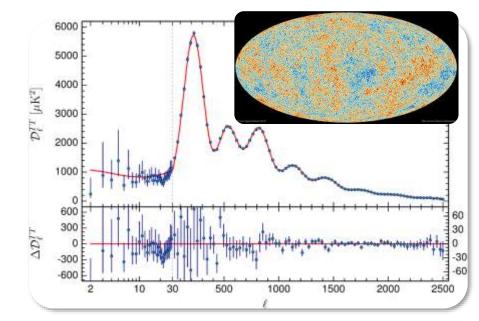
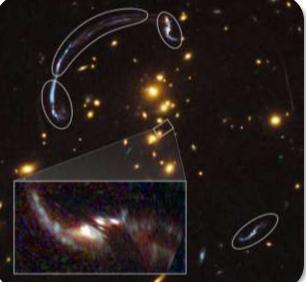

Searching for New Physics Signals from Timing Spectra @ v Experiments


with B. Dutta, D. Kim, S. Liao, S. Shin & L. Strigari [1906.10745 & work in progress]

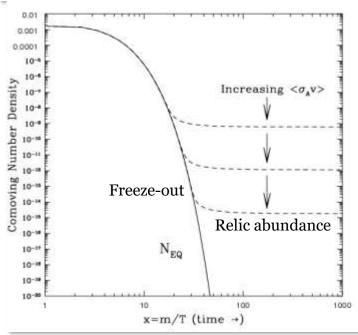


IBS-PNU Join Workshop Dec. 06 (2019)

Observational Evidence for DM

Classic Solution*: WIMP

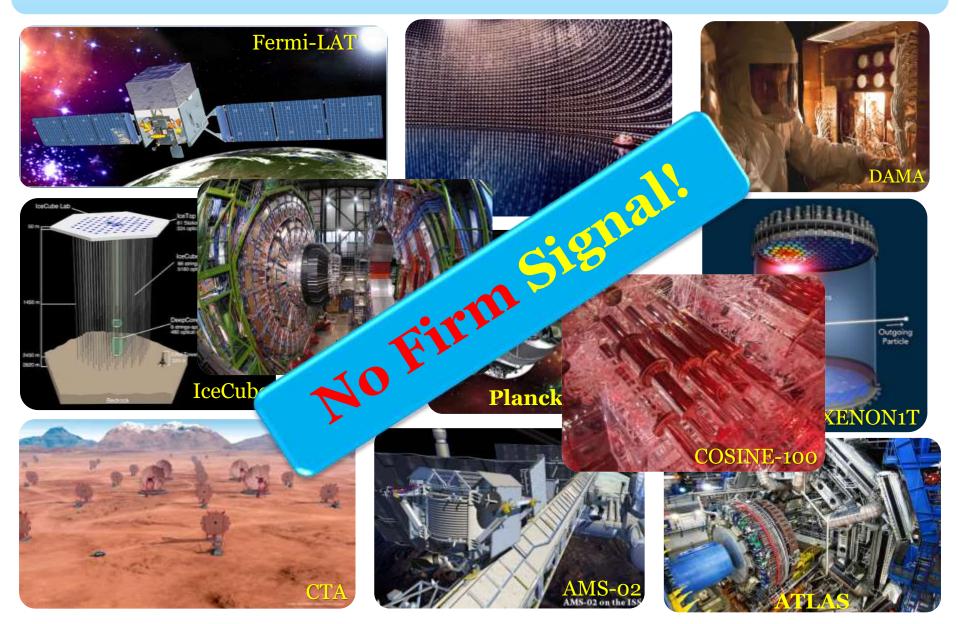
Cosmological Lower Bound on Heavy-Neutrino Masses

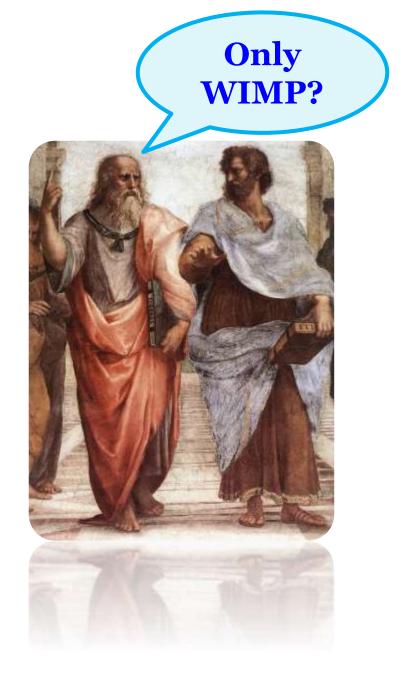

Benjamin W. Lee^(a) Fermi National Accelerator Laboratory,^(b) Batavia, Illinois 60510

and

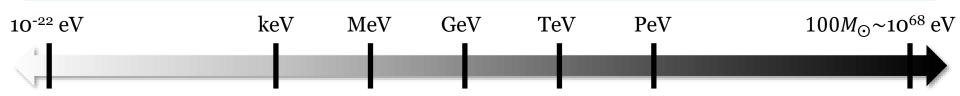
Steven Weinberg^(c) Stanford University, Physics Department, Stanford, California 94305 (Received 13 May 1977)

The present cosmic mass density of possible stable neutral heavy leptons is calculated in a standard cosmological model. In order for this density not to exceed the upper limit of 2×10^{-29} g/cm³, the lepton mass would have to be *greater* than a lower bound of the order of 2 GeV.

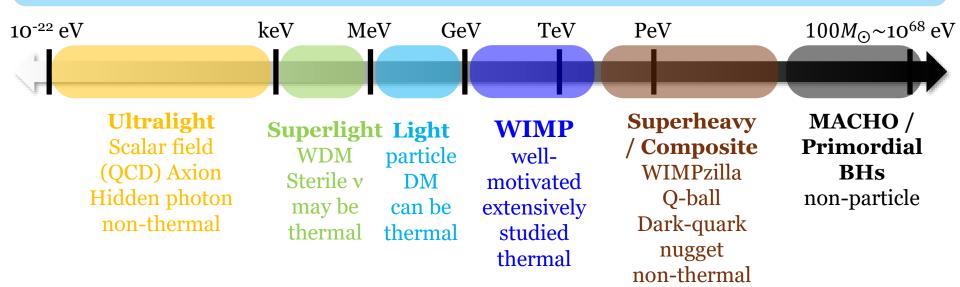



Correct thermal relic abundance:

$$\Omega h^2 \sim \frac{0.1 \, pb}{\langle \sigma v \rangle}$$
 with $\langle \sigma v \rangle \sim \frac{\alpha_X^2 m_\chi^2}{M^4}$ (*M*: dark scale/mediator)

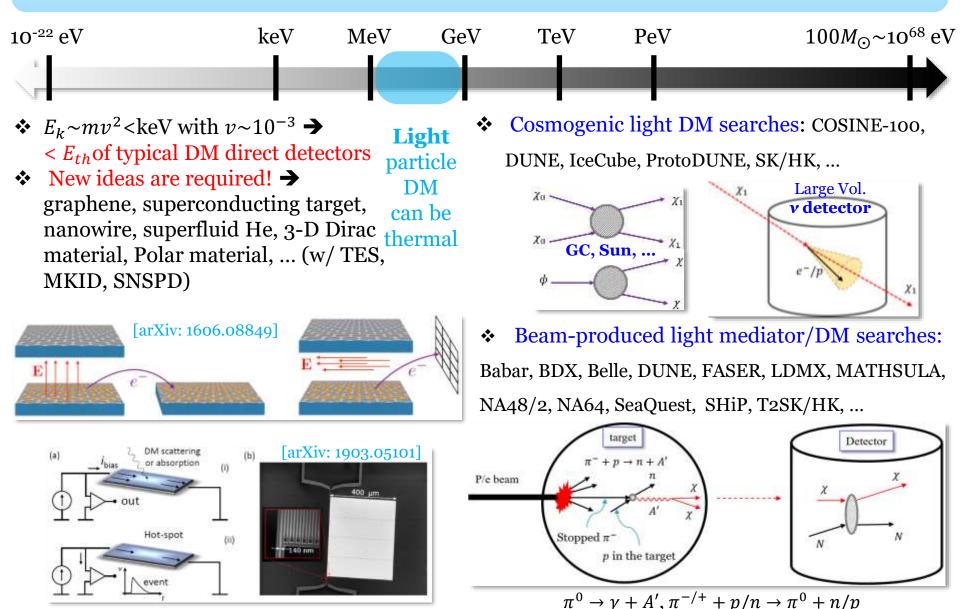

- > Weak coupling \rightarrow naturally weak scale mass:
 - \sim 1 GeV 10 TeV mass range favored
 - \rightarrow weak scale (new) physics
 - * Of course, **axion** is another classic solution.

Diverging Efforts for WIMP Searches



Very Very Wide DM Mass Range

Very Very Wide DM Mass Range



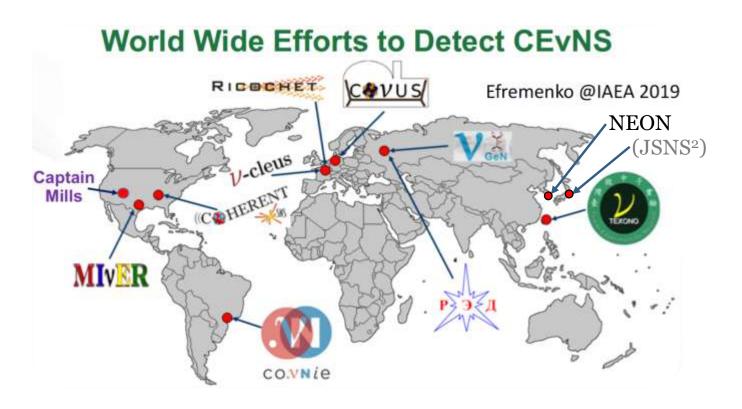
Light Dark-Sector Models

10 ⁻²² eV	keV	MeV	GeV	TeV	PeV	$100 M_{\odot} \sim 10^{68} {\rm eV}$
 ✤ For heavy media: ♦ For weak scale plants ▶ DM overproduce ₩ Weinberg limit) < M_W for freeze- ♦ Various light me 	hysics, sub-C Iction (Lee- → <u>New media</u> out or freeze-	EeV par D <u>tor</u> car in the	ght ticle M t be rmal	 ✓ assist ✓ canni ✓ co-de ✓ semi- 	ted freeze-ou ibal DM [ar] ecaying [arX	nination mechanisms: ut [arXiv:1112.4491] Xiv:1602.04219, 1607.03108] iv:1105.1652, 1607.03110] n [arXiv:0811.0172, 1003.5912] 2.5143]
✓ Sommerfeld	enhancement	[arXiv:081	0.0713]			

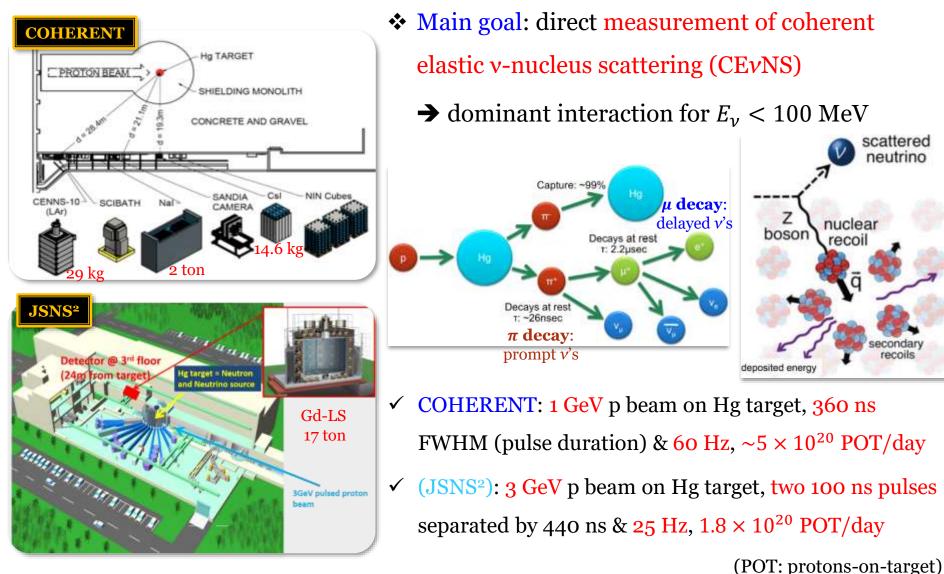
- ✓ g 2 of e/μ : ~2 3 σ discrepancy [arXiv:1806.10252]
- ✓ New v interactions for the MiniBooNE excess [arXiv:1807.09877]
- ✓ Solutions of Yukawa coupling hierarchy prob. [arXiv:1905.02692]
- Various light DM-involving phenomenology has been studied:
 - ✓ Boosted DM scenarios [arXiv:1405.7370, 1411.6632, 1612.06867]
 - ✓ Fast-moving DM via DM-induced nucleon decays [arXiv:1312.0011]
 - ✓ Energetic cosmic-ray induced relativistic DM [arXiv:1810.10543]
 - ✓ Ultra high E cosmic-ray phenomena [arXiv:1407.3280, 1905.13223]

Light Dark-Sector Searches

Key Points of Our Work!

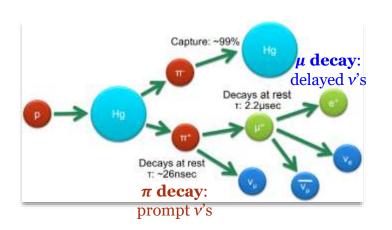

> A novel strategy to search for new physics signals:

we can **efficiently isolate** new physics signals **from the SM** *v* **BGs** using **timing spectra** at (certain kinds of) neutrino experiments, "CE*v*NS".


- > Application: the **measured CsI data** of the COHERENT experiment
- > Result: 2.4 3σ excess!
 - → The excess can be explained by light DM arising from dark photon decay.

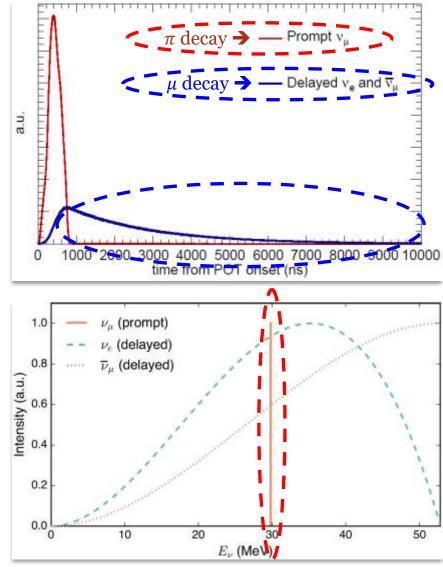
CEvNS Experiments

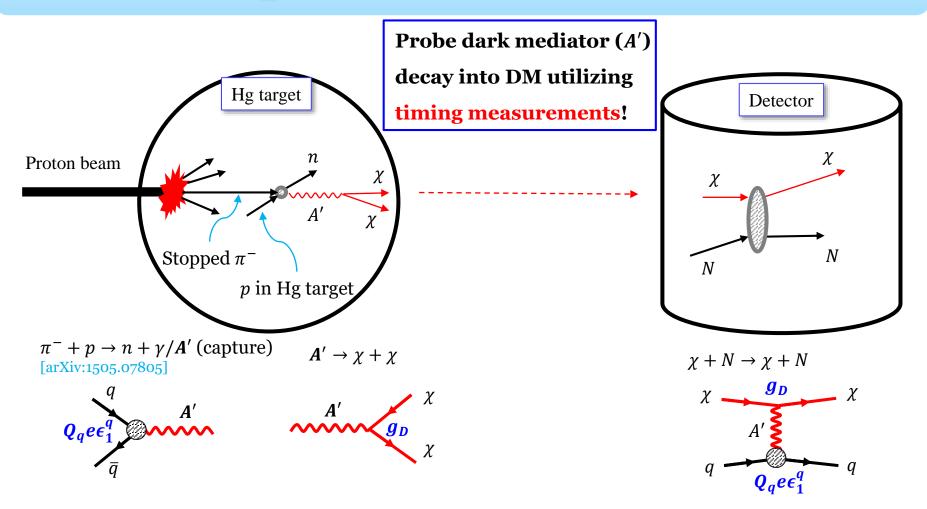
- Various current/future Coherent Elastic v-Nucleus Scattering (CEvNS) experiments
 - ✓ Beam-induced *v*: CCM, COHERENT, (JSNS²), ...
 - ✓ Reactor *v*: CONNIE, CONUS, MINER, NEON, Nu-Cleus, *v* GEN, RED-100, Ricochet, TEXONO, ...



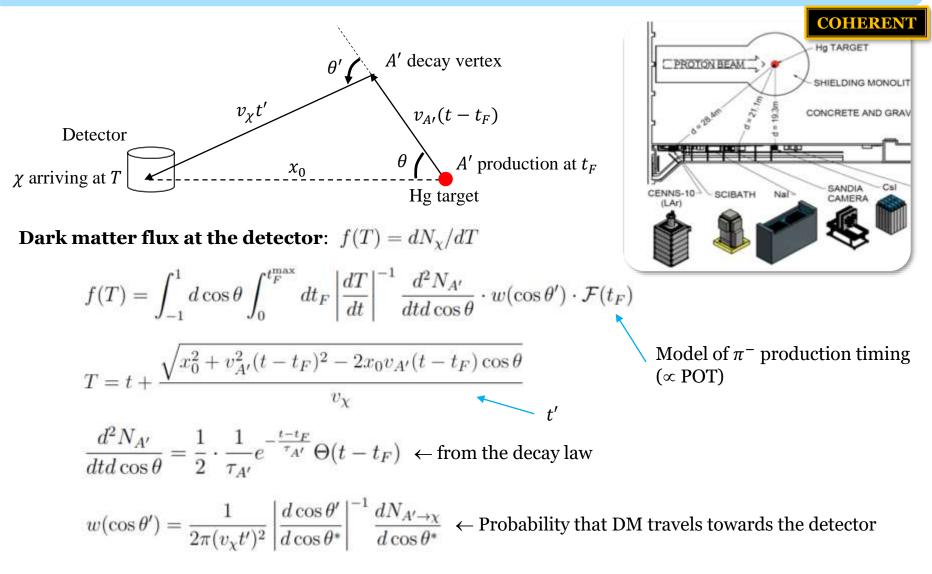
CEvNS Experiments: Beam-induced

COHERENT [arXiv:1803.09183] & JSNS2 [arXiv:1705.08629]


CEvNS Experiments: *E*/*T*-Spectra of *v*


✓ Delayed *v*'s: mostly $T > ~1 \mu s$ &

 $E_{\nu} = 0 - 53 \text{ MeV} \text{ (mostly} > ~30 \text{ MeV} \text{)}$


COHERENT [arXiv:1803.09183 & 1804.09459]

CEvNS Experiments: DM Searches

★ Other (subdominant) production processes: $\pi^0 \rightarrow \gamma + \gamma/A'$ (via conventional direct π^0 production), $\pi^{-/+} + p/n \rightarrow \pi^0 + n/p \& \pi^0 \rightarrow \gamma + \gamma/A'$ (charge exchange)

Timing Spectra of DM Events

Cf.) Search strategy with timing information at the LHC [arXiv:1805.05957]

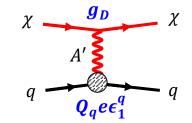
Timing Spectra: Dark Photon Scenario

- \diamond Various possibilities for a dark photon A'
- ✓ Relativistic (solid) vs. Non-relativistic $\tau = 1 \mu s, m_{A'} = 75 \text{MeV}$ 60000 $= 0.1 \mu s, m_{A'} = 75 \text{MeV}$ (dotted) $\leq 0.001 \mu s, m_{A'} = 75 \text{MeV}$ 50000 $= 1\mu s, m_{A'} = 138 MeV$ 40000 Events $\tau = 0.1 \mu s, m_{A'} = 138 \text{MeV}$ ✓ Short-lived vs. Long-lived $\tau \le 0.001 \mu s, m_{A'} = 138 MeV$ 30000 **Relativistic:** 20000 10000 DM flux maximized for $\tau < a$ few $\times 10$ ns $m_{\chi} = 5 \text{ MeV}$ 3 5 \succ Non-relativistic: 2 $T[\mu s]$

only for $m_{A'} \approx 138 \text{ MeV} (\approx m_{\pi^-} + m_p - m_n)$, DM flux maximized for $\tau < a$ few ns

 \succ m_{χ} : 5 MeV is assumed,

 \geq


but OK for any values $< m_{A_I}/2$

DM Scattering vs Production Parameters

✤ DM scatters off nucleus

$$\frac{d\sigma}{dE_r} = \frac{e^2 \epsilon_q^2 g_D^2 Z^2 \cdot |F(2m_N E_r)|^2}{4\pi p_\chi^2 (2m_N E_r + M'^2)^2} \left\{ 2E_\chi^2 m_N \left(1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right\}$$

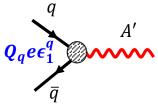
- In general, the scattering could be mediated by a different particle,
 - e.g., gauged $U(1)_B$ gauge boson:

DM Scattering vs Production Parameters

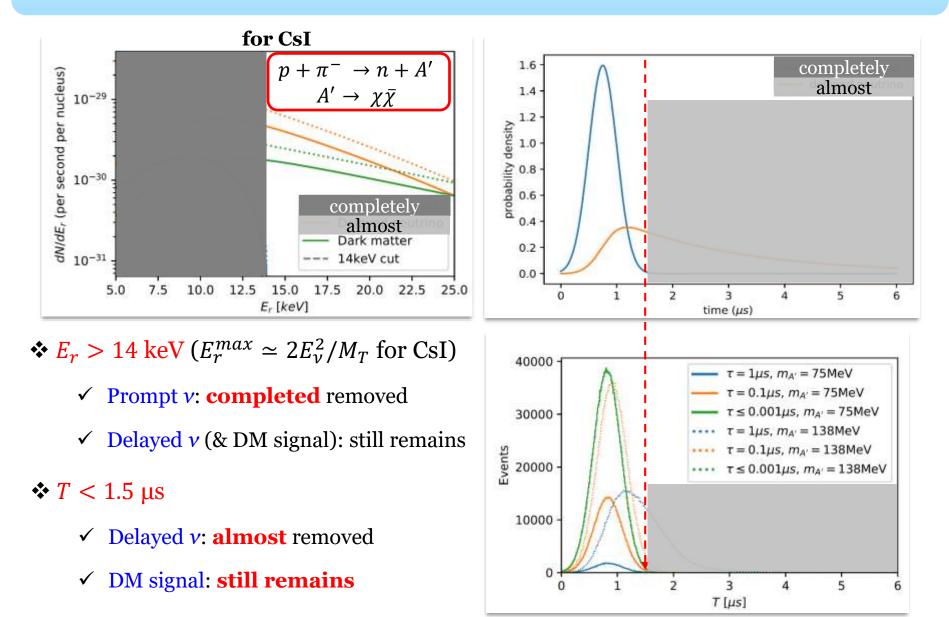
DM scatters off nucleus

$$\frac{d\sigma}{dE_r} = \frac{e^2 \epsilon_q^2 g_D^2 Z^2 \cdot |F(2m_N E_r)|^2}{4\pi p_\chi^2 (2m_N E_r + M'^2)^2} \left\{ 2E_\chi^2 m_N \left(1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right\}$$

✤ In general, the scattering could be mediated by a different particle, e.g., gauged U(1)_B gauge boson: x - - - x


$$A' \to V', m_{A'} \to M', Q_q e \epsilon_1^q \to Q'_q e \epsilon_2^q, g_D = e \epsilon_1^D \to e \epsilon_2^D$$

$$\begin{array}{c} \chi & \underbrace{e\epsilon_2^p} & \chi \\ V' & \downarrow & \chi \\ q & \underbrace{V' & \downarrow} & q \\ Q'_q e\epsilon_2^q & q \end{array}$$


D

Dark photon A' production to DM scattering can be described by two variables.

$$\epsilon \equiv \epsilon_1^q \epsilon_2^q \epsilon_2^D \sqrt{\text{BR}_{A' \to \chi \chi}}$$
 and M'

Proposed Search Strategy: E & T-cuts

Application to Existing Data

- ♦ Data released by COHERENT: CsI detector → 14.57 kg×308.1 days [arXiv:1804.09459]
- Analysis scheme
 - ✓ Fix the average rms radius of the neutron distribution to $R_n = 4.7$ fm
 - $\checkmark~$ 14 keV $< E_r <$ 28 keV & T < 1.5 μs

 $\begin{vmatrix} F_N^{\text{Helm}}(q^2) = \frac{3j_1(qR_0)}{qR_0} \exp(-\frac{q^2s^2}{2}) \\ R_n^2 = 3R_0^2/5 + 3s^2 \end{vmatrix}$

97 : total events

- 49 : classified as steady-state (SS) backgrounds
- -19: identified as delayed (SM) neutrino events (due to $E_r \& T$ -cuts)
- 0 : identified as prompt (SM) neutrino events (due to E_r -cut)
- 3 : beam-related neutron (BRN) backgrounds

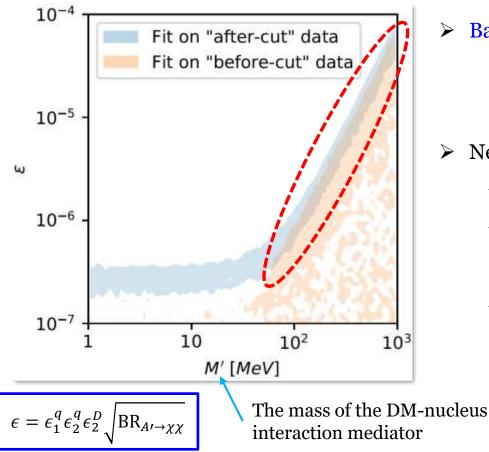
26 : "Excess!!"

Significance $(R_n = 4.7 \text{ fm})$: 2.4 σ Significance $(R_n = 5.5 \text{ fm})$: 3.0 σ Significance $(R_n = 5.5 \text{ fm})$: 3.0 σ [arXiv:1801.05546]

DM Search Efforts by COHERENT

Sensitivity of the COHERENT Experiment to Accelerator-Produced Dark Matter COHERENT Collaboration [arXiv:1911.06422]

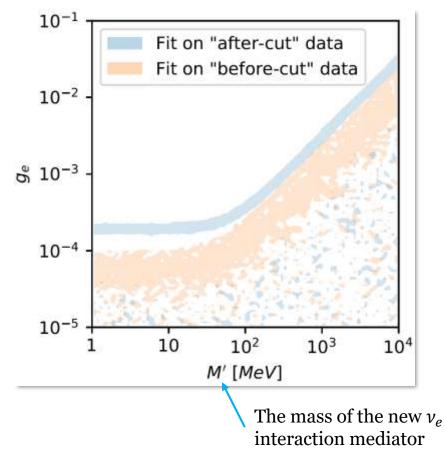
The COHERENT experiment is well poised to test sub-GeV dark matter models using low-energy recoil detectors sensitive to coherent elastic neutrino-nucleus scattering (CEvNS) in the π -DAR neutrino beam produced by the Spallation Neutron Source. We show how a planned 750-kg liquid argon scintillation detector would place leading limits on scalar light dark matter models, over two orders of magnitude of dark matter mass, for dark matter particles produced through vector and leptophobic portals in the absence of other effects beyond the standard model. The characteristic timing structure of a π -DAR beam allows a unique opportunity for constraining systematic uncertainties on the standard model background in a time window where signal is not expected, enhancing expected sensitivity. Additionally, we discuss future prospects, further increasing the discovery potential of CEvNS detectors. Such methods would test the calculated thermal dark matter abundance for all couplings $\alpha' \leq 1$ within the vector portal model over an order of magnitude of dark matter masses.


model. A recent analysis of released COHERENT CsI data [13] hints at a roughly 2σ excess in the region where dark matter scatters would be expected, suggesting this is an exciting area to pursue.

Our Work!

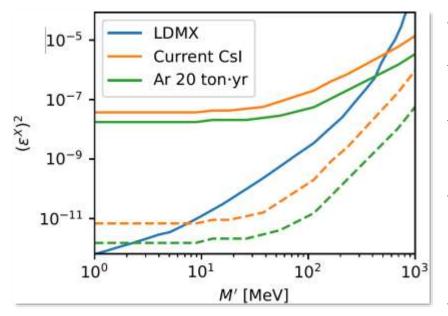
[arXiv: 1906.10745]

Excess? DM Interpretation


Fits to the data after the cuts vs. before cuts (=the full data)

- ➢ Baseline model point for the figure in the left: $\tau = 1 \text{ ns}, m_{A'} = 75 \text{ MeV}, m_{\chi} = 5 \text{ MeV}$
- Nevertheless, the figure holds for
 - $\checkmark \ \tau \lesssim 4 \ {\rm ns}, m_{A\prime} < 138 \ {\rm MeV}$
 - ✓ $\tau \leq 30$ ns, $m_{A'} \cong 138$ MeV (non-relativistic dark photon case)
 - ✓ Any $m_{\chi} < m_{A'}/2$

Excess? Alternative - NSI Interpretation


✤ An example alternative new physics possibility: non-standard interaction (NSI) of v

- ✓ Benchmark case: non-zero coupling g_e, the NSI in the v_e neutral-current interaction (along with a new mediator).
 - No overlapping regions, especially the prompt timing bin (i.e., *T* < 1.5 μs) doesn't show a good fit. NSI affects the overall normalization of neutrino flux!
- ✓ The situation becomes even worse with $g_{\mu} \neq 0$, since it affects not only the delayed but the prompt spectrum.

No Excess? Constraining Parameters

* Assuming no excess is observed, we can constrain parameter space.

$$\checkmark \quad \alpha_D \equiv \frac{(e\epsilon_2^q)^2}{4\pi} = 0.5$$

- \checkmark *M*': the mass of the DM-nucleus interaction mediator
- ✓ Solid orange and green lines: single mediator scenario, i.e., $\epsilon^X = \epsilon_1^q = \epsilon_2^q$
- ✓ Dashed orange and green lines: multi-mediator scenario. One of them is fixed to 10⁻² (e.g., gauged U(1)_B gauge boson)
- ✓ For LDMX, ϵ^e in [arXiv:1808.05219] identified as ϵ^X .
- ✓ Sensitivity reach is already better than DUNE, compared to the result in [arXiv:1903.10505].

Conclusion

- No firm signal observation at conventional DM searches motivates us to look into possibilities other than WIMP, e.g., light dark sector.
- A novel strategy to search for new physics signals: A combination of *T* & *E*-cuts can efficiently eliminate SM *v* BGs at neutrino experiments, e.g., CEvNS.
- > Application: the **measured CsI data** of the COHERENT experiment
- > Result: 2.4 3σ excess!
 - → The excess can be explained by DM arising from dark photon decay.
- Sensitivities of COHERENT: already better than DUNE & comparable to LDMX

