧

V
⇤
µ⌧ V⌧⌧

◆
, (24)

where Hvac is for the oscillation in the standard model

Hvac =
�m

2

4E

✓
� cos 2✓ sin 2✓
sin 2✓ cos 2✓

◆
. (25)

Up to the diagonal term proportional to the identity ma-
trix, which is irrelevant to the oscillation, HM can be re
written as

HM =
�m

2

4E

✓
�(cos 2✓ � x) sin 2✓ + y

sin 2✓ + y cos 2✓ � x

◆
, (26)

where

x ⌘
(Vµµ � V⌧⌧ )/2

�m2/4E
, and y ⌘

Vµ⌧

�m2/4E
. (27)

Thus one obtains the usual mixing angle and mass-
squared di↵erence in the medium given by

sin2 2✓M =
(sin 2✓ + y)2

(cos 2✓ � x)2 + (sin 2✓ + y)2
,

�m
2
M = �m

2
p
(cos 2✓ � x)2 + (sin 2✓ + y)2,

(28)

which gives the transition probability in the medium:

PM (⌫µ ! ⌫⌧ ) = sin2 2✓M sin2
✓
�m

2
M

L

4E

◆
. (29)

In Fig. 3, we show the change of sin2 2✓M for neutri-
nos in terms of E⌫ taking only one non-vanishing cou-
pling � = �µµ, and the masses of mDM = 30

p
� meV

and mX = 7.7 4
p
� keV. The solid, dashed, and dash-

dotted lines correspond to the DM asymmetry ✏ = �1, 0,
and 1, respectively for neutrinos. For anti-neutrinos, one
can just take the opposite sign of ✏. Our parameters are
chosen to get E

peak
⌫ = 1GeV and y = 0 and x ! 0.75

at the high energy limit. At low energy, sin2 2✓M shows
the standard mixing since the medium e↵ect is subdomi-
nant. As the neutrino energy approaches the peak value
1GeV, the DM potential enhances dramatically leading
to x � 1, and thus the mixing goes to zero. Thus
sin2 2✓M becomes negligible and �m

2
M is high, and thus

the transition probability becomes low at this point. At
higher energy, V DM

/ 1/2E⌫ is comparable to the stan-
dard oscillation �m

2
/2E⌫ and thus new mixing angle

and mass-squared di↵erence is obtained.

mDM= 30 1/2 meV
mX= 7.7 1/4 keV
m2=2.56x10-3eV2

ϵ=-1
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ϵ= 1
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FIG. 3: The plot of sin2 2✓M of neutrinos as a function of E⌫

with non-vanishing �µµ = �. The solid, dashed, and dash-
dotted lines are for the DM asymmetry ✏ = �1, 0, and 1,
respectively. Here we used �m2 = 2.56⇥ 10�3 eV2.

mDM= 30 1/2 meV
mX= 7.7 1/4 keV
m2=2.56x10-3eV2

ϵ=-1
ϵ= 0
ϵ= 1

0.001 0.010 0.100 1 10 100 1000

-0.004

-0.002

0.000

0.002

0.004

Eν GeV]

Δ
m
2

Δ
m
2 [
eV

2 ]

FIG. 4: The plot of�m2
M��m̄2

M for di↵erent DM asymmetry
✏ = ±1 (solid, dash-dotted). Obviously, no di↵erence appears
for ✏ = 0 (dashed).

Fig. 4 shows �m
2
M � �m̄

2
M for the same parameters

as in Fig. 3. The resonance peak should be taken with
caution as we ignored the width e↵ect which will be tiny
for small couplings |�| ⌧ 1. Around the peak energy, the
di↵erence is amplified for non-zero DM asymmetry, while
the e↵ect becomes moderate away from the peak energy.
The grey region is excluded by the measurement of the
�m

2 di↵erence between neutrinos and anti-neutrinos [29]

|�m
2
21 ��m̄

2
21| < 4.7⇥ 10�5 eV2

,

|�m
2
31 ��m̄

2
31| < 3.7⇥ 10�4 eV2

,
(30)

where the second bound is applied in the plot.
In Fig. 5, we show the same plot as Fig. 3 but with

di↵erent parameters which gives E
peak
⌫ = 1TeV and

x ! 10, y = 0 (solid) and x ! 10, y ! 10 (dashed)
at the high energy limit. This scenario (the boundary of
the region 2 and 4) shows an interesting possibility that
the low energy oscillations come from the standard neu-
trino mass term, but the high energy oscillations from

Asymmetry in the oscillations

[arXiv:1909.10478, KYC, Eung Jin Chun and Jongkuk Kim]
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When DM symmetric?
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Neutrino potential due to Dark Matter

3
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
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. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by
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SM , we get the standard NSI form:
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by
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This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
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X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
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. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential
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Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by
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This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential
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Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V
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SM , we get the standard NSI form:
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by
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FIG. 3: The schematic plot for the shape of the medium po-
tential for di↵erent regimes of mDM and Epeak

⌫ . In the small
boxes, we show the absolute value of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted vertical line denotes the reference neutrino en-
ergy scale Eref

⌫ in a certain experiment of interest.

distribution (✏ = 0) as the asymmetric medium distin-
quishes neutrinos (uL) and anti-neutrinos (uR) as shown
in (9).

Eq. (15) tells us that the medium (DM) potentials are
given by
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2
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m
4
X � 4m2

DME2
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. (16)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators. No-
tice that the case considered in [21] 1 should correspond
to the limit mX ! 0 in our formulation with ✏ = 0.
Like the medium e↵ect to the mass matrix, the medium
potentials for neutrinos and anti-neutrinos are the same
for a symmetric medium, and receive opposite contribu-
tions from the asymmetry (✏ 6= 0). This violation of
CPT symmetry due to the environmental matter e↵ect
needs to be distinguished from the theory with CPT vi-
olation [28–32].

The configurations of the medium potential (16) are
presented in the small boxes of Fig. 3. One can con-
sider four di↵erent regions depending on whether E

peak
⌫

defined by

E
peak
⌫ =

m
2
X

2mDM
, (17)

1 The sign of the anti-neutrino potential was opposite to ours. But
the authors agreed with our result in a private communication.

is larger or smaller than the reference neutrino energy
E

ref
⌫ and also whether the medium potential at high en-

ergy is larger or smaller than �m
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/2E⌫ , that is,

m
2
DM >

�⇢DM

2|�m2|
, or m

2
DM <

�⇢DM

2|�m2|
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In the region 1 and 2, the medium potential is sub-
dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is in
the range of 1 MeV –100 GeV, there would appear a high
distortion in various standard neutrino oscillation data
and thus it is strongly disfavored. In region 4, there is
no signals at low energy data, however the future exper-
iments of neutrino oscillation at high energy can probe
this region. The boundary of the regions 1 and 3 (the
dashed line) with E

peak
⌫ ⌧ 1MeV is of particular inter-

est as the medium potential mimics the SM mass term
and can explain the neutrino oscillation data even with
massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential
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Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [33–36], which is applicable to the case 2 or
4 in Fig. 3. Considering a rough bound of |"| . 0.01, we
find the allowed region of mDM :

mDM & 20 meV|✏|
1/2

|�|
1/2

✓
TeV

E
peak
⌫

◆1/2

. (21)

An independent bound comes from the medium mass
dressed by ⌃1/⌃̄1. Requiring the correction is less than
about 1%, we get
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Given specific value of � and ✏, the stronger limit is to
be taken.
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (23)

⇡
3⇥ 10�3eV2

2E⌫
�
(T )

✓
20meV

mDM

◆2

,

13

3

1 2

3 4

FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by
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This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
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m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
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. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m
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Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV
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the experimental data can be fitted by the couplings
given by
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by
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This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
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X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
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that is,
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In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
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FIG. 5: The same plot as Fig. 3 but with Epeak
⌫ = 1TeV: the

solid and dashed lines are for �µµ 6= 0 with x ! 10, y = 0,
and �µµ = �µ⌧ 6= 0 with x ! 10, y ! 10 at high energy limit,
respectively.

the medium e↵ect. As can be seen in the plot, the high
energy oscillation parameters are controlled by the flavor
structure of the medium potential.

Conclusion and Discussion: We provided a systematic
study of neutrino oscillations in a medium of dark matter
which generalizes the SM matter e↵ect. A general for-
mula is derived to describe the medium e↵ect in various
scenarios of dark matter and its mediator to neutrinos.
Apparent CPT violation arises from the asymmetric dis-
tribution of DM which distinguishes neutrinos and anti-
neutrinos. Thus precise determination of the neutrino
oscillation parameters may be able to reveal the pres-
ence of the DM asymmetry. The medium potential has

a resonance peak at E⌫ = m
2
X/2mDM which should be

below 1 MeV or above 100 GeV not to spoil the standard
oscillation picture.
In the former case, the medium potential mimics the

standard oscillation parameters and thus solar and atmo-
spheric neutrino data might be accounted for even with
massless neutrinos. This “dark matter assisted neutrino
oscillation” could be a good alternative to the standard
oscillation paradigm if the absolute neutrino mass mea-
sured in neutrinoless beta decay, single beta decay or
cosmological observations turns out to be unexpectedly
small [45]. In the latter case, ultra-high energy neutrino
oscillations are described by the symmetric medium ef-
fect, and thus could be totally di↵erent from the standard
neutrino oscillations which have been confirmed by vari-
ous experiments at lower energies.
Our formulation brings many interesting questions:

what will be the implications to the standard neutrino
oscillations; how our medium parameters are constrained
by various cosmological and astrophysical observations;
and how a low-energy scenario for the dark sector cou-
pling to neutrinos can arise from a UV-completed theory
[46].
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small [45]. In the latter case, ultra-high energy neutrino
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fect, and thus could be totally di↵erent from the standard
neutrino oscillations which have been confirmed by vari-
ous experiments at lower energies.
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by
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This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,
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In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m
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X � 2mDME⌫ , we get the

matter potential
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Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V
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↵� by
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
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the experimental data can be fitted by the couplings
given by
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.
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This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at
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/2E⌫ with
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In the region 1 and 2, the medium potential is sub-
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energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E
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⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
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Recently we suggested a possibility to explain the neutrino oscillations even for massless neutrino,
if there is a interaction between dark matter and neutrinos. In this article, we study more details
including the cosmology and astrophysical constraints.

PACS numbers:

Relic density:
BBN: If DM is in the thermal equilibrium during the

BBN epoch, the additional degrees of freedom from DM
may addd up to Ne↵ . Therefore the DM need to be
decoupled before BBN T & 5MeV.

nh�vi ' H (1)

CMB and LSS:
Neutrino flux: The interaction between DM and neu-

trino can suppress the flux of high energy neutrino from
distant astrophysical bodies. The recent work by [36]
constrain the DM-neutrino cross section at the neutrino
energy 290 TeV

�

mdm
. 5.1⇥ 10�23 cm2

/GeV. (2)

For this we may need

mdm ⇠ 10�7 eV, mX ⇠ eV, � ⇠ 10�10 (3)

Results:

�m
2

2E⌫
(4)

Introduction: When neutrinos propagate in matter,
neutrino oscillations are a↵ected by their coherent for-
ward elastic scattering in which the matter remains un-
changed and its e↵ect is described by an e↵ective (mat-
ter) potential [1]. This can lead to a dramatic impact
in neutrino oscillation, with a resonance enhancement of
the e↵ective mixing parameter [2], which is recognized as
the MSW e↵ect and confirmed as the source of the solar
neutrino deficit.

Recently various medium e↵ects have been considered
extensively to study its impact on neutrino oscillations or
fit experimental data better in a medium of dark matter
(DM) [3–21], or dark energy [22–27]. However, there has
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FIG. 1: Feynman diagrams for the scattering of neutrino with
electron or positron through the W boson exchange in SM.

not been a systematic study of the general medium e↵ect
on neutrino oscillations.
In this article, we derive a general formula describ-

ing the medium e↵ect which can be applied to various
dark matter models with di↵erent mediators to neutrinos.
The medium e↵ect includes modifications of the neu-
trino mass and potential which are di↵erent for neutrinos
and anti-neutrinos in a medium of asymmetric dark mat-
ter. Remarkably, the neutrino oscillation phenomena can
arise solely from the symmetric medium e↵ect in a cer-
tain model parameter space.

Standard matter e↵ect in a medium of electrons and
positrons: Let us begin by revisiting the standard cal-
culation of the matter e↵ect driven by the charged cur-
rent interaction of the Standard Model (SM). For this, we
consider neutrino/anti-neutrino propagation in a general
background densities of electrons Ne and positrons Nē.
Calculating the coherent forward scattering for the u and
s channel processes in Fig. 1, one can find the generalized
matter potential:

V
SM
⌫,⌫̄ =

p

2GF (Ne +Nē)
±✏m

4
W � 2m2

WmeE⌫

m
4
W � 4m2

eE
2
⌫

, (5)

where GF ⌘ g
2
/(4

p
2m2

W ) is the Fermi constant, and ✏ ⌘

(Ne�Nē)/(Ne+Nē) describes the asymmetry of electron
and positron distributions. Note that it reduces to the
Wolfenstein potential ±

p
2GFNe for neutrinos and anti-

neutirnos, respectively in the ordinary situation: ✏ = 1
(Nē = 0) and m

2
W � 2meE⌫ . Furthermore, we notice

=

When	the	neutrino	peak	energy	is	smaller	than	1	MeV

and	the	DM	induced	matter	potential	is	the	same	as	neutrino	mass	effect

Neutrino	oscillations	can	be	explained	only	with	DM-neutrino	
interactions	even	with	massless	neutrinos.

3

1 2

3 4

FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.09�↵�✏

✓
20meV

mDM

◆2 ✓100GeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(18)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (19)

⇡
3⇥ 10�3eV2

2E⌫
�
(T )

✓
20meV

mDM

◆2

,

which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
2m2

DM

⇢DM
U

⇤diag(�m
2)UT (20)

'
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FIG. 5: The same plot as Fig. 3 but with Epeak
⌫ = 1TeV: the

solid and dashed lines are for �µµ 6= 0 with x ! 10, y = 0,
and �µµ = �µ⌧ 6= 0 with x ! 10, y ! 10 at high energy limit,
respectively.

the medium e↵ect. As can be seen in the plot, the high
energy oscillation parameters are controlled by the flavor
structure of the medium potential.

Conclusion and Discussion: We provided a systematic
study of neutrino oscillations in a medium of dark matter
which generalizes the SM matter e↵ect. A general for-
mula is derived to describe the medium e↵ect in various
scenarios of dark matter and its mediator to neutrinos.
Apparent CPT violation arises from the asymmetric dis-
tribution of DM which distinguishes neutrinos and anti-
neutrinos. Thus precise determination of the neutrino
oscillation parameters may be able to reveal the pres-
ence of the DM asymmetry. The medium potential has

a resonance peak at E⌫ = m
2
X/2mDM which should be

below 1 MeV or above 100 GeV not to spoil the standard
oscillation picture.
In the former case, the medium potential mimics the

standard oscillation parameters and thus solar and atmo-
spheric neutrino data might be accounted for even with
massless neutrinos. This “dark matter assisted neutrino
oscillation” could be a good alternative to the standard
oscillation paradigm if the absolute neutrino mass mea-
sured in neutrinoless beta decay, single beta decay or
cosmological observations turns out to be unexpectedly
small [45]. In the latter case, ultra-high energy neutrino
oscillations are described by the symmetric medium ef-
fect, and thus could be totally di↵erent from the standard
neutrino oscillations which have been confirmed by vari-
ous experiments at lower energies.
Our formulation brings many interesting questions:

what will be the implications to the standard neutrino
oscillations; how our medium parameters are constrained
by various cosmological and astrophysical observations;
and how a low-energy scenario for the dark sector cou-
pling to neutrinos can arise from a UV-completed theory
[46].
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Dark Matter Assisted Neutrino Oscillation

Predictions	[Work	in	progress]

No	measurement	of	the	absolute	neutrino	mass:

	-	Single	beta	decay	(KATRIN),	neutrinoless	double	beta	decay,		
cosmological	observation	of	neutrino	mass.

Directional	dependence	of	(anti-)neutrino	oscillation
	-	Matter	potential	has	correction.

19

Modulated	oscillation	in	the	neutrino	and	anti-neutrino

	-	Due	to	the	anisotropic	velocity	of	DM	on	Earth,	the	matter	
	potential	has	time	dependence.

	-	Annual	modulation	of	(anti-)neutrino	oscillation.
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Early Universe Present Universe

Constraints on DM-neutrino interaction
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Besides DM coupling to light quarks there are other possibilities of the DM-SM cou-

plings. The couplings of the DM to the third generation quarks are studied in the mono-b,

the bb̄ + MET and the tt̄ + MET channels [31–34]. The DM-Higgs coupling is probed

by a monoHiggs signature [35–37]. Mono-Z and mono-W are used to probe the DM-weak

gauge boson coupling [38–44].

In all the cases mentioned above, the signal are generally of order αdarkαs(ew) where

the irreducible backgrounds coming from the neutrino is of order αewαs(ew). The choice

between αs or αew depends on whether the final states involve quark/gluon or lepton/weak

gauge boson/Higgs. From this one can see that the LHC can probe the DM-SM coupling

αdark up to the αew. The same estimation cannot be said for the case of dark matter

recoiling against a neutrino. For example in the monolepton case, the background is of

order αew while the signal is of order αdarkαew. From this estimation, it seems that in

this case the LHC bounds on αdark are not perturbative. However in this work we will

demonstrate that the kinematic distributions between the signal and the background are

different. Therefore we can impose kinematics cuts to reduce the background significantly.

By recasting the data from the 13TeV mono-lepton search [45], we show that the bounds on

the DM-neutrino is still in the perturbative range for a large extend of DM parameter space.

Model independent interaction of dark matter and neutrino can also be constrained

from cosmological searches. The interaction of DM and the neutrino might results in a

suppression of the primordial density perturbations which can be seen in the CMB or

the matter power spectra [46–51]. By analyzing the matter power spectrum, ref. [49] ob-

tained the upper bounds on the present day value of DM-neutrino scattering cross-section

of σDM+ν→DM+ν ! 10−33mDM
GeV cm2 if the cross section is constant and σDM+ν→DM+ν !

10−45mDM
GeV cm2, if the cross section depends on the square of the temperature. Neutrino

telescopes also provide some bounds on the interaction from the DM annihilation into neu-

trinos. The current bounds are ⟨σDMDM→ννv⟩ ! O
(
10−24–10−23

)
cm3/s for DM mass 0.01

to 100GeV. We found that the LHC run-2 bounds are competitive with these cosmologi-

cal bounds.

This paper is organized as follows. In section 2 we set up our framework and notations

for studying the DM-neutrino interactions. We also derive phenomenological consequences

of the DM-neutrino interaction in our setup. In section 3 we discuss LHC signatures of our

DM-neutrino interactions and the current LHC bounds. We next turn to discuss the bounds

on DM-neutrino interactions from neutrino telescopes in section 4. We briefly discuss the

mediators and possible UV completions in section 5. We then conclude in section 6.

2 Minimal dark matter-neutrino interaction

When considering the DM-neutrino interaction, it is expected that the EFT framework

will fail to properly describe the kinematics at the LHC environment. Therefore we will

use the simplified model approach in this paper. Two types of simplified model are widely

discussed in the literature: the s-channel mediator and the t-channel mediator. In the

s-channel mediator scenario, the LHC only put constraints on the neutrino-mediator cou-

pling. The DM-mediator coupling is unconstrained, hence an assumption on its value have

– 2 –
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2 Minimal dark matter-neutrino interaction

When considering the DM-neutrino interaction, it is expected that the EFT framework

will fail to properly describe the kinematics at the LHC environment. Therefore we will

use the simplified model approach in this paper. Two types of simplified model are widely

discussed in the literature: the s-channel mediator and the t-channel mediator. In the

s-channel mediator scenario, the LHC only put constraints on the neutrino-mediator cou-

pling. The DM-mediator coupling is unconstrained, hence an assumption on its value have
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model-dependent
coupling

- DM relic density
- Neutrino reheating

- neutrino flux enhancement

- CMB anisotropy
- Large Scale Structure

- SN1987-A, IC170922A

- mono-jet, mono-lepton

- invisible Z decay

: BBN, Neff

- neutrino anisotropy
- neutrino flux suppression
- neutrino flavor oscillation

20
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Astrophysical Neutrinos

- Suppression of the astrophysical neutrino flux

- Anisotropy of the neutrino flux through the Milky DM halo
[Arguelles, Kheirandish, Vincent, 2017]

- SN1987A constrains the interaction at the energy around MeV
[Mangano, Melchoirri, Serra, Cooray, Kamionkowski, 2006][Raffelt, 1996]

7

we find a dark-matter thickness ∼ 1025 MeV cm−2.
Given the agreement between the predicted and ob-
served neutrino flux and energy spectrum, we infer
that neutrinos from SN1987A were not significantly
absorbed by dark matter along the line of sight, from
which we get an upper bound ∼ 10−25 cm2 MeV−1 to
the neutrino-DM opacity for neutrinos of energy ∼ 10
MeV. From this result we obtain the upper bounds

Q2 ≤ 10−47

(

10MeV

M

)2

cm2 MeV−1 , (27)

Q0 ≤ 10−25 cm2 MeV−1 . (28)

We note that the bound on Q2 is stronger than what
is obtained using LSS data and of the same order of
magnitude as the BBN limit corresponding toM ≥ 10
MeV, while for Q0 the stronger bound is still provided
by Eq. (26).
Neutrinos with high energy are likely to be pro-

duced by a variety of astrophysical sources. Strong
scattering of these neutrinos off the NIDM when trav-
eling over cosmological distances of order of tens of
Mpc implies large energy losses and correspondingly
a strong deformation of the emitted energy spectrum
at the source. For light NIDM and intermediate ex-
changed particles (in the 10-MeV range) the high-
energy (Eν ≥ GeV) scattering cross section behaves
as σdm−ν(Eν ≫ 10MeV) ∼ g4/s with s = mdmEν .
We stress once more that high values for NIDM or
intermediate F or U particle mass, though perfectly
legitimate, implies no observable effects in the LSS
power spectrum and are thus of no interest for the
present analysis. Using the definition of Q2 and Q0

of Section II and the value of the critical density to-
day, we can evaluate the typical scattering length as
a function of the neutrino energy as follows

λν
10Mpc

∼
Eν
M

1

Ωdm

1

Q2

10−44 cm2 MeV−1, (29)

λν
10Mpc

∼
Eν
M

1

Ωdm

1

Q0

10−24 cm2 MeV−1. (30)

If we use the LSS bounds of Eqs. (25) and (26) we see
that for M ∼ 10 MeV, the value of λν is typically very
large. The effect of interactions with NIDM can only
affect neutrinos with order-GeV energy over distances
of 10 ÷ 100 Mpc assuming the largest value for Q2,
while the effect is negligible for higher values of Eν or
for the Q0 case.
The bounds discussed so far are obtained under the

assumption that all dark matter is interacting with
neutrinos. However, if the dark matter is made of
several components, it is possible that only a frac-
tion of the dark matter was actually strongly coupled.
In Fig. 4, we show matter power spectra for a stan-
dard ΛCDM model with Ωdm = 0.25 and ΩΛ = 0.7
and for other models where a fraction of the energy
density Ωint = 0.7 − ΩΛ of the cosmological constant
is replaced by interacting dark matter with coupling

FIG. 4: Matter power spectra for cold+interacting dark
matter with Q2 = 10−38cm2 MeV−1 (top panel) and Q2 =
10−37cm2 MeV−1 (bottom panel).

Q2. As we can see, the spectra are quite similar
if we consider quite large values of Q2, as large as
10−38cm2 MeV−1. This is simply due to the fact that
the interacting component is nearly unclustered on
large scales, k ∼ 0.01 h Mpc−1. Therefore, adding
this component or changing the energy density in Λ is
nearly equivalent. This degeneracy in the framework
of NIDM might weaken the current estimates of the
matter density from galaxy clustering. For higher val-
ues of Q2 or Ωint, oscillations in the power spectrum
are instead clearly visible.
In Fig. 5, we plot constraints on Q2 using SDSS

P (k) data by allowing this possibility that only a frac-
tion of the dark matter interacts with neutrinos. The
overall matter density is fixed at Ωm = 0.27 and we as-
sume a flat universe. As we can see, a smaller ΩNIDM

allows the possibility of relaxing the constraints onQ2.
Recently, experimental evidence for a “peak” in the

correlation function of the SDSS luminous red galaxy
(LRG) distribution at 100 Mpc scales has been re-
ported [40]. This peak is generally interpreted as the
imprint of oscillations in the photon-baryon fluid near
recombination. In the standard CDM framework, this
peak serves as an absolute ruler and with clustering
measurements as a function of redshift, one can ex-

3

scattering cross section is

⟨σdm−ν |v|⟩ ∼ |h|4
T 2

(m2
F −m2

dm)2
, (3)

for an F fermion exchange, unless the ψ and F fields
are degenerate in mass, in which case the low-energy
transfer scattering cross section gets the usual Thom-
son behavior,

σdm−ν ∼
|h|4

m2
dm

, mF = mdm . (4)

Similarly, for a U coupling we have

⟨σdm−ν |v|⟩ ∼ g2ψg
2
ν
T 2

m4
U

. (5)

The Lagrangian density, Eq. (1), also describes the in-
teraction of (chiral) fermionic dark matter with neu-
trinos via the exchange of a massive scalar field, with
the obvious redefinition ψ ↔ F , and scattering cross
sections are again given in this case by Eqs. (3) or (4).
Finally, interaction of a Dirac DM field with neu-

trinos via a vector-boson interaction Lagrangian,

Lint = gψ
(

cLψLγ
µψL + cRψRγ

µψR

)

Uµ

+ gννLγ
µνLUµ , (6)

gives, for mdm ≥ T ,

⟨σdm−ν |v|⟩ ∼ g2ψg
2
ν

(

c2L + c2R − cLcR
) T 2

m4
U

. (7)

A light U boson with an order MeV mass coupled
to charged leptons might affect the electron-neutrino
scattering cross section at low energy, while mea-
surements shows no significant deviations from the
standard electroweak-model result [31, 32] (see also
Ref. [21] for a detailed analysis on this issue). A pos-
sible way out is of course to suppress the value of the U
coupling to ordinary matter, including neutrinos, with
respect to its coupling to DM particles. In this case,
however, neutrino–dark- matter scattering would be
quite small and again no observable effects on LSS
can be obtained. Another possibility, though less ap-
pealing, is to assume that the U boson couples mainly
to neutrinos and very weakly to charged leptons.
Regardless of the particular nature of DM parti-

cles and the particular coupling to neutrinos, provided
their mass as well as the mass of the exchanged par-
ticle is in the range of MeV or larger, we see from our
discussion that the typical thermally averaged scatter-
ing cross section with neutrinos for T ≤ MeV has two
possible distinct behaviors, either decreasing as T 2 or
constant for mass degeneracy of DM and intermediate
scalar/fermion particle F . In particular, it is useful to
define the DM-neutrino opacity, the thermally aver-
aged scattering cross section over DM mass ratio, as
follows

⟨σdm−ν |v|⟩

mdm
≡ Q2

1

a2
, (8)

for the T 2 behavior as in Eqs. (3), (5), or (7). Here,
a denotes the scale factor, normalized to unity at the
present time.
The opacity can be written in terms of the DM-

neutrino coupling, which will be generically denoted
by g and a mass scale M of order MeV or larger. For
example, for a scalar DM particle coupled to neutrinos
via the exchange of a fermion particle F we have g =
|h| and M2 = |m2

F −m2
dm| [see Eq. (3)], while for a U

exchange, g2 = gψgν and M = mU [see Eq. (5)]. In
this notation, and using the known value of neutrino
temperature today, we get

Q2 ∼
g4

(M/MeV)4
1

mdm/MeV
·10−41cm2 MeV−1. (9)

Similarly, for the case of a constant scattering cross
section as in Eq. (4) we define

⟨σdm−ν |v|⟩

mdm
≡ Q0 , (10)

which gives

Q0 ∼
|h|4

(mdm/MeV)3
· 10−22cm2 MeV−1 . (11)

Upper bounds on these parameters will be discussed
in the following Section using the LSS power spectrum
as well as other astrophysical constraints.
We now come back to the issue of the relic abun-

dance of DM particles ψ. In the usual scenario, the
present value of the DM energy density results from
the freezeout of annihilation processes at tempera-
tures of the order of mdm/20; see, e.g., Ref. [33]. As
we will see in the next Section, the key parameter
entering the Euler equation ruling the DM fluid per-
turbation is the effective DM-neutrino scattering rate,
defined by

Γsc ∼
ρν
ρdm

ndmσdm−ν , (12)

with ndm the DM number density and ρν and ρdm
the energy density of neutrinos and DM particles, re-
spectively. If we assume that mdm ≥ 10 MeV and
that scattering processes with neutrinos are still ef-
fective for small temperatures T ≪MeV, thus leaving
an imprint on the LSS power spectrum and CMB, an-
nihilation to neutrinos would reduce the DM energy
density to a very tiny value today.
To show this let us assume that indeed the annihi-

lation processes ψψ → νν freeze out at temperature
of the order of Tf = mdm/201. We first consider the

1 In general, DM particles are coupled to the electromagnetic
plasma as well and annihilate into e+e− pairs. In this case,
the corresponding annihilations will be assumed to freeze out
at Tf or earlier.
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2 Charge Conjugation

The charge conjugation is
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3 Properties of Majorana neutrino

The Majorana mass term of left-handed neutrino is

LM = �
1

2
⌫̄LM(⌫L)

c
�

1

2
(⌫L)cM

†
⌫L. (7)

Here the Majorana mass matrix is symmetric (and complex), MT = M , and it can be diago-
nalized by a unitary matrix U ,

M = UmU
T
, m = diag(m1,m2,m3), (8)

then the mass eigenstates are related to the flavor eigenstates

⌫
m = U

†
⌫L. (9)

Using the Majorana spinor of the left-neutrino

⌫ = ⌫L + ⌫
c
L, (10)

1

dσð ~E; EÞ=dE is the differential cross section from ~E to E. τ
is the DM column density

τðb; lÞ ¼
Z

LOS
nχðx; b; lÞdx; ð2Þ

b and lare, respectively, the galactic latitude and longitude,
and nχðx; b; lÞ ¼ ρχðrÞ=mχ is the DM number density
along the line of sight (LOS). The DM column density
and the arrival direction of high-energy cosmic neutrinos
are shown in Fig 1.
Likelihood function.—We construct an extended

unbinned likelihood function for a given set of parameters
ϑ ¼ fmχ ; mϕ; gg and events of observed topologies t,
energies E, and arrival directions x⃗ ¼ ðb; lÞ:

Lðft; E; x⃗gjϑÞ ¼ e−
P

b
Nb

YNobs

i¼1

X

a

NaPaðti; Ei; x⃗ijϑÞ; ð3Þ

where the indices a and b run over the number of
astrophysical events (Nastro), atmospheric neutrinos
(Natm), and atmospheric muons (Nμ) in the model, while
the product in iruns over the observed events (Nobs ¼ 53).
The probability of the astrophysical component is propor-
tional to the solution ΦðE; b; lÞ of Eq. (1). A suppression
from dark matter in the extragalactic neutrino flux from the
ðb; lÞ ¼ ð0; 0Þ direction thus suppresses the likelihood
of observing astrophysical events from that direction.
The probability distributions of the neutrino components
in Eq. (3) are given in Appendix A of Supplemental
Material [45].
Results.—The likelihood is incorporated into a custom-

built Markov chain Monte Carlo (MCMC) code, which is
used to produce posterior likelihood distributions in the six-
dimensional space of (g;mχ ; mϕ; Nastro; Natm; Nμ). (We use

the publicly available EMCEE [51] sampler.) We note that
posteriors onfNag reproduce independently obtained results
[17,39], with Nastro ¼ 34.3 $ 6.5, Natm ¼ 14.4 $ 4.6, and
Nμ ¼ 7.1 $ 2.8. We find that these are completely uncorre-
lated with the other model parameters.
Figure 2 shows examples of the event distributions in four

different scenarios, as they would be expected in IceCube, in
the case of anE−2 diffuse isotropic flux. The top panel shows
the deposited energy distribution, while the lower one shows

FIG. 1. The arrival directions of the 53 HESE neutrinos
observed in four years of IceCube data [17], in Galactic
coordinates. Crosses represent shower events, while ×’s corre-
spond to tracks. Symbol size is proportional to the event energy,
and the circles represent the median angular uncertainty of
cascades. The color scale is the column density of DM traversed
by neutrinos arriving from each direction.

FIG. 2. Effect on the energy and spatial distribution of HESEs
as seen at IceCube, due to interactions with the DM halo of the
Milky Way for three different examples representative of the
parameter space explored in this study. Pale gray and purple lines
represent atmospheric background fluxes. Darker lines are as
follows: black, standard astrophysical flux; yellow, fermionic
DM with a spin-1 mediator (g ¼ 1, mχ ¼ 10 MeV, and
mϕ ¼ 10 MeV); blue, the same model but with g ¼

ffiffiffi
5

p
and

mχ ¼ 100 MeV; and orange, scalar DM with a fermionic
mediator (g ¼

ffiffiffiffiffi
10

p
, mχ ¼ 20 keV, and mϕ ¼ 6 GeV). The

new physics models can be probed with our analysis of HESE
neutrinos but are not accessible to cosmological studies. We show
binned IceCube HESE data as gray crosses.
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Constraints from Cosmology

- The power spectrum of DM from CMB and LSS can constrain 
the scattering cross section of DM with neutrinos

- The density perturbation does not grow in the kinetic 
equilibrium of DM, and then grow after decoupling.
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FIG. 1: A perturbation of interacting dark matter (red
line) of wavenumber k = 0.81 hMpc−1 is plotted against a
perturbation of non-interacting dark matter (black dotted
line) in the upper panel. The effects of this interaction
are clearly seen in the angular power spectum of the CMB
(middle panel) and on the matter power spectum (lower
panel). We have chosen a very large value of Q to magnify
the effect on the main cosmological observables.

likely that the relic abundance of these non standard
dark matter candidates formed via the well known
freezing phenomenon, as the pair annihilations would
be quite efficient till recent times in depleting their
number density, unless they represent a too light
species. On the other hand, a different scenario has

been also considered in the literature, where dark mat-
ter relic density today is the remnant of an initial par-
ticle – antiparticle asymmetry produced in the early
universe, thus similar to the mechanism of baryogene-
sis which leads to a baryon density today much larger
than what is expected by freezing of strong interac-
tions alone [18, 19]. This possibility may also ac-
count for the intriguing similarity between the values
of Ωb and Ωdm we observe today, which differ by a fac-
tor five only, a feature which may call for a common
mechanism for their formation. In the following we
therefore, consider the case of a non self–conjugated
fermion or scalar particle ψ with a conserved global
U(1) charge, at least in the low energy scale regime,
say below their mass scale, which also corresponds to
the relevant stages for structure formation we are in-
terested in.
In case of a spin zero species, the interaction la-

grangian can be chosen as a Yukawa term

Lint = hFRνLψ + h.c., (1)

with F a spinor field, or via coupling with an inter-
mediate vector-boson field Uµ

Lint = ig(ψ∗∂µψ − ψ∂µψ∗)Uµ + g2ψ∗ψUµU
µ

+ gννLγ
µνLUµ. (2)

In both cases F and U fields will be assumed to have
mass larger than ψ, to prevent fast ψ decay at tree
level, see [13].
In case of spin 1/2 dark matter, one has

Lint = hψRνLF + h.c., (3)

with F a scalar field or finally,

Lint = g(cLψLγ
µψL + cRψRγ

µψR)Uµ

+ gννLγ
µνLUµ. (4)

We notice that, as we will see in the next Section,
bounds on dark matter – neutrino scattering cross sec-
tion from CMB and large scale data, correspond to a
mass scale for ψ as well as the other field involved in
the interaction lagrangian (F or U) larger than MeV.
Thus, we will assume this lower bound in the follow-
ing, mdm ≥ MeV, mF,U ≥ MeV.
It is quite easy to compute the thermal averaged

scattering cross section corresponding to these inter-
action terms in the non-relativistic limit for the dark
matter particle ψ and F or U . For example in the
case of Eq. (1) or (3) and (2) one gets, respectively

⟨σdm−ν |v|⟩ ∼ |h|4
T 2
ν

(m2
F −m2

dm)2
, (5)

⟨σdm−ν |v|⟩ ∼ g2g2ν
T 2
ν

m4
U

. (6)

The first result holds for mF ≠ mdm, otherwise cross
section takes a constant value, as for the well known
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FIG. 1: A perturbation of interacting dark matter (red
line) of wavenumber k = 0.81 hMpc−1 is plotted against a
perturbation of non-interacting dark matter (black dotted
line) in the upper panel. The effects of this interaction
are clearly seen in the angular power spectum of the CMB
(middle panel) and on the matter power spectum (lower
panel). We have chosen a very large value of Q to magnify
the effect on the main cosmological observables.

likely that the relic abundance of these non standard
dark matter candidates formed via the well known
freezing phenomenon, as the pair annihilations would
be quite efficient till recent times in depleting their
number density, unless they represent a too light
species. On the other hand, a different scenario has

been also considered in the literature, where dark mat-
ter relic density today is the remnant of an initial par-
ticle – antiparticle asymmetry produced in the early
universe, thus similar to the mechanism of baryogene-
sis which leads to a baryon density today much larger
than what is expected by freezing of strong interac-
tions alone [18, 19]. This possibility may also ac-
count for the intriguing similarity between the values
of Ωb and Ωdm we observe today, which differ by a fac-
tor five only, a feature which may call for a common
mechanism for their formation. In the following we
therefore, consider the case of a non self–conjugated
fermion or scalar particle ψ with a conserved global
U(1) charge, at least in the low energy scale regime,
say below their mass scale, which also corresponds to
the relevant stages for structure formation we are in-
terested in.
In case of a spin zero species, the interaction la-

grangian can be chosen as a Yukawa term

Lint = hFRνLψ + h.c., (1)

with F a spinor field, or via coupling with an inter-
mediate vector-boson field Uµ

Lint = ig(ψ∗∂µψ − ψ∂µψ∗)Uµ + g2ψ∗ψUµU
µ

+ gννLγ
µνLUµ. (2)

In both cases F and U fields will be assumed to have
mass larger than ψ, to prevent fast ψ decay at tree
level, see [13].
In case of spin 1/2 dark matter, one has

Lint = hψRνLF + h.c., (3)

with F a scalar field or finally,

Lint = g(cLψLγ
µψL + cRψRγ

µψR)Uµ

+ gννLγ
µνLUµ. (4)

We notice that, as we will see in the next Section,
bounds on dark matter – neutrino scattering cross sec-
tion from CMB and large scale data, correspond to a
mass scale for ψ as well as the other field involved in
the interaction lagrangian (F or U) larger than MeV.
Thus, we will assume this lower bound in the follow-
ing, mdm ≥ MeV, mF,U ≥ MeV.
It is quite easy to compute the thermal averaged

scattering cross section corresponding to these inter-
action terms in the non-relativistic limit for the dark
matter particle ψ and F or U . For example in the
case of Eq. (1) or (3) and (2) one gets, respectively

⟨σdm−ν |v|⟩ ∼ |h|4
T 2
ν

(m2
F −m2

dm)2
, (5)

⟨σdm−ν |v|⟩ ∼ g2g2ν
T 2
ν

m4
U

. (6)

The first result holds for mF ≠ mdm, otherwise cross
section takes a constant value, as for the well known

[Serra etal, 2009]
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2

Neutrino energy �/Mdm[ cm2/GeV] Exp. [Ref.]

⇠ 100 eV 6⇥ 10�31 CMB [12, 13]

⇠ 100 eV 10�33 Lyman-↵ [10]

10 MeV 10�22 SN1987A [8]

290 TeV 10�22 IceCube-170922A [1]

TABLE I: Upper bound on the neutrino-DM scattering cross
section from di↵erent experiments. In the first column, we
specified the corresponding neutrino energy for that each ex-
perimental constraint is applied.

This is the first known distance of the high energy neu-

trino.

If the neutrinos interact with dark matter, the neutri-

nos can undergo dissipation during the propagation and

may not arrive at Earth. The dissipation depends on the

scattering cross section and the number density of dark

matter along the path of the neutrino and the suppression

factor is given by exp(�
R
n�ds). When the integration

in the exponent
R
n�ds is much bigger than 1, the neu-

trino flux is exponentially suppressed and they cannot

arrive at the Earth and we cannot observe the neutrino

source.

Since the number density of dark matter may changes

with propagation, we can approximate the suppression

factor as one from the cosmological dark matter and the

other from dark matter in our Milky Way

Z

path
�n(x)dl = n0�L+

Z

los
�ngal(x)dl,

=
�

Mdm

✓
⇢0L+

Z

los
⇢gal(x)dl

◆
.

(1)

Here L is the distance form the source of neutrino to the

Earth and n0 and ndm(x) are the DM number density

in the large scale Universe and in the Milky Way. In

the second line, we used the relation between DM en-

ergy density and DM mass, ⇢dm = ndmMdm, to convert

the number density to energy density. We assume that

the cosmological DM density, ⇢0 ' 1.3⇥ 10
�6

GeV/ cm3
,

which is averaged as constant and does not change along

the path. However the DM density in our Milky Way

is position dependent and we assume the NFW profile

given by

⇢gal(x) =
⇢s

r
rs

⇣
1 +

r
rs

⌘2 , (2)

where ⇢s = 0.184GeV/ cm3
, rs = 24.42 kpc with ⇢� =

0.3GeV/ cm3
, and r is the distance from the Galactic

center.

For the neutrinos from IceCube-170922A with the dis-

tance L = 1421Mpc, we find that the cosmological sup-

pression factor is

⇢0L ' 5.7⇥ 10
21

GeV/ cm2. (3)

MDM=1 GeV

-10 -5 0 5 10
-50

-45

-40

-35

-30

-25

-20

-15

Log10Eν GeV]

Lo
g 1
0σ

ν-
D
M
[c
m
2 ] Ice-Cube

Lyman-α

FIG. 1: The upper bound on the scattering cross section for
di↵erent energy dependence of scattering of neutrinos with
dark matter. Those points of ”Ice-Cube” and ”Lyman-↵”
are the experimental upper bound on the cross section for
Mdm = 1GeV at the corresponding neutrino energy. Here
we used the power-law form �(E⌫) = �0

�
E⌫

1GeV

�n
, with index

n = 0, 2, 4 for dotted, dashed, and solid lines respectively.

For the suppression due to the DM interaction in the

Milky Way, we need to consider the direction of the neu-

trino source and integrate the number density along the

path of the neutrinos. We find that the suppression fac-

tor is

Z

los
⇢gal(x)dl ' 3.8⇥ 10

22
GeV/ cm2. (4)

For this calculation we use the direction of the IceCube-

170922A in the right ascension (RA) 77.42+0.95
�0.65 and decli-

nation (Dec) +5.72+0.50
�0.30 and converted it to the Galactic

coordinate used in ⇢dm of the Milky Way halo. We find

that this result does not depend on the DM halo profile,

since the direction to the IceCube-170922A is outward of

the Milky Way from the Earth.

Incidentally both contribution from cosmological DM

and Milky Way DM are very comparable, since the small

cosmological DM density is compensated by the long

distance. The observation of the high energy neutrino

IceCube-170922A implies that the neutrino flux did not

have much suppression during its propagation. This en-

ables us to find the precise upper bound on the interac-

tion of neutrino with dark matter. Considering that the

suppresion is not bigger than 99% of the original flux, we

require
R
�ndl . 2.3. Using Eq. (4) and Eq. (5), we can

find the upper bound on the scattering cross section as

�

Mdm
.
✓
⇢0L+

Z

los
⇢gal(x)dl

◆�1

' 5.3⇥ 10
�23

cm
2/GeV at E⌫ = 290TeV.

(5)

Here we considered that the scattering cross section does

not change during the propagation.

Considering the flavor distribution of IceCube-

170922A, what can we obtain?
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For the suppression due to the DM interaction in the

Milky Way, we need to consider the direction of the neu-

trino source and integrate the number density along the

path of the neutrinos. We find that the suppression fac-

tor is

Z

los
⇢gal(x)dl ' 3.8⇥ 10

22
GeV/ cm2. (4)

For this calculation we use the direction of the IceCube-

170922A in the right ascension (RA) 77.42+0.95
�0.65 and decli-

nation (Dec) +5.72+0.50
�0.30 and converted it to the Galactic

coordinate used in ⇢dm of the Milky Way halo. We find

that this result does not depend on the DM halo profile,

since the direction to the IceCube-170922A is outward of

the Milky Way from the Earth.

Incidentally both contribution from cosmological DM

and Milky Way DM are very comparable, since the small

cosmological DM density is compensated by the long

distance. The observation of the high energy neutrino

IceCube-170922A implies that the neutrino flux did not

have much suppression during its propagation. This en-

ables us to find the precise upper bound on the interac-

tion of neutrino with dark matter. Considering that the

suppresion is not bigger than 99% of the original flux, we

require
R
�ndl . 2.3. Using Eq. (4) and Eq. (5), we can

find the upper bound on the scattering cross section as
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' 5.3⇥ 10
�23

cm
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Here we considered that the scattering cross section does

not change during the propagation.

Considering the flavor distribution of IceCube-

170922A, what can we obtain?

Constraint on the DM-neutrino interaction

Requiring less than 90% suppression of the flux

We obtain the upper bound on the cross section/mass as
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FIG. 2: The scattering cross section versus neutrino energy
for the model of complex scalar DM with a fermion medi-
ation [13]. Here we fixed Mdm = 1keV and used mN =
10 keV, 1MeV, and 1GeV and show the biggest cross section
that satisfies the experimental bounds.

have significant suppression during its propagation. This
enables us to place an upper bound on the interaction of
neutrinos with dark matter. Considering that the sup-
pression is not larger than 90% of the original flux, we
require

∫

σndl ! 2.3. Using Eq. (3) and Eq. (4), we can
find the upper bound on the scattering cross section as

σ

Mdm
! 2.3×

(

ρ0L+

∫

los

ρgal(x)dl

)−1

≃ 5.1× 10−23 cm2/GeV at Eν = 290TeV.
(5)

assuming that the scattering cross section does not
change during the propagation.

Upper bound on the neutrino-DM interaction at
different energies. The present bound on the scattering
cross section between neutrinos and DM is summarized
in Table I. The constraint from CMB and Lyman-α
comes from the small scale suppression of the density
fluctuation that has been caused before the last scatter-
ing of photons, when the neutrino energy was around
100 eV. Our constraint from IceCube-170922A is applied
for a neutrino energy of 290 TeV.

Model of simple power-law. As the scattering cross
section could be energy dependent, we explore simple
power-law forms of the energy dependence with n =
0, 2, 4 as

σ(Eν) = σ0

(

Eν

1GeV

)n

, (6)

where σ0 is the cross section normalized at the neutrino
energy at Eν = 1GeV. In Fig. 1, we show the constraints
on the scattering cross section for different energy depen-
dence with n = 0, 2, 4. For each case, we find the upper
bound on σ0 as

σ0/Mdm ! 10−33 cm2/GeV for n = 0,

σ0/Mdm ! 6.3× 10−34 cm2/GeV for n = 2,

σ0/Mdm ! 7.5× 10−45 cm2/GeV for n = 4.

(7)

Model of complex scalar DM mediated by a fermion.
For complex scalar DM with a fermionic mediator, the
interaction Lagrangian will be

Lint = −gχNνL + h.c., (8)

where g is the coupling for the Yukawa interaction be-
tween complex dark matter χ, fermion NR, and left-
handed neutrino νL. In this case, the mass of DM need
to be smaller than that of the fermion for stable DM.
The scattering cross section has non-trivial dependence
on the masses and neutrino energy. The cross section
scales as σ ∝ E2

ν for Eν ! Mdm, σ ∝ Eν for Mdm !
Eν ! m2

N/(2Mdm), and σ ∝ E−1
ν for Eν " m2

N/(2Mdm).

In Fig. 2, we show the scattering cross section ver-
sus neutrino energy for this model [13]. Here we fixed
Mdm = 1 keV and used mN = 10 keV, 1MeV, and 1GeV
and show the behavior of the cross section with biggest
coupling that satisfies the experimental bounds in Ta-
ble I.

In Fig. 3 (Left), we show the contour plot in the
(Mdm,MN) plane which touches the constraint Lyman-
α (Red) or IceCube (Blue) for given couplings g = 0.1, 1,
and 4π. In the green region DM is heavier than the
fermion and thus is not stable. For a given coupling,
the upper and right region both the blue and red lines
are allowed, since the strongest bound depends on the
neutrino energy. In Fig. 3 (Right), the upper bound
on the coupling is shown versus DM mass for given
mediator mass with mN = 1keV, 1MeV, and 1GeV.

Conclusion. The multi-messenger observation of Ice-
Cube 170922A identified the source of the neutrino at
energy 290 TeV, with the definite distance and direc-
tion. With this information we can calculate the pre-
cise suppression of the neutrino flux when there is inter-
action with dark matter in our Milky Way and in the
Universe. By allowing a 90% suppression of the neu-
trino flux, we derived an upper bound on the neutrino-
dark matter scattering cross section as σ/Mdm ! 5.1 ×

10−23 cm2/GeV at the corresponding neutrino energy.
Since the scattering cross section depends on the neu-
trino energy we need to combine the experimental con-
straints at different energies together to constrain specific
micro-physics models.

Acknowledgments. K.-Y.C. was supported by
the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MEST) (NRF-
2016R1A2B4012302). C. Rott acknowledges sup-
port from the National Research Foundation of Korea
(NRF) for the Basic Science Research Program (NRF-
2017R1A2B2003666).

ar
X

iv
:1

90
3.

03
30

2v
1 

 [a
str

o-
ph

.C
O

]  
8 

M
ar

 2
01

9

Constraining dark matter-neutrino interactions with IceCube-170922A

Ki-Young Choi,1, ∗ Jongkuk Kim,1, † and Carsten Rott1, ‡

1Department of Physics, BK21 Physics Research Division,
Institute of Basic Science, Sungkyunkwan University, 2066,
Seobu-ro, Jangan-gu, Suwon-si, Gyeong Gi-do, 16419 Korea

Astrophysical neutrinos travel long distances from their sources to the Earth traversing dark
matter halos of clusters of galaxies and that of our own Milky Way. The interaction of neutrinos
with dark matter may affect the flux of neutrinos. The recent multi-messenger observation of a high
energy neutrino, IceCube-170922A, can give a robust upper bound σ/Mdm ! 5.1× 10−23 cm2/GeV
on the interaction between neutrino and dark matter at a neutrino energy of 290TeV allowing 90%
suppression. Combining the constraints from CMB and LSS at different neutrino energies, we can
constrain models of dark matter-neutrino interactions.

PACS numbers:

Introduction. Since neutrinos interact only weakly
with matter they can propagate cosmological distances
without attenuation and are considered to be ideal mes-
senger particles to uncover the mysteries of distant astro-
physical objects. The recent discovery of a very high en-
ergy neutrino, IceCube-170922A, was followed by multi-
messenger observations including gamma-ray, X-ray, op-
tical, and radio. Through these accompanying obser-
vations, the source of this 290 TeV neutrino could be
identified as a flaring blazar located at a distance of
1421 Mpc [1].

New interactions of neutrinos with matter in the Uni-
verse may affect the propagation of neutrinos by reducing
the flux or changing neutrino flavors [2, 3]. The non-
diagonal or non-universal matter potential generated by
new interactions modify the neutrino oscillation behav-
ior and could result in deviation from the present ex-
pectations. Strong constraints can be obtained on non-
standard interactions from atmospheric data [4], at the
production, propagation and detection [5], and from neu-
trino experiments [6].

Neutrinos could have interactions with dark matter
and observations of distant sources are ideal to probe
such processes. Dark matter composes 26% of the mass-
energy content of the present Universe and spreads all
over the Universe, with more localization near galaxies
and clusters of galaxies. Even though the simplest cosmo-
logical ΛCDM model assumes only gravitationally inter-
acting dark matter, many models of particles physics pre-
dict non-gravitational interactions of dark matter with
standard model particles as well as self interaction be-
tween dark matter [7].

The interaction of neutrinos with dark matter, denoted
DM, has been considered in cosmology and neutrino ob-
servations. Before the last scattering of CMB, the inter-
actions of DM beyond gravity leads to a suppression of

∗Electronic address: kiyoungchoi@skku.edu
†Electronic address: jongkukkim@skku.edu
‡Electronic address: rott@skku.edu

the primordial density fluctuations, and thus erase the
small scale structures and suppress the CMB spectrum
at small scales [8–14].
In the present Universe, the interaction of neutrinos

with DM can dissipate neutrinos and hence suppress the
flux of neutrinos at Earth. This attenuation once was
considered to explain the suppression of high-energy neu-
trino flux [15]. This suppression also can be used to con-
strain the interaction of neutrinos and DM, especially for
ultralight scalar dark matter [15, 16].
Arguelles et al. [17] considered the present-day interac-

tions between high-energy cosmic neutrinos and the DM
halo of the Milky Way. By taking the isotropic distri-
bution of 53 high-energy neutrinos they could constrain
DM-neutrino interactions, since the attenuation of the
neutrino flux depends on the direction of the source and
lead to the energy-dependent anisotropy.
Pandey et al. [18] instead considered the significant

flux suppression of high-energy astrophysical neutrinos
due to the interactions with dark matter. They allowed
1% suppression by just assuming the traveling distance of
neutrino as 200 Mpc and the cosmological DM density.
With other collider search limits, they studied several
effective operators for the interaction.
For a long-range interaction about the astrophysical

size, the matter effects are integrated over the interac-
tion size and may affect neutrino flavor oscillations. The
neutrino flavor distribution at Earth [19] can constrain
the lepton-number symmetries [20–25].
In this letter, we consider the recent observation of

the high energy neutrino, IceCube-170922A, to obtain
a robust bound on the interaction of neutrinos with
DM at high energy and combine our result with other
bounds at different energies. As a specific example, we
use a model of scalar DM with a fermion mediation.

Multi-messenger high energy neutrino: IceCube-
170922A. A 290 TeV muon neutrino observed on
September 22, 2017 and publicized via alert, IceCube-
170922A, is the first high energy neutrino whose ori-
gin can be identified with high confidence. Its source,
the γ-ray blazar TXS 0506+056, located at redshift

KYC, C. Rott and, J. Kim, PRD99, 08 3018 (2019)

23



Ki-Young Choi, Sungkyunkwan University, Korea

Complex Scalar DM with fermion mediator

3

MN=10 KeV
MN=1 MeV
MN=1 GeV

MDM=1 KeV

-10 -5 0 5 10
-45

-40

-35

-30

-25

-20

-15

Log10Eν GeV]

Lo
g 1
0
σ

ν-
D
M

M
D
M

[c
m
2 /
G
eV

]

Ice-Cube

Lyman-α

Scalar DM

MN=1 KeV
MN=1 MeV
MN=1 GeV

-8 -6 -4 -2 0
-8

-6

-4

-2

0

2

Log10MDM[GeV]

Lo
g 1
0g
'

FIG. 2: Left: The scattering cross section versus neutrino energy for the model of complex scalar DM with a fermion medi-
attion [12]. Here we fixed Mdm = 1keV and used mN = 10 keV, 1MeV, and 1GeV and show the biggest cross section that
satisfies the experimental bounds. Right: The maximum values of the coupling g versus DM mass for given fermion mass
mN = 1keV, 1MeV, and 1GeV.
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FIG. 3: The same as Fig. 2 for fermion DM mediated by a gauge boson. Here we fixed Mdm = 1keV and used mN =
10 keV, 1MeV, and 1GeV and show the biggest cross section that satisfies the experimental bounds. Right: (Left) The
maximum values of the coupling g versus DM mass for given fermion mass mZ0 = 1keV, 1MeV, and 1GeV.

Upper bound on the interaction of neutrino with DM at
di↵erent energies. The present bound on the scattering

cross section between neutrino and DM is summarized in

Table I. The constraint from CMB and Lyman-↵ comes

from the small scale suppression of the density fluctuation

that has been caused before the last scattering of pho-

tons, when the neutrino energy was around 100 eV. The

constraint from high energy neutrino at IceCube 170922A

is applied for the neutrino energy 290 TeV.

Model of simple power-law. The scattering cross sec-

tion can have energy dependence. Here we use the simple

power-law form of the energy dependence with n = 0, 2, 4
as

�(E⌫) = �0

✓
E⌫

1GeV

◆n

, (6)

where �0 is the cross section normalized at the neutrino

energy at E⌫ = 1GeV. In Fig. 1, we show the constraints

on the scattering cross section for di↵erent energy depen-

dence with n = 0, 2, 4. For each case, we find the upper

bound on �0 as

�0/Mdm . 10
�33

cm
2/GeV for n = 0,

�0/Mdm . 6.3⇥ 10
�34

cm
2/GeV for n = 2,

�0/Mdm . 7.5⇥ 10
�45

cm
2/GeV for n = 4.

(7)

Model of complex scalar DM mediated by a fermion.
Where resonance structure in the cross section? When

the DM is complex scalar and the mediator is a fermion,

the interaction Lagrangian will be

Lint = �g�N⌫L + h.c., (8)

where g is the coupling for the Yukawa interaction be-

tween complex dark matter �, fermion NR, and left-

handed neutrino ⌫L. In this case, the mass of DM need

to be smaller than that of the fermion for stable DM.

The scattering cross section has non-trivial dependence

on the masses and neutrino energy. The cross section

scales as � / E2
⌫ for E⌫ . Mdm, � / E⌫ for Mdm .

E⌫ . m2
N/(2Mdm), and � / E�1

⌫ for E⌫ & m2
N/(2Mdm).

In Fig. 2 (Left), we show the scattering cross sec-

tion versus neutrino energy for the model of complex
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FIG. 2: The scattering cross section versus neutrino energy
for the model of complex scalar DM with a fermion medi-
ation [13]. Here we fixed Mdm = 1keV and used mN =
10 keV, 1MeV, and 1GeV and show the biggest cross section
that satisfies the experimental bounds.

have significant suppression during its propagation. This
enables us to place an upper bound on the interaction of
neutrinos with dark matter. Considering that the sup-
pression is not larger than 90% of the original flux, we
require

∫

σndl ! 2.3. Using Eq. (3) and Eq. (4), we can
find the upper bound on the scattering cross section as

σ

Mdm
! 2.3×

(

ρ0L+

∫

los

ρgal(x)dl

)−1

≃ 5.1× 10−23 cm2/GeV at Eν = 290TeV.
(5)

assuming that the scattering cross section does not
change during the propagation.

Upper bound on the neutrino-DM interaction at
different energies. The present bound on the scattering
cross section between neutrinos and DM is summarized
in Table I. The constraint from CMB and Lyman-α
comes from the small scale suppression of the density
fluctuation that has been caused before the last scatter-
ing of photons, when the neutrino energy was around
100 eV. Our constraint from IceCube-170922A is applied
for a neutrino energy of 290 TeV.

Model of simple power-law. As the scattering cross
section could be energy dependent, we explore simple
power-law forms of the energy dependence with n =
0, 2, 4 as

σ(Eν) = σ0

(

Eν

1GeV

)n

, (6)

where σ0 is the cross section normalized at the neutrino
energy at Eν = 1GeV. In Fig. 1, we show the constraints
on the scattering cross section for different energy depen-
dence with n = 0, 2, 4. For each case, we find the upper
bound on σ0 as

σ0/Mdm ! 10−33 cm2/GeV for n = 0,

σ0/Mdm ! 6.3× 10−34 cm2/GeV for n = 2,

σ0/Mdm ! 7.5× 10−45 cm2/GeV for n = 4.

(7)

Model of complex scalar DM mediated by a fermion.
For complex scalar DM with a fermionic mediator, the
interaction Lagrangian will be

Lint = −gχNνL + h.c., (8)

where g is the coupling for the Yukawa interaction be-
tween complex dark matter χ, fermion NR, and left-
handed neutrino νL. In this case, the mass of DM need
to be smaller than that of the fermion for stable DM.
The scattering cross section has non-trivial dependence
on the masses and neutrino energy. The cross section
scales as σ ∝ E2

ν for Eν ! Mdm, σ ∝ Eν for Mdm !
Eν ! m2

N/(2Mdm), and σ ∝ E−1
ν for Eν " m2

N/(2Mdm).

In Fig. 2, we show the scattering cross section ver-
sus neutrino energy for this model [13]. Here we fixed
Mdm = 1 keV and used mN = 10 keV, 1MeV, and 1GeV
and show the behavior of the cross section with biggest
coupling that satisfies the experimental bounds in Ta-
ble I.

In Fig. 3 (Left), we show the contour plot in the
(Mdm,MN) plane which touches the constraint Lyman-
α (Red) or IceCube (Blue) for given couplings g = 0.1, 1,
and 4π. In the green region DM is heavier than the
fermion and thus is not stable. For a given coupling,
the upper and right region both the blue and red lines
are allowed, since the strongest bound depends on the
neutrino energy. In Fig. 3 (Right), the upper bound
on the coupling is shown versus DM mass for given
mediator mass with mN = 1keV, 1MeV, and 1GeV.

Conclusion. The multi-messenger observation of Ice-
Cube 170922A identified the source of the neutrino at
energy 290 TeV, with the definite distance and direc-
tion. With this information we can calculate the pre-
cise suppression of the neutrino flux when there is inter-
action with dark matter in our Milky Way and in the
Universe. By allowing a 90% suppression of the neu-
trino flux, we derived an upper bound on the neutrino-
dark matter scattering cross section as σ/Mdm ! 5.1 ×

10−23 cm2/GeV at the corresponding neutrino energy.
Since the scattering cross section depends on the neu-
trino energy we need to combine the experimental con-
straints at different energies together to constrain specific
micro-physics models.
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III. UPPER BOUND ON THE NEUTRINO-DM
INTERACTION AT DIFFERENT ENERGIES

The present bound on the scattering cross section
between neutrinos and DM is summarized in Table I.
The constraint from CMB and Lyman-α comes from the
small scale suppression of the density fluctuation that has
been caused before the last scattering of photons, when the
neutrino energy was around 100 eV. Our constraint from
IceCube-170922A is applied for a neutrino energy of
290 TeV.

A. Model of simple power law

As the scattering cross section could be energy depen-
dent, we explore simple power-law forms of the energy
dependence with n ¼ 0, 2, 4 as

σðEνÞ ¼ σ0

!
Eν

1 GeV

"
n
; ð6Þ

where σ0 is the cross section normalized at the neutrino
energy at Eν ¼ 1 GeV. In Fig. 1, we show the constraints
on the scattering cross section for different energy depend-
ence with n ¼ 0, 2, 4. For each case, we find the upper
bound on σ0 as

σ0=Mdm ≲ 10−33 cm2=GeV for n ¼ 0;

σ0=Mdm ≲ 6.3 × 10−34 cm2=GeV for n ¼ 2;

σ0=Mdm ≲ 7.5 × 10−45 cm2=GeV for n ¼ 4: ð7Þ

B. Model of complex scalar DM mediated by a fermion

For complex scalar DM with a fermionic mediator, the
interaction Lagrangian will be

Lint ¼ −gχN̄νL þ H:c:; ð8Þ

where g is the coupling for the Yukawa interaction between
complex darkmatter χ, fermionNR, and left-handed neutrino
νL. In this case, the mass of DM needs to be smaller than that
of the fermion for stable DM. The scattering cross section

has nontrivial dependence on the masses and neutrino
energy. The cross section scales as σ ∝ E2

ν for Eν ≲Mdm,
σ ∝ Eν for Mdm ≲ Eν ≲m2

N=ð2MdmÞ, and σ ∝ E−1
ν for

Eν ≳m2
N=ð2MdmÞ.

In Fig. 2, we show the scattering cross section versus
neutrino energy for this model [13]. Here, we fixedMdm ¼
1 keV and used mN ¼ 10 keV, 1 MeV, and 1 GeV, and
show the behavior of the cross section with the biggest
coupling that satisfies the experimental bounds in Table I.
In Fig. 3 (Left), we show the contour plot in the

(Mdm;MN) plane which touches the constraint Lyman-α
(Red) or IceCube (Blue) for given couplings g ¼ 0.1, 1, and
4π. In the green region DM is heavier than the fermion
and thus is not stable. For a given coupling, in the upper

TABLE I. Upper bound on the neutrino-DM scattering cross
section from different experiments. In the first column, we
specified the corresponding neutrino energy for which each
experimental constraint is applied.

Neutrino energy σ=Mdm½cm2=GeV& Exp. [Ref.]

∼100 eV 6 × 10−31 CMB [13–15]
∼100 eV 10−33 Lyman-α [11]
10 MeV 10−22 SN1987A [9]
290 TeV 5.1 × 10−23 IceCube-170922A [1]

FIG. 1. Upper bound on the scattering cross section for
different energy dependence of scattering of neutrinos with dark
matter. The points of “IceCube” and “Lyman-α” are the exper-
imental upper bounds on the cross section for Mdm ¼ 1 GeV at
the corresponding neutrino energy. Here, we used the power-law
form σðEνÞ ¼ σ0ð Eν

1 GeVÞ
n, with index n ¼ 0, 2, 4 for dotted,

dashed, and solid lines, respectively.

FIG. 2. The scattering cross section versus neutrino energy for
the model of complex scalar DM with a fermion mediation [13].
Here, we fixed Mdm ¼ 1 keV and used mN ¼ 10 keV, 1 MeV,
and 1 GeV, and show the biggest cross section that satisfies the
experimental bounds.
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III. UPPER BOUND ON THE NEUTRINO-DM
INTERACTION AT DIFFERENT ENERGIES

The present bound on the scattering cross section
between neutrinos and DM is summarized in Table I.
The constraint from CMB and Lyman-α comes from the
small scale suppression of the density fluctuation that has
been caused before the last scattering of photons, when the
neutrino energy was around 100 eV. Our constraint from
IceCube-170922A is applied for a neutrino energy of
290 TeV.

A. Model of simple power law

As the scattering cross section could be energy depen-
dent, we explore simple power-law forms of the energy
dependence with n ¼ 0, 2, 4 as

σðEνÞ ¼ σ0

!
Eν

1 GeV

"
n
; ð6Þ

where σ0 is the cross section normalized at the neutrino
energy at Eν ¼ 1 GeV. In Fig. 1, we show the constraints
on the scattering cross section for different energy depend-
ence with n ¼ 0, 2, 4. For each case, we find the upper
bound on σ0 as

σ0=Mdm ≲ 10−33 cm2=GeV for n ¼ 0;

σ0=Mdm ≲ 6.3 × 10−34 cm2=GeV for n ¼ 2;

σ0=Mdm ≲ 7.5 × 10−45 cm2=GeV for n ¼ 4: ð7Þ

B. Model of complex scalar DM mediated by a fermion

For complex scalar DM with a fermionic mediator, the
interaction Lagrangian will be

Lint ¼ −gχN̄νL þ H:c:; ð8Þ

where g is the coupling for the Yukawa interaction between
complex darkmatter χ, fermionNR, and left-handed neutrino
νL. In this case, the mass of DM needs to be smaller than that
of the fermion for stable DM. The scattering cross section

has nontrivial dependence on the masses and neutrino
energy. The cross section scales as σ ∝ E2

ν for Eν ≲Mdm,
σ ∝ Eν for Mdm ≲ Eν ≲m2

N=ð2MdmÞ, and σ ∝ E−1
ν for

Eν ≳m2
N=ð2MdmÞ.

In Fig. 2, we show the scattering cross section versus
neutrino energy for this model [13]. Here, we fixedMdm ¼
1 keV and used mN ¼ 10 keV, 1 MeV, and 1 GeV, and
show the behavior of the cross section with the biggest
coupling that satisfies the experimental bounds in Table I.
In Fig. 3 (Left), we show the contour plot in the

(Mdm;MN) plane which touches the constraint Lyman-α
(Red) or IceCube (Blue) for given couplings g ¼ 0.1, 1, and
4π. In the green region DM is heavier than the fermion
and thus is not stable. For a given coupling, in the upper

TABLE I. Upper bound on the neutrino-DM scattering cross
section from different experiments. In the first column, we
specified the corresponding neutrino energy for which each
experimental constraint is applied.

Neutrino energy σ=Mdm½cm2=GeV& Exp. [Ref.]

∼100 eV 6 × 10−31 CMB [13–15]
∼100 eV 10−33 Lyman-α [11]
10 MeV 10−22 SN1987A [9]
290 TeV 5.1 × 10−23 IceCube-170922A [1]

FIG. 1. Upper bound on the scattering cross section for
different energy dependence of scattering of neutrinos with dark
matter. The points of “IceCube” and “Lyman-α” are the exper-
imental upper bounds on the cross section for Mdm ¼ 1 GeV at
the corresponding neutrino energy. Here, we used the power-law
form σðEνÞ ¼ σ0ð Eν

1 GeVÞ
n, with index n ¼ 0, 2, 4 for dotted,

dashed, and solid lines, respectively.

FIG. 2. The scattering cross section versus neutrino energy for
the model of complex scalar DM with a fermion mediation [13].
Here, we fixed Mdm ¼ 1 keV and used mN ¼ 10 keV, 1 MeV,
and 1 GeV, and show the biggest cross section that satisfies the
experimental bounds.
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III. UPPER BOUND ON THE NEUTRINO-DM
INTERACTION AT DIFFERENT ENERGIES

The present bound on the scattering cross section
between neutrinos and DM is summarized in Table I.
The constraint from CMB and Lyman-α comes from the
small scale suppression of the density fluctuation that has
been caused before the last scattering of photons, when the
neutrino energy was around 100 eV. Our constraint from
IceCube-170922A is applied for a neutrino energy of
290 TeV.

A. Model of simple power law

As the scattering cross section could be energy depen-
dent, we explore simple power-law forms of the energy
dependence with n ¼ 0, 2, 4 as

σðEνÞ ¼ σ0

!
Eν

1 GeV

"
n
; ð6Þ

where σ0 is the cross section normalized at the neutrino
energy at Eν ¼ 1 GeV. In Fig. 1, we show the constraints
on the scattering cross section for different energy depend-
ence with n ¼ 0, 2, 4. For each case, we find the upper
bound on σ0 as

σ0=Mdm ≲ 10−33 cm2=GeV for n ¼ 0;

σ0=Mdm ≲ 6.3 × 10−34 cm2=GeV for n ¼ 2;

σ0=Mdm ≲ 7.5 × 10−45 cm2=GeV for n ¼ 4: ð7Þ

B. Model of complex scalar DM mediated by a fermion

For complex scalar DM with a fermionic mediator, the
interaction Lagrangian will be

Lint ¼ −gχN̄νL þ H:c:; ð8Þ

where g is the coupling for the Yukawa interaction between
complex darkmatter χ, fermionNR, and left-handed neutrino
νL. In this case, the mass of DM needs to be smaller than that
of the fermion for stable DM. The scattering cross section

has nontrivial dependence on the masses and neutrino
energy. The cross section scales as σ ∝ E2

ν for Eν ≲Mdm,
σ ∝ Eν for Mdm ≲ Eν ≲m2

N=ð2MdmÞ, and σ ∝ E−1
ν for

Eν ≳m2
N=ð2MdmÞ.

In Fig. 2, we show the scattering cross section versus
neutrino energy for this model [13]. Here, we fixedMdm ¼
1 keV and used mN ¼ 10 keV, 1 MeV, and 1 GeV, and
show the behavior of the cross section with the biggest
coupling that satisfies the experimental bounds in Table I.
In Fig. 3 (Left), we show the contour plot in the

(Mdm;MN) plane which touches the constraint Lyman-α
(Red) or IceCube (Blue) for given couplings g ¼ 0.1, 1, and
4π. In the green region DM is heavier than the fermion
and thus is not stable. For a given coupling, in the upper

TABLE I. Upper bound on the neutrino-DM scattering cross
section from different experiments. In the first column, we
specified the corresponding neutrino energy for which each
experimental constraint is applied.

Neutrino energy σ=Mdm½cm2=GeV& Exp. [Ref.]

∼100 eV 6 × 10−31 CMB [13–15]
∼100 eV 10−33 Lyman-α [11]
10 MeV 10−22 SN1987A [9]
290 TeV 5.1 × 10−23 IceCube-170922A [1]

FIG. 1. Upper bound on the scattering cross section for
different energy dependence of scattering of neutrinos with dark
matter. The points of “IceCube” and “Lyman-α” are the exper-
imental upper bounds on the cross section for Mdm ¼ 1 GeV at
the corresponding neutrino energy. Here, we used the power-law
form σðEνÞ ¼ σ0ð Eν

1 GeVÞ
n, with index n ¼ 0, 2, 4 for dotted,

dashed, and solid lines, respectively.

FIG. 2. The scattering cross section versus neutrino energy for
the model of complex scalar DM with a fermion mediation [13].
Here, we fixed Mdm ¼ 1 keV and used mN ¼ 10 keV, 1 MeV,
and 1 GeV, and show the biggest cross section that satisfies the
experimental bounds.
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III. UPPER BOUND ON THE NEUTRINO-DM
INTERACTION AT DIFFERENT ENERGIES

The present bound on the scattering cross section
between neutrinos and DM is summarized in Table I.
The constraint from CMB and Lyman-α comes from the
small scale suppression of the density fluctuation that has
been caused before the last scattering of photons, when the
neutrino energy was around 100 eV. Our constraint from
IceCube-170922A is applied for a neutrino energy of
290 TeV.

A. Model of simple power law

As the scattering cross section could be energy depen-
dent, we explore simple power-law forms of the energy
dependence with n ¼ 0, 2, 4 as

σðEνÞ ¼ σ0

!
Eν

1 GeV

"
n
; ð6Þ

where σ0 is the cross section normalized at the neutrino
energy at Eν ¼ 1 GeV. In Fig. 1, we show the constraints
on the scattering cross section for different energy depend-
ence with n ¼ 0, 2, 4. For each case, we find the upper
bound on σ0 as

σ0=Mdm ≲ 10−33 cm2=GeV for n ¼ 0;

σ0=Mdm ≲ 6.3 × 10−34 cm2=GeV for n ¼ 2;

σ0=Mdm ≲ 7.5 × 10−45 cm2=GeV for n ¼ 4: ð7Þ

B. Model of complex scalar DM mediated by a fermion

For complex scalar DM with a fermionic mediator, the
interaction Lagrangian will be

Lint ¼ −gχN̄νL þ H:c:; ð8Þ

where g is the coupling for the Yukawa interaction between
complex darkmatter χ, fermionNR, and left-handed neutrino
νL. In this case, the mass of DM needs to be smaller than that
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energy. The cross section scales as σ ∝ E2

ν for Eν ≲Mdm,
σ ∝ Eν for Mdm ≲ Eν ≲m2

N=ð2MdmÞ, and σ ∝ E−1
ν for

Eν ≳m2
N=ð2MdmÞ.

In Fig. 2, we show the scattering cross section versus
neutrino energy for this model [13]. Here, we fixedMdm ¼
1 keV and used mN ¼ 10 keV, 1 MeV, and 1 GeV, and
show the behavior of the cross section with the biggest
coupling that satisfies the experimental bounds in Table I.
In Fig. 3 (Left), we show the contour plot in the

(Mdm;MN) plane which touches the constraint Lyman-α
(Red) or IceCube (Blue) for given couplings g ¼ 0.1, 1, and
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and thus is not stable. For a given coupling, in the upper
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form σðEνÞ ¼ σ0ð Eν

1 GeVÞ
n, with index n ¼ 0, 2, 4 for dotted,

dashed, and solid lines, respectively.

FIG. 2. The scattering cross section versus neutrino energy for
the model of complex scalar DM with a fermion mediation [13].
Here, we fixed Mdm ¼ 1 keV and used mN ¼ 10 keV, 1 MeV,
and 1 GeV, and show the biggest cross section that satisfies the
experimental bounds.
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III. UPPER BOUND ON THE NEUTRINO-DM
INTERACTION AT DIFFERENT ENERGIES
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IceCube-170922A is applied for a neutrino energy of
290 TeV.
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1 GeV
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n
; ð6Þ
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Neutrino energy �/Mdm[ cm2/GeV] Exp. [Ref.]

⇠ 100 eV 6⇥ 10�31 CMB [12, 13]

⇠ 100 eV 10�33 Lyman-↵ [10]

10 MeV 10�22 SN1987A [8]

290 TeV 10�22 IceCube-170922A [1]

TABLE I: Upper bound on the neutrino-DM scattering cross
section from di↵erent experiments. In the first column, we
specified the corresponding neutrino energy for that each ex-
perimental constraint is applied.

This is the first known distance of the high energy neu-

trino.

If the neutrinos interact with dark matter, the neutri-

nos can undergo dissipation during the propagation and

may not arrive at Earth. The dissipation depends on the

scattering cross section and the number density of dark

matter along the path of the neutrino and the suppression

factor is given by exp(�
R
n�ds). When the integration

in the exponent
R
n�ds is much bigger than 1, the neu-

trino flux is exponentially suppressed and they cannot

arrive at the Earth and we cannot observe the neutrino

source.

Since the number density of dark matter may changes

with propagation, we can approximate the suppression

factor as one from the cosmological dark matter and the

other from dark matter in our Milky Way

Z

path
�n(x)dl = n0�L+

Z

los
�ngal(x)dl,

=
�

Mdm

✓
⇢0L+

Z

los
⇢gal(x)dl

◆
.

(1)

Here L is the distance form the source of neutrino to the

Earth and n0 and ndm(x) are the DM number density

in the large scale Universe and in the Milky Way. In

the second line, we used the relation between DM en-

ergy density and DM mass, ⇢dm = ndmMdm, to convert

the number density to energy density. We assume that

the cosmological DM density, ⇢0 ' 1.3⇥ 10
�6

GeV/ cm3
,

which is averaged as constant and does not change along

the path. However the DM density in our Milky Way

is position dependent and we assume the NFW profile

given by

⇢gal(x) =
⇢s

r
rs

⇣
1 +

r
rs

⌘2 , (2)

where ⇢s = 0.184GeV/ cm3
, rs = 24.42 kpc with ⇢� =

0.3GeV/ cm3
, and r is the distance from the Galactic

center.

For the neutrinos from IceCube-170922A with the dis-

tance L = 1421Mpc, we find that the cosmological sup-

pression factor is

⇢0L ' 5.7⇥ 10
21

GeV/ cm2. (3)
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FIG. 1: The upper bound on the scattering cross section for
di↵erent energy dependence of scattering of neutrinos with
dark matter. Those points of ”Ice-Cube” and ”Lyman-↵”
are the experimental upper bound on the cross section for
Mdm = 1GeV at the corresponding neutrino energy. Here
we used the power-law form �(E⌫) = �0

�
E⌫

1GeV

�n
, with index

n = 0, 2, 4 for dotted, dashed, and solid lines respectively.

For the suppression due to the DM interaction in the

Milky Way, we need to consider the direction of the neu-

trino source and integrate the number density along the

path of the neutrinos. We find that the suppression fac-

tor is

Z

los
⇢gal(x)dl ' 3.8⇥ 10

22
GeV/ cm2. (4)

For this calculation we use the direction of the IceCube-

170922A in the right ascension (RA) 77.42+0.95
�0.65 and decli-

nation (Dec) +5.72+0.50
�0.30 and converted it to the Galactic

coordinate used in ⇢dm of the Milky Way halo. We find

that this result does not depend on the DM halo profile,

since the direction to the IceCube-170922A is outward of

the Milky Way from the Earth.

Incidentally both contribution from cosmological DM

and Milky Way DM are very comparable, since the small

cosmological DM density is compensated by the long

distance. The observation of the high energy neutrino

IceCube-170922A implies that the neutrino flux did not

have much suppression during its propagation. This en-

ables us to find the precise upper bound on the interac-

tion of neutrino with dark matter. Considering that the

suppresion is not bigger than 99% of the original flux, we

require
R
�ndl . 2.3. Using Eq. (4) and Eq. (5), we can

find the upper bound on the scattering cross section as

�

Mdm
.
✓
⇢0L+

Z

los
⇢gal(x)dl

◆�1

' 5.3⇥ 10
�23

cm
2/GeV at E⌫ = 290TeV.

(5)

Here we considered that the scattering cross section does

not change during the propagation.

Considering the flavor distribution of IceCube-

170922A, what can we obtain?
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Constraining dark matter-neutrino interactions with IceCube-170922A

Ki-Young Choi,1, ∗ Jongkuk Kim,1, † and Carsten Rott1, ‡

1Department of Physics, BK21 Physics Research Division,
Institute of Basic Science, Sungkyunkwan University, 2066,
Seobu-ro, Jangan-gu, Suwon-si, Gyeong Gi-do, 16419 Korea

Astrophysical neutrinos travel long distances from their sources to the Earth traversing dark
matter halos of clusters of galaxies and that of our own Milky Way. The interaction of neutrinos
with dark matter may affect the flux of neutrinos. The recent multi-messenger observation of a high
energy neutrino, IceCube-170922A, can give a robust upper bound σ/Mdm ! 5.1× 10−23 cm2/GeV
on the interaction between neutrino and dark matter at a neutrino energy of 290TeV allowing 90%
suppression. Combining the constraints from CMB and LSS at different neutrino energies, we can
constrain models of dark matter-neutrino interactions.

PACS numbers:

Introduction. Since neutrinos interact only weakly
with matter they can propagate cosmological distances
without attenuation and are considered to be ideal mes-
senger particles to uncover the mysteries of distant astro-
physical objects. The recent discovery of a very high en-
ergy neutrino, IceCube-170922A, was followed by multi-
messenger observations including gamma-ray, X-ray, op-
tical, and radio. Through these accompanying obser-
vations, the source of this 290 TeV neutrino could be
identified as a flaring blazar located at a distance of
1421 Mpc [1].

New interactions of neutrinos with matter in the Uni-
verse may affect the propagation of neutrinos by reducing
the flux or changing neutrino flavors [2, 3]. The non-
diagonal or non-universal matter potential generated by
new interactions modify the neutrino oscillation behav-
ior and could result in deviation from the present ex-
pectations. Strong constraints can be obtained on non-
standard interactions from atmospheric data [4], at the
production, propagation and detection [5], and from neu-
trino experiments [6].

Neutrinos could have interactions with dark matter
and observations of distant sources are ideal to probe
such processes. Dark matter composes 26% of the mass-
energy content of the present Universe and spreads all
over the Universe, with more localization near galaxies
and clusters of galaxies. Even though the simplest cosmo-
logical ΛCDM model assumes only gravitationally inter-
acting dark matter, many models of particles physics pre-
dict non-gravitational interactions of dark matter with
standard model particles as well as self interaction be-
tween dark matter [7].

The interaction of neutrinos with dark matter, denoted
DM, has been considered in cosmology and neutrino ob-
servations. Before the last scattering of CMB, the inter-
actions of DM beyond gravity leads to a suppression of

∗Electronic address: kiyoungchoi@skku.edu
†Electronic address: jongkukkim@skku.edu
‡Electronic address: rott@skku.edu

the primordial density fluctuations, and thus erase the
small scale structures and suppress the CMB spectrum
at small scales [8–14].
In the present Universe, the interaction of neutrinos

with DM can dissipate neutrinos and hence suppress the
flux of neutrinos at Earth. This attenuation once was
considered to explain the suppression of high-energy neu-
trino flux [15]. This suppression also can be used to con-
strain the interaction of neutrinos and DM, especially for
ultralight scalar dark matter [15, 16].
Arguelles et al. [17] considered the present-day interac-

tions between high-energy cosmic neutrinos and the DM
halo of the Milky Way. By taking the isotropic distri-
bution of 53 high-energy neutrinos they could constrain
DM-neutrino interactions, since the attenuation of the
neutrino flux depends on the direction of the source and
lead to the energy-dependent anisotropy.
Pandey et al. [18] instead considered the significant

flux suppression of high-energy astrophysical neutrinos
due to the interactions with dark matter. They allowed
1% suppression by just assuming the traveling distance of
neutrino as 200 Mpc and the cosmological DM density.
With other collider search limits, they studied several
effective operators for the interaction.
For a long-range interaction about the astrophysical

size, the matter effects are integrated over the interac-
tion size and may affect neutrino flavor oscillations. The
neutrino flavor distribution at Earth [19] can constrain
the lepton-number symmetries [20–25].
In this letter, we consider the recent observation of

the high energy neutrino, IceCube-170922A, to obtain
a robust bound on the interaction of neutrinos with
DM at high energy and combine our result with other
bounds at different energies. As a specific example, we
use a model of scalar DM with a fermion mediation.

Multi-messenger high energy neutrino: IceCube-
170922A. A 290 TeV muon neutrino observed on
September 22, 2017 and publicized via alert, IceCube-
170922A, is the first high energy neutrino whose ori-
gin can be identified with high confidence. Its source,
the γ-ray blazar TXS 0506+056, located at redshift
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and matter-radiation equality epoch. If the light degrees of freedom such as DM and X particles
are in the chemical thermal equilibrium in those epoch, it will contribute to the dark radiation
and gives a factor 2 enhancement and inconsistent. Thus we require that the DM or X are
thermally decoupled during this epoch.

For light particles, the Boltzmann equation for the number density of DM is dominated by
the decay and inverse decay terms,

ṅDM + 3HnDM =nX�X!DM+⌫ � nDMn⌫�DM+⌫!X . (9)

For our model,

�X!DM+⌫ '
g
2
mX

32⇡
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We require that

3HnDM > nX�X!DM+⌫ , (11)

at T ⇠ 1MeV and below, with nX = nDM = neq. We find that
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and matter-radiation equality epoch. If the light degrees of freedom such as DM and X particles
are in the chemical thermal equilibrium in those epoch, it will contribute to the dark radiation
and gives a factor 2 enhancement and inconsistent. Thus we require that the DM or X are
thermally decoupled during this epoch.

For light particles, the Boltzmann equation for the number density of DM is dominated by
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ṅDM + 3HnDM =nX�X!DM+⌫ � nDMn⌫�DM+⌫!X . (9)

For our model,

�X!DM+⌫ '
g
2
mX

32⇡
. (10)

We require that

3HnDM > nX�X!DM+⌫ , (11)

at T ⇠ 1MeV and below, with nX = nDM = neq. We find that

H =
⇡
p
g⇤

p
90MP

T
2
> �X!DM+⌫ '

g
2
mX

32⇡
. (12)

g ⌧
100

MPmX
(1MeV)2 ' 10�10 eV

✓
1 eV

mX

◆
. (13)

2.3 Coherent oscillating scalar as DM

3

Preliminary

Cosmological/astrophysical constraints
on DMANO model

If we do calculate explicitly,

V⌫ =

Z
d
3
k

(2⇡)3
1

2|k0|
[✓(k0)fdm(k

0
,~k) + ✓(�k

0)fdm(�k
0
,�~k)]V⌫(~p, k

0
,~k). (28)

where the DM distribution on Earth is [53, 54]

fdm(~v, t) = fgal(~v + ~vsun + ~vE(t)), (29)

with

~vsun = (0, 220, 0) + (11, 12, 7) km/ sec,
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Neutrino energy �/Mdm[ cm2
/GeV] Exp. [Ref.]

⇠ 100 eV 6⇥ 10�31 CMB [6, 7, 8]
⇠ 100 eV 10�33 Lyman-↵ [4]
10 MeV 10�22 SN1987A [2]
290 TeV 5.1⇥ 10�23 IceCube-170922A [1]

Table 1: Upper bound on the neutrino-DM scattering cross section from di↵erent experiments.
In the first column, we specified the corresponding neutrino energy for which each experimental
constraint is applied.
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Figure 1: Upper bound on the scattering cross section for di↵erent energy dependence of
scattering of neutrinos with dark matter. The blue line is the scattering cross section which is
marginally avoid the constraints.

2 Constraints

2.1 DM-neutrino elastic scattering cross section

The elastic scattering cross section between DM and neutrino are constrained by CMB, LSS,
and neutrino di↵usion, which is applicable for di↵erent energy. We list the some of them in
Table 1 and in Fig. 1. As an example, we show the elastic scattering cross section of one
parameter set in Fig. 1:

Mdm ⇠ 10�14 eV, mX ⇠ 1.4⇥ 10�4 eV, � ⇠ g
2
⇠ 3⇥ 10�26

. (7)

In Fig. 2, we show the allowed region from those constraints on the parameter space of (Mdm, g).
On the purple line, the DMANO with massless neutrino is realized. The red shaded region is
disallowed since E

peak
⌫ > 1MeV. Therefore to avoid constraints from the elastic scattering we

require that

Mdm < 10�13 eV, g < 10�12
,mX < 10�4 eV. (8)

2.2 Ne↵

The dar radiation, the additional neutral relativistic degrees of freedom decoupled from the
thermal background like neutrinos, is constrained to be smaller than around 1 between BBN

2
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
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⌫,⌫̄ '

�
(T )

2

⇢DM

mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME
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⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:
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E
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by
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m
4
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. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,
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2
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. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential
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Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V
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↵� by
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SM , we get the standard NSI form:
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by

V
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2
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m
4
X � 4m2
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. (14)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '
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2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential
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Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V
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SM , we get the standard NSI form:
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by
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FIG. 3: The schematic plot for the shape of the medium po-
tential for di↵erent regimes of mDM and Epeak

⌫ . In the small
boxes, we show the absolute value of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted vertical line denotes the reference neutrino en-
ergy scale Eref

⌫ in a certain experiment of interest.

distribution (✏ = 0) as the asymmetric medium distin-
quishes neutrinos (uL) and anti-neutrinos (uR) as shown
in (9).

Eq. (15) tells us that the medium (DM) potentials are
given by

V
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⌫,⌫̄ '

�
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mDM

±✏m
2
X � 2mDME⌫

m
4
X � 4m2

DME2
⌫

. (16)

This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators. No-
tice that the case considered in [21] 1 should correspond
to the limit mX ! 0 in our formulation with ✏ = 0.
Like the medium e↵ect to the mass matrix, the medium
potentials for neutrinos and anti-neutrinos are the same
for a symmetric medium, and receive opposite contribu-
tions from the asymmetry (✏ 6= 0). This violation of
CPT symmetry due to the environmental matter e↵ect
needs to be distinguished from the theory with CPT vi-
olation [28–32].

The configurations of the medium potential (16) are
presented in the small boxes of Fig. 3. One can con-
sider four di↵erent regions depending on whether E

peak
⌫

defined by

E
peak
⌫ =

m
2
X

2mDM
, (17)

1 The sign of the anti-neutrino potential was opposite to ours. But
the authors agreed with our result in a private communication.

is larger or smaller than the reference neutrino energy
E

ref
⌫ and also whether the medium potential at high en-

ergy is larger or smaller than �m
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/2E⌫ , that is,

m
2
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, or m

2
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2|�m2|
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In the region 1 and 2, the medium potential is sub-
dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is in
the range of 1 MeV –100 GeV, there would appear a high
distortion in various standard neutrino oscillation data
and thus it is strongly disfavored. In region 4, there is
no signals at low energy data, however the future exper-
iments of neutrino oscillation at high energy can probe
this region. The boundary of the regions 1 and 3 (the
dashed line) with E

peak
⌫ ⌧ 1MeV is of particular inter-

est as the medium potential mimics the SM mass term
and can explain the neutrino oscillation data even with
massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential
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Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [33–36], which is applicable to the case 2 or
4 in Fig. 3. Considering a rough bound of |"| . 0.01, we
find the allowed region of mDM :
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An independent bound comes from the medium mass
dressed by ⌃1/⌃̄1. Requiring the correction is less than
about 1%, we get
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Given specific value of � and ✏, the stronger limit is to
be taken.
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by
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This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
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/2E⌫ ,

that is,
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In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m
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Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
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taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes
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mixing explaining the observed neutrino oscillations for
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the experimental data can be fitted by the couplings
given by
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FIG. 3: The schematic plot for the shape of the medium
potential for di↵erent regimes of (mX ,mDM ). Red line: the
points where the resonance peak (change of slope) is located
at a given energy E⌫ . Dashed line: the points where the
medium potential and �m2/2E⌫ are the same. In the small
boxes, we show the configuration of the medium potential
with respect to the neutrino energy. The solid (dashed) red
line is for asymmetric (symmetric) distribution of DM. For
comparison, �m2/2E⌫ is shown by the black solid line. The
black dotted verticle line denotes the neutrino energy scale in
a certain experiment of interest.

the medium (DM) potentials are given by
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This formula is applicable to the all three scenarios with
di↵erent candidates of dark matter and mediators.

Let us remark that the meduim mass matrix M̃ is sym-
metric only for the symmetric dark matter distribution
(✏ = 0) as the asymmetric medium distinquishes neutri-
nos and anti-neutrinos. Likewise, the medium potentials
for neutrinos and anti-neutrinos are the same for sym-
metric dark matter, and receive opposite contributions
from the asymmetry. This violation of CPT symmetry
due to the environmental matter e↵ect needs to be dis-
tinguished from the theory with CPT violation [28–32].

The configurations of the medium potential (14) are
presented in Fig. 3, It has a resonance peak at

E
peak
⌫ =

m
2
X

2mDM
, (15)

depending on which and other model parameters one
can consider four di↵erent regimes compared with the
standard neutrino oscillation parameter �m

2
/2E⌫ with

the neutrino energy E⌫ of interest. On the plane of
(mX ,mDM ), the vertical red line denotes the points
where the peak energy appears. In the RHS (LHS) of
the redline, the peak occurs at higher (lower) energy.
The horizontal dashed line denotes where the medium

potential at high energy is the same order as �m
2
/2E⌫ ,

that is,

m
2
DM '

�⇢DM

2|�m2|
. (16)

In the region above (below) the dashed line, the potential
correction is sub-dominant (dominant) to the �m

2
/2E⌫

at higher energy than the peak.
In the region 1 and 2, the medium potential is sub-

dominant and may give small modification to the stan-
dard oscillation, or a peculiar feature can show up at the
energy of the peak. In the region 3 and 4, if Epeak

⌫ is
in the range of 1 MeV –100 GeV, there would appear a
high distortion in various standard neutrino oscillation
data and thus it is strongly disfavored. In region 4, there
is no signals at low energy data, however the future ex-
periments of neutrino oscillation at high energy can probe
this region [33–36]. The boundary of the regions 1 and
3 (the dashed line) with E

peak
⌫ ⌧ 1MeV is of particular

interest as the medium potential mimics the SM mass
term and can explain the neutrino oscillation data even
with massless neutrinos.
More specifically, when |✏|m

2
X � 2mDME⌫ , we get the

matter potential

V
DM
⌫,⌫̄ ' ±✏

�
(T )

4

⇢DM

m
2
DME

peak
⌫

. (17)

Given the masses as chosen above, the conventional
bounds on non-standard interactions (NSI) can be ap-
plied to each component of ✏�(T ). Normalizing V

DM
↵� by

V
SM , we get the standard NSI form:

"↵� ⇡ 0.09�↵�✏

✓
20meV

mDM

◆2 ✓100GeV

E
peak
⌫

◆⇣
⇢DM

0.3GeV cm�3

⌘
,

(18)

taking Ne ⇡ 1.3⇥1024/ cm3 for the earth mantle density.
The values of " are constrained to be smaller than around
0.1 or 0.01 [37–40]
As noted before, in the case of m2

X ⌧ 2mDME⌫ , the
medium potential becomes

V
DM
⌫,⌫̄ '

�
(T )

2

⇢DM/m
2
DM

2E⌫
, (19)

⇡
3⇥ 10�3eV2

2E⌫
�
(T )

✓
20meV

mDM

◆2

,

which behaves same as the standard neutrino masses and
mixing explaining the observed neutrino oscillations for
mX ⌧ 200eV

p
(mDM/20meV)(E⌫/1MeV). Therefore,

the experimental data can be fitted by the couplings
given by

� =
2m2

DM

⇢DM
U

⇤diag(�m
2)UT (20)

'

0

@
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,
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FIG. 5: The same plot as Fig. 3 but with Epeak
⌫ = 1TeV: the

solid and dashed lines are for �µµ 6= 0 with x ! 10, y = 0,
and �µµ = �µ⌧ 6= 0 with x ! 10, y ! 10 at high energy limit,
respectively.

the medium e↵ect. As can be seen in the plot, the high
energy oscillation parameters are controlled by the flavor
structure of the medium potential.

Conclusion and Discussion: We provided a systematic
study of neutrino oscillations in a medium of dark matter
which generalizes the SM matter e↵ect. A general for-
mula is derived to describe the medium e↵ect in various
scenarios of dark matter and its mediator to neutrinos.
Apparent CPT violation arises from the asymmetric dis-
tribution of DM which distinguishes neutrinos and anti-
neutrinos. Thus precise determination of the neutrino
oscillation parameters may be able to reveal the pres-
ence of the DM asymmetry. The medium potential has

a resonance peak at E⌫ = m
2
X/2mDM which should be

below 1 MeV or above 100 GeV not to spoil the standard
oscillation picture.
In the former case, the medium potential mimics the

standard oscillation parameters and thus solar and atmo-
spheric neutrino data might be accounted for even with
massless neutrinos. This “dark matter assisted neutrino
oscillation” could be a good alternative to the standard
oscillation paradigm if the absolute neutrino mass mea-
sured in neutrinoless beta decay, single beta decay or
cosmological observations turns out to be unexpectedly
small [45]. In the latter case, ultra-high energy neutrino
oscillations are described by the symmetric medium ef-
fect, and thus could be totally di↵erent from the standard
neutrino oscillations which have been confirmed by vari-
ous experiments at lower energies.
Our formulation brings many interesting questions:

what will be the implications to the standard neutrino
oscillations; how our medium parameters are constrained
by various cosmological and astrophysical observations;
and how a low-energy scenario for the dark sector cou-
pling to neutrinos can arise from a UV-completed theory
[46].
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mula is derived to describe the medium e↵ect in various
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tribution of DM which distinguishes neutrinos and anti-
neutrinos. Thus precise determination of the neutrino
oscillation parameters may be able to reveal the pres-
ence of the DM asymmetry. The medium potential has

a resonance peak at E⌫ = m
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X/2mDM which should be

below 1 MeV or above 100 GeV not to spoil the standard
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In the former case, the medium potential mimics the

standard oscillation parameters and thus solar and atmo-
spheric neutrino data might be accounted for even with
massless neutrinos. This “dark matter assisted neutrino
oscillation” could be a good alternative to the standard
oscillation paradigm if the absolute neutrino mass mea-
sured in neutrinoless beta decay, single beta decay or
cosmological observations turns out to be unexpectedly
small [45]. In the latter case, ultra-high energy neutrino
oscillations are described by the symmetric medium ef-
fect, and thus could be totally di↵erent from the standard
neutrino oscillations which have been confirmed by vari-
ous experiments at lower energies.
Our formulation brings many interesting questions:

what will be the implications to the standard neutrino
oscillations; how our medium parameters are constrained
by various cosmological and astrophysical observations;
and how a low-energy scenario for the dark sector cou-
pling to neutrinos can arise from a UV-completed theory
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the medium e↵ect. As can be seen in the plot, the high
energy oscillation parameters are controlled by the flavor
structure of the medium potential.

Conclusion and Discussion: We provided a systematic
study of neutrino oscillations in a medium of dark matter
which generalizes the SM matter e↵ect. A general for-
mula is derived to describe the medium e↵ect in various
scenarios of dark matter and its mediator to neutrinos.
Apparent CPT violation arises from the asymmetric dis-
tribution of DM which distinguishes neutrinos and anti-
neutrinos. Thus precise determination of the neutrino
oscillation parameters may be able to reveal the pres-
ence of the DM asymmetry. The medium potential has

a resonance peak at E⌫ = m
2
X/2mDM which should be

below 1 MeV or above 100 GeV not to spoil the standard
oscillation picture.
In the former case, the medium potential mimics the

standard oscillation parameters and thus solar and atmo-
spheric neutrino data might be accounted for even with
massless neutrinos. This “dark matter assisted neutrino
oscillation” could be a good alternative to the standard
oscillation paradigm if the absolute neutrino mass mea-
sured in neutrinoless beta decay, single beta decay or
cosmological observations turns out to be unexpectedly
small [45]. In the latter case, ultra-high energy neutrino
oscillations are described by the symmetric medium ef-
fect, and thus could be totally di↵erent from the standard
neutrino oscillations which have been confirmed by vari-
ous experiments at lower energies.
Our formulation brings many interesting questions:

what will be the implications to the standard neutrino
oscillations; how our medium parameters are constrained
by various cosmological and astrophysical observations;
and how a low-energy scenario for the dark sector cou-
pling to neutrinos can arise from a UV-completed theory
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