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Why light quark mass is so small?
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Motivation
• Proton	mass	=	947MeV	vs.	  
Bare	quark	(u,d)	=2-4	MeV	 	Quark	mass	is	less	than	1% 	

• Confinement	and	deconfiment	phase	transition	almost	
overlapping.	Why	two	completely	different	concepts	
gives	related	phase	diagram?		

•

→
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• Regge	trajectory	:	ßDynamics	of	QCD	
• Chiral	symmetry	need	mq=0:	Initial	condition	

However,	chiral	transition	
	 	 	 	 	 	 	~	confinement/dc	transition		
		
• Is	there	any	relation?	

				Chiral	symmetry	and	the	confinement			



Story	line

1.	Take	holographic	QCD	in	2+1.			
2.	Show	that	if	 ,	we	have	a	Regge	traj.		

3.	Show	that	if	 ,	we	have	non-linear	traj.	

4.	Since	low	E	QCD	dynamics	has	Regge	traj,	having	 
non-zero	quark	mass	is	not	consistent	with	low	E	
QCD.	That	is,	QCD	vac	forbid	the	light	quark	mass.  
 
 

mq = 0
mq ≠ 0



Idea:	consider		the	constituent	quark	mass	

We	could	take	a	hard	wall	condition	
Then	hard	wall	=dual	to	a	Bag	! 
—>	BUT,		will	get	 .	
So,	we	consider	soft	wall	instead,	 
using	a	scalar	 :	  
 
If	 	cost	a	lot	in	the	central	region, 
it	works!	
	

m2
n = n2τ

Φ

Φ



For	any	conserved		U(1),	if	there	is	charged	field	

											

The	scalar	in	AdS4	

	at	the	core!z → ∞



Idea:	consider	constituent	quark	mass	

Spin	1/2



àOpen	string	with	tension	

àZero	tension	in	zero	condensation	 		 	 	 	 	 	 	 	
	 	

Linear	spectrum	
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where Dµ = rµ � iqAµ is the covariant derivative. The metric is

ds2 = (dz2 + ⌘µ⌫dxudx⌫)/z2, with ⌘00 = �1. (3)
Bulk mass m2

� is given in terms of the conformal dimension of
the dual operator: m2

� = �(��d). We will fix it such that � = 2,
so that m2

� = �2 in d = 2+1 and m2
� = �4 for for d = 3+1. For

the latter case, �q̄q = 2 is realized in 4 at the lower boundary of
conformal window of Nf /Nc [6]. In the rest of this paper, we
consider 2+1 case only. The field equation then gives

� = M0z + Mz2, in AdS4, (4)

which is an exact solution of the scalar field equation in the
probe limit. In [7], the case M0 = 0 case was considered. In
this paper, we consider general M0 , 0 case where source is
also included. The Maxwell equation then is given by

r
µFµ⌫ = J⌫ (5)

and for the real solution of �, the current is simplified to the
London equation similarly to the superconductivity,

Jµ = �2Aµ. (6)

For the transverse components with ~k · ~A = 0, it can be rewritten
as Schrödinger equation [8] via  = Ax

z(d�3)/2 :

� 00n + V n = En n, (7)
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z2 , where p = (d � 2)/2, (8)

and En = !2
� k2
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n. Notice that for d = 3,

V = (Mz + M0)2. (9)

The M0 = 0 case was analyzed previously in [9, 7] with the
result m2

n = M2(4n + 3) for vector mesons.

2.2. Fermion with scalar interaction in holography
For the baryon spectrum, we consider following fermion ac-

tion in AdS space.

S  =

Z
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p
�gi ̄

�
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where Dµ = @µ +
1
4!abµ�

ab. In this paper, we consider only
d = 3. The equation of motion of (10) is given by

�
�µDµ � m � �

�
 = 0, (11)

which can be written as a Schrödinger form Eq.(7) with

V(z) =
m(m � 1) + �2

z2 =
m(m � 1)

z2 + (Mz + M0)2. (12)

For M0 = 0, the above equations can be shown to have a linear
spectrum [7], for example for the fermion case, En = m2

n �

2M(m+ 1
2 ). We interpret m2

n as the constituent quark mass inside
a Hadron in confining phase and it was shown that [7]

m2
n = 4M2(n + m + 1/2). (13)

For M0 , 0, we will show in the next section, the above equa-
tions of motion will lead to a type of Heun’s equation.

3. Heun’s equation and regularity condition

We first consider the confluent Heun’s equation[10, 11, 12]
in the context of radial Schrödinger equation
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where V is the potential given by
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Factoring out the behaviour near r = 0 by R(r) = rL f (r), above
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where a0 = a/c1/2, b0 = b/c3/2 and E = E/c, which is a bi-
confluent Heun (BCH) equation whose canonical form is

⇢
d2y
d⇢2 +

⇣
µ⇢2 + "⇢ + ⌫

⌘ dy
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µ, ", ⌫, ⌦ and ! are parameters. It has a regular singularity at
the origin and an irregular singularity at the infinity of rank 2
[10, 11, 12]. Substituting y(⇢) =

P
1

n=0 dn⇢n into (18), we obtain
the following recurrence relation:

dn+1 = An dn + Bn dn�1 for n � 1, (19)
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and d1 = A0d0 for n = 0. Comparing (17), (18), the former is a
special case of the latter with µ = �2, " = �b0, ⌫ = 2L + 2 and
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Unless y(⇢) is a polynomial, R(r) is divergent as ⇢! 1. There-
fore we need to impose regularity conditions by which the so-
lution is normalizable. Through (19), we can see that a series
expansion becomes a polynomial of degree N if we impose two
conditions

BN+1 = dN+1 = 0 where N 2 N0 (22)

Eq. (22) is su�cient to give dN+2 = dN+3 = · · · = 0 successively
and the solution to eq.(17) becomes a polynomial of order N,

yN(⇢) =
NX

i=0

di⇢
i. (23)
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2nd	look:	Fermion	on	top	of	the	Scalar	condensation	
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then gives

� = M0z +Mz2, in AdS4, (3)

� = M0z
2 ln z�1 +Mz2, in AdS5. (4)

which are exact solutions of the scalar field equations in
the probe limit. Since we look for dynamically generated
gap, we set the source M0 = 0 so that � = Mz2.

Now the Maxwell equation is given by

r
µFµ⌫ = J⌫ (5)

and for the real solution of �, the current is simplified to
the London equation similarly to the superconductivity,

Jµ = q2�2Aµ. (6)

For the transverse components with ~k · ~A = 0, it can be
rewritten as Schrödinger equation [7] via  = Ax

z(d�3)/2 :

� 00

n + V n = En n, (7)

V =
p2 � 1

4

z2
+ q2M2z2 (8)

En = qM(4n+ 2p+ 2), (9)

with p = (d � 2)/2, and En = !2
� k2 ⌘ m2

n. The
corresponding wave functions are given by

 n(z) = Ne�
1
2 qMz2

zp+
1
2Lp

n(qMz2), (10)

where N =
q

2n!(qM)p+1

(n+p)! . The mass spectrum is

m2
n = 4qM(n+ d/4). (11)

For tensor with rank s, there are a few possible models
according to the permutation symmetry of the index and
gauge symmetry of the theory. As we have shown in the
appendix, some of them has spectrum

m2
n,s = 4qM(n+ s� 1 +

d

4
). (12)

For d = 4, these results coincide with those of [7], where
vector meson spectrum was discussed using the dilaton.
Notice that here we did not use the dilaton. The rea-
son for such coincidence is just because the equations of
motion of two models turns out to be the same when
they are expressed in Schrödinger form in spite of the
di↵erence in the degree of freedom. However, this is be-
cause we use the scalar solution in the probe limit at zero
temperature. When we consider the e↵ect of the finite
temperature or back reaction or chemical potential, the
di↵erence will be manifest. For d = 3, the 1/z2-potential
is accidentally cancelled, but the spectrum is still given
by above formula because we need to impose the bound-
ary condition Aµ = 0 at the boundary of AdS.

For general spin s, we need to choose the mass term of
the higher spin fields properly to get eq.(12). That spin
dependent mass is necessary for the spectral formula has
been known from the original paper [7] but has not been

so clear. Notice that in string theory the action encodes
all the spin simultaneously while in field theory the action
for each spin should be considered one by one. Now how
to add up such spin dependent field theories to describe
the holographic image of the bulk fundamental string?
While the kinetic terms are canonical, the mass term and
interaction term of spin s excitation are ambiguous. We
suggest that reproducing the linear spectrum can be used
as a guiding principle to determine them especially if our
purpose is to describe a theory whose spectrum follows
Regge trajectory. Then statement is that, for any spin of
given symmetry, there exist a choice of mass term such
that the resulting spectrum is given by eq.(12).
Notice that the spectrum is linear in both spin s and

vibrational quantum number n and therefore the model
has a spectrum of open string whose string tension is

T = 1/(2⇡↵0), with ↵0 = 1/(4qM). (13)

In M ! 0 limit, that is, in the tensionless limit, the
whole tower of string spectrum is reduced to that of a
massless particle.
Although we considered the only abelian theory, the

same spectrum will be obtained for nonabelian theories.
This is because holographic spectrum analysis depends
only on the quadratic part of the field variation’s ac-
tion. Therefore, when we consider SU(N) and we perturb
around 0 background gauge field, the non-linear terms
induced by the non-abelian-ness does not a↵ect the spec-
trum. Therefore Non-linear chiral dynamics in hologra-
phy will also give linear spectrum. That is, our spectrum
is the same as that of the 2+1 dimensional version of
EKSS model [6] if boundary condition is the same. In
fact, the important di↵erence is soft wall boundary condi-
tion (BC) installed by scalar condensation. The authors
of [6] did not get linear spectrum because they assumed
the hard wall BC. In [7], the authors introduced softwall
by hand using the dilaton dressing which is not supported
by an equation of motion. Then in terms of the QCD,
what we did is to use the action of the hardwall model
but install the soft wall BC by scalar condensation.
So far, we have seen that the abelian Higgs model con-

sidered as the axial part of the QCD has a linear spec-
trum. In our field theory description, we have seen that
for each spin s excitation of the string in AdS, which we
called ’spin s particle in AdS’, creates a tower of linear
spectrum in the boundary.

III. TWO COMPETING ORDERS IN QCD:
SCALE AND CHIRAL SYMMETRY BREAKINGS

So far we have not considered scale symmetry break-
ing. We now consider how including it can change the
behavior of the theory. In fact, one of the important
mechanism of mass generation in the QCD is the scale
symmetry breaking. The dilaton field has been usually
considered as the dual of the gluon operator. In ref. [7] of
the softwall model, the dilaton factor e�'. In this paper,

ψ = eik.x, En = k2

If



The	Question

In [3], the value b for given N, L was determined numerically,
which can be approximately summarized by

b ⇡
8.72m2

⇣
4
7 N + L + 10

7

⌘

N2 + 1
9 N � 1

40

, (33)

which is non-linear in quantum number N or L.
At the first looking, it is rather surprising that presence of

one more parameter m changes the spectrum so much. As we
described earlier, this is because the quark mass is encoded such
that its presence changes the singularity type of the equation
of motion. Non-vanishing quark mass gives spectrum which
is inconsistent with the confinement of color which tied to the
Regge trajectory.

5.2. Holographic model
Finally we come back to the holographic theory whose equa-

tion of motion can be written as
"
�

d2

dz2 + V(z)
#

u(z) = Eu(z) (34)

where
V(z) = (M0 + Mz)2 +

m(m � 1)
z2 . (35)

where 0  z < 1 and m 2 [�1/2, 0]. If replace L ! �m
and rR(r) ! u(z) in (14), it turns to be (34). Now, comparing
(31) with (35), two equations are equivalent to each other with
correspondence

m$ M0, b/2$ M, and E2/4$ En. (36)

It is quite remarkable that two completely di↵erent ap-
proaches to the Hadron gave almost identical di↵erential equa-
tion. Even the spaces in which the di↵erential equations are
setup are di↵erent. Furthermore above mapping is not just re-
sembling but actually is a dictionary of the AdS/CFT. Indeed,
the quark mass corresponds to the source term in the bulk and
the condensation corresponds to the string tension.

Notice here also in the presence of the scalar source M0, the
resulting constituent quark masses or Hadron masses are not
consistent with the Linear spectrum tied to the color confine-
ment.

6. Conclusion

In this paper, we consider the holographic hadrons in 2+1
dimension as toy models. The spectrum follows linear con-
finement with zero quark mass, while it is highly non-linear
with finite quark mass. The origin of such non-linearity can be
traced to the di↵erence in the singularity class of equation of
motion that is made by the quark mass. For spinless quarks,
3+1 dimensional bag model of Lichtenberg et.al has the same
behavior.

Although it is still too early to say that this is an intrinsic
property of light hadrons, the agreement of models of di↵erent
category suggests that the small quark mass is tied to the con-
finement dynamics of QCD. It also suggests that the presence

of non-zero quark mass is non-trivial from the low energy point
of view, because color flux would not allow the quark mass. It
could be such that the finite quark mass is phenomena of high
energy only where neither bag model nor holography is rele-
vant. The real 3+1 dimensional physics is more subtle because
the equation of motion involve the logarithmic potential. We
want to comeback to this problem in near future.
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then gives

� = M0z +Mz2, in AdS4, (3)

� = M0z
2 ln z�1 +Mz2, in AdS5. (4)

which are exact solutions of the scalar field equations in
the probe limit. Since we look for dynamically generated
gap, we set the source M0 = 0 so that � = Mz2.

Now the Maxwell equation is given by

r
µFµ⌫ = J⌫ (5)

and for the real solution of �, the current is simplified to
the London equation similarly to the superconductivity,

Jµ = q2�2Aµ. (6)

For the transverse components with ~k · ~A = 0, it can be
rewritten as Schrödinger equation [7] via  = Ax

z(d�3)/2 :

� 00

n + V n = En n, (7)

V =
p2 � 1

4

z2
+ q2M2z2 (8)

En = qM(4n+ 2p+ 2), (9)

with p = (d � 2)/2, and En = !2
� k2 ⌘ m2

n. The
corresponding wave functions are given by

 n(z) = Ne�
1
2 qMz2

zp+
1
2Lp

n(qMz2), (10)

where N =
q

2n!(qM)p+1

(n+p)! . The mass spectrum is

m2
n = 4qM(n+ d/4). (11)

For tensor with rank s, there are a few possible models
according to the permutation symmetry of the index and
gauge symmetry of the theory. As we have shown in the
appendix, some of them has spectrum

m2
n,s = 4qM(n+ s� 1 +

d

4
). (12)

For d = 4, these results coincide with those of [7], where
vector meson spectrum was discussed using the dilaton.
Notice that here we did not use the dilaton. The rea-
son for such coincidence is just because the equations of
motion of two models turns out to be the same when
they are expressed in Schrödinger form in spite of the
di↵erence in the degree of freedom. However, this is be-
cause we use the scalar solution in the probe limit at zero
temperature. When we consider the e↵ect of the finite
temperature or back reaction or chemical potential, the
di↵erence will be manifest. For d = 3, the 1/z2-potential
is accidentally cancelled, but the spectrum is still given
by above formula because we need to impose the bound-
ary condition Aµ = 0 at the boundary of AdS.

For general spin s, we need to choose the mass term of
the higher spin fields properly to get eq.(12). That spin
dependent mass is necessary for the spectral formula has
been known from the original paper [7] but has not been

so clear. Notice that in string theory the action encodes
all the spin simultaneously while in field theory the action
for each spin should be considered one by one. Now how
to add up such spin dependent field theories to describe
the holographic image of the bulk fundamental string?
While the kinetic terms are canonical, the mass term and
interaction term of spin s excitation are ambiguous. We
suggest that reproducing the linear spectrum can be used
as a guiding principle to determine them especially if our
purpose is to describe a theory whose spectrum follows
Regge trajectory. Then statement is that, for any spin of
given symmetry, there exist a choice of mass term such
that the resulting spectrum is given by eq.(12).
Notice that the spectrum is linear in both spin s and

vibrational quantum number n and therefore the model
has a spectrum of open string whose string tension is

T = 1/(2⇡↵0), with ↵0 = 1/(4qM). (13)

In M ! 0 limit, that is, in the tensionless limit, the
whole tower of string spectrum is reduced to that of a
massless particle.
Although we considered the only abelian theory, the

same spectrum will be obtained for nonabelian theories.
This is because holographic spectrum analysis depends
only on the quadratic part of the field variation’s ac-
tion. Therefore, when we consider SU(N) and we perturb
around 0 background gauge field, the non-linear terms
induced by the non-abelian-ness does not a↵ect the spec-
trum. Therefore Non-linear chiral dynamics in hologra-
phy will also give linear spectrum. That is, our spectrum
is the same as that of the 2+1 dimensional version of
EKSS model [6] if boundary condition is the same. In
fact, the important di↵erence is soft wall boundary condi-
tion (BC) installed by scalar condensation. The authors
of [6] did not get linear spectrum because they assumed
the hard wall BC. In [7], the authors introduced softwall
by hand using the dilaton dressing which is not supported
by an equation of motion. Then in terms of the QCD,
what we did is to use the action of the hardwall model
but install the soft wall BC by scalar condensation.
So far, we have seen that the abelian Higgs model con-

sidered as the axial part of the QCD has a linear spec-
trum. In our field theory description, we have seen that
for each spin s excitation of the string in AdS, which we
called ’spin s particle in AdS’, creates a tower of linear
spectrum in the boundary.

III. TWO COMPETING ORDERS IN QCD:
SCALE AND CHIRAL SYMMETRY BREAKINGS

So far we have not considered scale symmetry break-
ing. We now consider how including it can change the
behavior of the theory. In fact, one of the important
mechanism of mass generation in the QCD is the scale
symmetry breaking. The dilaton field has been usually
considered as the dual of the gluon operator. In ref. [7] of
the softwall model, the dilaton factor e�'. In this paper,

given by

S =
Z

dd+1x
p
�g

⇣
�

1
4

F2
µ⌫ � |Dµ�|

2
� m2

�|�|
2
⌘
, (2)

where Dµ = rµ � iqAµ is the covariant derivative. The metric is

ds2 = (dz2 + ⌘µ⌫dxudx⌫)/z2, with ⌘00 = �1. (3)
Bulk mass m2

� is given in terms of the conformal dimension of
the dual operator: m2

� = �(��d). We will fix it such that � = 2,
so that m2

� = �2 in d = 2+1 and m2
� = �4 for for d = 3+1. For

the latter case, �q̄q = 2 is realized in 4 at the lower boundary of
conformal window of Nf /Nc [6]. In the rest of this paper, we
consider 2+1 case only. The field equation then gives

� = M0z + Mz2, in AdS4, (4)

which is an exact solution of the scalar field equation in the
probe limit. In [7], the case M0 = 0 case was considered. In
this paper, we consider general M0 , 0 case where source is
also included. The Maxwell equation then is given by

r
µFµ⌫ = J⌫ (5)

and for the real solution of �, the current is simplified to the
London equation similarly to the superconductivity,

Jµ = �2Aµ. (6)

For the transverse components with ~k · ~A = 0, it can be rewritten
as Schrödinger equation [8] via  = Ax

z(d�3)/2 :

� 00n + V n = En n, (7)

V =
p2
�

1
4 + |�|

2

z2 , where p = (d � 2)/2, (8)

and En = !2
� k2
⌘ m2

n. Notice that for d = 3,

V = (Mz + M0)2. (9)

The M0 = 0 case was analyzed previously in [9, 7] with the
result m2

n = M2(4n + 3) for vector mesons.

2.2. Fermion with scalar interaction in holography
For the baryon spectrum, we consider following fermion ac-

tion in AdS space.

S  =

Z
dd+1x

p
�gi ̄

�
�µDµ � m � �

�
 , (10)

where Dµ = @µ +
1
4!abµ�

ab. In this paper, we consider only
d = 3. The equation of motion of (10) is given by

�
�µDµ � m � �

�
 = 0, (11)

which can be written as a Schrödinger form Eq.(7) with

V(z) =
m(m � 1) + �2

z2 =
m(m � 1)

z2 + (Mz + M0)2. (12)

For M0 = 0, the above equations can be shown to have a linear
spectrum [7], for example for the fermion case, En = m2

n �

2M(m+ 1
2 ). We interpret m2

n as the constituent quark mass inside
a Hadron in confining phase and it was shown that [7]

m2
n = 4M2(n + m + 1/2). (13)

For M0 , 0, we will show in the next section, the above equa-
tions of motion will lead to a type of Heun’s equation.

3. Heun’s equation and regularity condition

We first consider the confluent Heun’s equation[10, 11, 12]
in the context of radial Schrödinger equation

"
�

 
1
r

d2

dr2 r
!
+ V(r)

#
R(r) = ER(r) (14)

where V is the potential given by

V(r) = c2r2 + br �
a
r
+

L(L + 1)
r2 . (15)

Factoring out the behaviour near r = 0 by R(r) = rL f (r), above
equation becomes

d2 f (r)
dr2 +

2(L + 1)
r

d f (r)
dr
+

✓
E � c2r2

� br +
a
r

◆
f (r) = 0. (16)

Finally, factoring out the behaviour near1 by
f (r) = exp

⇣
�

c
2 r2
�

b
2c r

⌘
y(r) and redefining ⇢ =

p
cr, we get

⇢
d2y
d⇢2 +

⇣
�2⇢2

� b0⇢ + 2(L + 1)
⌘ dy

d⇢

+
⇣⇣
E + b2

0/4 � (2L + 3)
⌘
⇢ + a0 � b0(L + 1)

⌘
y(⇢) = 0 (17)

where a0 = a/c1/2, b0 = b/c3/2 and E = E/c, which is a bi-
confluent Heun (BCH) equation whose canonical form is

⇢
d2y
d⇢2 +

⇣
µ⇢2 + "⇢ + ⌫

⌘ dy
d⇢
+ (⌦⇢ + "!) y = 0 (18)

µ, ", ⌫, ⌦ and ! are parameters. It has a regular singularity at
the origin and an irregular singularity at the infinity of rank 2
[10, 11, 12]. Substituting y(⇢) =

P
1

n=0 dn⇢n into (18), we obtain
the following recurrence relation:

dn+1 = An dn + Bn dn�1 for n � 1, (19)

where

An = �
"(n + !)

(n + 1)(n + ⌫)
, Bn = �

⌦ + µ(n � 1)
(n + 1)(n + ⌫)

, (20)

and d1 = A0d0 for n = 0. Comparing (17), (18), the former is a
special case of the latter with µ = �2, " = �b0, ⌫ = 2L + 2 and

! = L + 1 �
a0

b0
, ⌦ = E +

b2
0

4
� (2L + 3). (21)

Unless y(⇢) is a polynomial, R(r) is divergent as ⇢! 1. There-
fore we need to impose regularity conditions by which the so-
lution is normalizable. Through (19), we can see that a series
expansion becomes a polynomial of degree N if we impose two
conditions

BN+1 = dN+1 = 0 where N 2 N0 (22)

Eq. (22) is su�cient to give dN+2 = dN+3 = · · · = 0 successively
and the solution to eq.(17) becomes a polynomial of order N,

yN(⇢) =
NX

i=0

di⇢
i. (23)

2

the Heun’s equation, its higher singularity requests higher reg-
ularity: the three term recurrence relation is not reduced to the
two term, which in turn leads to an extra quantization of system
parameter apart from the energy eigenvalue.

4.1. Quantization of a0, b0 in the non-linear regime
In the previous section, we analized the asymptotic regime

of the potential parameter a0, b0 and learned that there are extra
quantization given by a0/b0 = L + 1 + K, for integer K  N.
Here we consider the regime where both |a0|, |b0|  O(1). If we
set a0 = 0, the allowed values of b0 are given by the crossing
points of N + 1 branches of the PN+1 = 0 with the vertical
line a0 = 0. We call such fixing b-quantization. See figure 5.
Previously we examined the solutions numerically and found
that due to the N, L dependence of b0, E is NOT linear in N.

2. For N = 1, B2 =
�⌦+2

3(2L+4) and d2 = A1d1 + B1d0 =
(A0A1 + B1)d0. Requesting B2 = d2 = 0, we get a re-
lation between a0 and b0:

(b0(L + 1) � a0)(b0(L + 2) � a0) � 4(L + 1) = 0, (23)

which defines a hyperbola in a0, b0 such that there are
always two branches because the discriminant is always
positive, D = b2

0+16(L+1) > 0: for a given b0, a0 always

has real solutions: 2a0 = b0(2L + 3) ±
q

b2
0 + 16(L + 1)

and E = 2L+5� b2
0

4 as usual. In this case, y1(⇢) = 1+d1⇢

where d1 =
⇣
�b0 ±

q
b2

0 + 16(L + 1)
⌘
/(4L + 4).

In general, dN+1 = 0 will define a polynomial equation
PN+1 = 0 for given N, L.

3. For N = 2, 3, the P3 and P4 are rather long so they
are written in the appendix. Figs. 1 is a contour plot
of P3 = 0 in a0-b0 plane. For any given a0, 3 di↵er-
ent b0’s exist. Apart from the region where a0, b0 ⇠ O(1)
the curves are actually linear. Such linearity can be con-
firmed by drawing the same figure by including asymp-
totic region as we can see in Fig. 2, where we used L = 0.
Notice that the slope of the lines are b0/a0 = 1, 1/2, 1/3.
It is also worthwhile to note that the medium curve with
asymptotic slope 1/2 pass through a0 = 0, b0 = 0. This
happens for all even integer N.
Similar story holds for N = 3 using the equation P4 = 0.
See Fig. 3 and Fig. 4, where we also used L = 0 and
the slope of the lines can be read o↵ to give b0/a0 =
1, 1/2, 1/3, 1/4.

Figure 1: Contour plot of P3 = 0 in
a0-b0 plane. Figure 2: Asymptotic view of Fig. 1

For general N, Eq. (21) gives,

EN,L = 2N + 2L + 3 � b2
0/4,

PN+1(a0, b0) = 0, (24)

and the resulting wave function is N-th order polynomial yN(⇢) =PN
i=0 di⇢i.

The first of eq.(24) comes from BN+1 = 0, or ⌦ = �µN =
2N, and the second is from dN+1 = 0, which is a (N+1)-th order
polynomial equation in a0 and b0, from which we can show that
for large enough a0, b0, following relation holds.

a0

b0
=

ãc̃
b̃
= L + 1 + K, for K = 0, 1, · · · ,N. (25)

Figure 3: Contour plot of P4 = 0 in
a0-b0 plane. Figure 4: Asymptotic view of Fig. 3

This means that for any L, there are N + 1 branches of solu-
tion satisfying eq. (24). We can interpret this as quantization
of a0 (or b0) for the given value of b0 (or a0). This is an inter-
esting consequence of the Heun’s di↵erential equation, because
for hypergeometric type, to have a regular solution, we need to
fine tune one parameter, that is, the energy. This is so called
energy eigenvalue. For the Heun’s equation, the higher singu-
larity requests higher regularity which in turn requests an extra
quantization of system parameter apart from the energy eigen-
value.

4.1. Quantization of a0, b0 in the non-linear regime
In the previous section, we analized the asymptotic regime

of the potential parameter a0, b0 and learned that there are extra
quantization given by a0/b0 = L + 1 + K, for integer K  N.
Here we consider the regime where both |a0|, |b0|  O(1). If we
set a0 = 0, the allowed values of b0 are given by the crossing
points of N + 1 branches of the PN+1 = 0 with the vertical line
a0 = 0. Previously we examined the solutions numerically and
found that due to the N, L dependence of b0, E is NOT linear in
N.

On the other hand, if we fix b0 to the value we want, say
1, the allowed values of a0 are given by the crossing points
of N + 1 branches of the PN+1 = 0 with the horizontal line
b0 = 1. In this case, E is linear in N, L and does not depend on
a quantized value of a0 as far as it is given by the fined tuned
or quantized value that depends on N, L and b0. Table 1 tells
us all possible roots of a0’s for each L when N = 4 and b0 = 1.
Similarly, Table 2 shows us all possible roots of a0’s for each L
when N = 5 and b0 = 1.

a(N=4)
00 a(N=4)

01 a(N=4)
02 a(N=4)

03 a(N=4)
04

L=0 -7.50342 -2.26852 2.5487 7.93985 14.2834
L=1 -9.22584 -2.68053 3.72372 10.4374 17.7452
L=2 -10.4722 -2.80774 4.79946 12.6207 20.8598
L=3 -11.4284 -2.78208 5.84226 14.6311 23.7371
L=4 -12.1842 -2.65493 6.8699 16.5287 26.4406

Table 1: Roots of a0 for b0 = 1, N = 4.

From the explicit calculation, we found the following pat-
tern: List N+1 a0 in the increasing order so that let a0K is K-th
a0, K = 0, 1, · · · ,N. Then the polynomial solution for the a0K
has K nodes. The number of nodes does not depend on L.
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a-quantization	
b-quantization	

Figure 5: Definition of a-(b-) quantization. It depends on whether we fix b or a.

On the other hand, if we fix b0 to the value we want, say
1, the allowed values of a0 are given by the crossing points of
N + 1 branches of the PN+1 = 0 with the horizontal line b0 = 1.
We call such fixing as a-quantization. See figure 5. In this case,
E is linear in N, L and does not depend on a quantized value of
a0 as far as it is given by the quantized value that depends on
N, L and b0. Table 1 tells us all possible roots of a0’s for each
L when N = 4 and b0 = 1. Similarly, Table 2 shows us all
possible roots of a0’s for each L when N = 5 and b0 = 1. As
you can see easily from the table, most of the quantized values
are in the linear regime where a0 ⇡ (N + L + K)b0.

a(N=4)
00 a(N=4)

01 a(N=4)
02 a(N=4)

03 a(N=4)
04

L=0 -7.50342 -2.26852 2.5487 7.93985 14.2834
L=1 -9.22584 -2.68053 3.72372 10.4374 17.7452
L=2 -10.4722 -2.80774 4.79946 12.6207 20.8598
L=3 -11.4284 -2.78208 5.84226 14.6311 23.7371
L=4 -12.1842 -2.65493 6.8699 16.5287 26.4406

Table 1: Roots of a0 for b0 = 1, N = 4.

From the explicit calculation, we found the following pattern:
List N+1 a0 in the increasing order so that let a0K is K-th a0,
K = 0, 1, · · · ,N. Then the polynomial solution for the a0K has
K nodes. The number of nodes does not depend on L.

a(N=5)
00 a(N=5)

01 a(N=5)
02 a(N=5)

03 a(N=5)
04 a(N=5)

05

L=0 -10.5701 -4.75187 0.363597 5.60184 11.6841 18.6724
L=1 -12.7643 -5.82539 0.801156 7.5262 14.7189 22.5434
L=2 -14.4605 -6.49042 1.30825 9.19107 17.3924 26.0593
L=3 -15.834 -6.93228 1.86483 10.7358 19.8467 29.319
L=4 -16.9777 -7.22567 2.45866 12.2089 22.1509 32.3849
L=5 -17.9475 -7.4102 3.08179 13.6334 24.3443 35.2982

Table 2: Every roots of a0 for b0 = 1, N = 5.

Figure 6: Polynomial y4 for each a0K ,
K = 0, · · · , 4. There are K nodes for
a0K . Here with N = 4, L = 0 and
b0 = 1.

Figure 7: Polynomials y5 for various
a03 with N = 5 & L = 0, 1, · · · , 5.
b0 = 1. There are 3 nodes in positive
⇢ region regardless of L.

Figs. 6 shows us polynomials y4 with a0K , K = 0, 1, 2, 3, 4
has K nodes in N = 4 in ⇢ > 0 regime. We fixed L = 0
and b0 = 1. Figs. 7 shows us polynomials y5 with a03 has 3
nodes in N = 5 in ⇢ > 0 regime independent of the value of
L = 0, 1, 2, 3, 4, 5. There are two nodes in the unphysical region
⇢ < 0.

5. Bag model vs Holography

In this section, we will see that two very di↵erent physics
leads to the same Heun’s equation studied in the previous sec-
tion. The first one is the bag model studied in [5, 3] and the
other is the holographic model

5.1. Quark-antiquark system with only scalar interaction
A spin-free Hamiltonian with scalar interaction for the meson

(qq̄) system satisfy the equation [3, 4, 5]
2
666664

 
m +

1
2

br
!2

+ P2
r +

L(L + 1)
r2

3
777775 R(r) =

E2

4
R(r) (29)

where we used ~p2 = P2
r +

L(L+1)
r2 with Pr = �i 1

r
@
@r r and L is the

angular momentum and b is the string tension. Introducing the
reduced radial wave function u(r) = rR(r) and arrive at

�u00 + Vu =
E2

4
u, (30)

V =

 
m +

1
2

br
!2

+
L(L + 1)

r2 . (31)

For m = 0, the spectrum was obtained in [5] and it is linear in
quantum number:

E2 = 4b(N + L + 3/2). (32)

For m , 0, b can not be an arbitrary value. It has to be de-
termined by b-quantization because a = 0 from (15) and (31).
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Heun’s	equation

constant string tension b. We will call the model simply a bag
model afterward. For m = 0, they could solve the eigenvalue
problem H2 = E2 and obtained energy eigenvalues
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the meson mass. Therefore above result is consistent with the
Regge trajectories of slope 1

4b . The purpose of this paper is to
understand what happens in the case m , 0.

3. Heun’s equation

We start from the Schroedinger type equation H2 = E2 
with H2 given by the Eq.(4), which can be considered as a non-
relativistic Shcrödinger equation of the harmonic oscillator with
extra linear potential apart from the usual quadratic potential.

Factoring out the asymptotic behaviors of wave function  
near r = 0 and r = 1 by
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which is a bi-confluent Heun (BCH) equation whose canonical
form is defined by

⇢
d2y
d⇢2 +

⇣
µ⇢2 + "⇢ + ⌫

⌘ dy
d⇢
+ (⌦⇢ + "!) y = 0 (8)

where µ, ", ⌫, ⌦ and ! are real or imaginary parameters. It has
a regular singularity at the origin and an irregular singularity at
the infinity of rank 2 [5, 6].

Substituting y(⇢) =
P1

n=0 dn⇢n into (8), we obtain the fol-
lowing recurrence relation:

dn+1 = An dn + Bn dn�1 for n � 1, (9)

where An = �
"(n + !)

(n + 1)(n + ⌫)
, Bn = �

⌦ + µ(n � 1)
(n + 1)(n + ⌫)

, (10)

and d1 = A0d0 for n = 0. Comparing (7) with (8), the former is
a special case of the latter with µ = �b, " = �2m, ⌫ = 2(L + 1),
! = L + 1 and

⌦ = E2/4 � b(L + 3/2). (11)

Unless y(⇢) is a polynomial,  is divergent as ⇢! 1.

4. Normalizable solutions for the modified BCH equation

It has been believed that we can make the wave function
normalizable whatever form is the Schroeding equation by tun-
ing the energy eigenvalue. However, what we shall meet is the

fact that we need to fine tune one more parameter apart from
the energy in order to build normalizable (polynomial) solu-
tion for the Heun equations. This is because their series expan-
sions consist of a three term recurrence relation given in Eq.(9)
even after we factored out asymptotic behavior. Notice, on the
other hand, hypergeometric-type functions gives only two term
recursive relations, in which case we can construct normaliz-
able polynomial solution by tuning the single parameter, en-
ergy. Actually, the necessary and su�cient condition for con-
structing polynomials with a single parameter is that its power
series should be reduced to the two term recurrence relation.
For the Heun equation case, we cannot reduce its recursive re-
lation to the two term case. We can build polynomials by fine
tuning two parameters, for example, b and E2.

For polynomials of (7) around r = 0, we treat m as a free
variable; consider �⌦/µ = E2/4b � (L + 3/2) to be a positive
integer; and treat b as a fixed value. Through (9), we are able to
see that a series expansion becomes a polynomial of degree N
if we impose two conditions

BN+1 = dN+1 = 0 for some N 2 N0 (12)

Eq. (12) is su�cient to give dN+2 = dN+3 = dN+4 = · · · = 0
successively and the solution to eq.(7) becomes a polynomial
of order N.

To see what is going on we follow a few low order process.
For N = 0, Eq.(12) gives B1 =

�⌦
2(2L+3) = 0 and d1 = A0d0 =

md0 = 0. If we choose d0 = 0 the whole series solution van-
ishes. Therefore there is no solution unless m = 0, in which
case the solution is reduced to that of the Hypergeometric case
with E2 = 4b(L+3/2). Since we are considering the case m , 0,
we conclude that there is no solution with radial nodal number
N = 0.

For N = 1, B2 =
�⌦+b
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to be zero, we get b = 2m2(L + 2) and E2 = 4b(L + 1 + 3/2) =
8m2(L + 2)(L + N + 3/2) with L = 0, 1. In this case, y(⇢) =P1

n=0 dn⇢n = 1 + m⇢ where d0 = 1 chosen for simplicity from
now on. Since N=0 is not allowed for m , 0, N = 1 is the case
containing the ground state.
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d0. So, the Eq.(12) gives

b = 2m2(L+2)(L+3)
4L+9 and E2 = 8m2(L+2)(L+3)(L+2+3/2)

4L+9 with L = 0, 1, 2.
Its eigenfunction is y(⇢) =

P2
n=0 dn⇢n = 1 + m⇢ + L+2

4L+9 m2⇢2.
For larger N, the energy eigenvalue is determined from BN+1 =

0, or equivalently ⌦ = �µN = bN. Eq.(11) gives

E2 = 4b
 
N + L +
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!
, (13)

with L = 0, 1, 2, · · · ,N. Allowed values of b’s are obtained
from dN+1 = 0, which are quantized. Its eigenfunction is N-th
order polynomial

yN(⇢) = 1 + m⇢ +
NX

i=2

di⇢
i. (14)
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with H2 given by the Eq.(4), which can be considered as a non-
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Whether imposing both of the equations in eq(22) is necessary
or not was studied numerically in our previous paper [3].

In general, dN+1 = 0 will define a N-th order polynomial
PN+1 in a0, b0, so that Eq. (22) gives

EN,L = 2N + 2L + 3 � b2
0/4,

PN+1(a0, b0) = 0. (24)

where the first comes from BN+1 = 0 or equivalently ⌦ =
�µN = 2N. Below we give a few lower order polynomial in
a0 and b0 which will be used in next section.
P1(a0, b0) = b0(L + 1) � a0,

P2(a0, b0) = (b0(L + 1) � a0)(b0(L + 2) � a0) � 4(L + 1),

P3(a0, b0) = (L + 1)(L + 2)(L + 3)b3
0 � (3L(L + 4) + 11)a0b2

0

+
⇣
3(L + 2)a2

0 � 4(L + 1)(4L + 9)
⌘
b0 � a3

0 + 4(4L + 5)a0,

P4(a0, b0) = (L + 1)(L + 2)(L + 3)(L + 4)b4
0 � 2(2L + 5)(L(L + 5) + 5)a0b3

0

+
⇣
(6L(L + 5) + 35)a2

0 � (L + 1)(5L(2L + 11)) + 72
⌘
b2

0

�

⇣
2(2L + 5)a3

0 + 4(20L(L + 4) + 69)a0
⌘
b0 � 20(2L + 3)a2

0

+ 144(L + 1)(L + 2),

P5(a0, b0) = (L + 1)(L + 2)(L + 3)(L + 4)(L + 5)b5
0

�

⇣
5L(L + 6)(L(L + 6) + 15) + 274

⌘
a0b4

0

+
⇣
5(L + 3)(2L(L + 6) + 15)a2

0

� 4(L + 1)(L(5L(4L + 39) + 607) + 600)
⌘
b3

0

�

⇣
5(2L(L + 6) + 17)a3

0 � 4(L(15L(4L + 31) + 1096) + 763)a0
⌘
b2

0

+
⇣
5(L + 3)a4

0 � 12(5L(4L + 19) + 98)a2
0

+ 32(L + 1)(16L(2L + 11) + 225)
⌘
b0

+ 20(4L + 7)a3 � 32(16L(2L + 7) + 89)a0 � a5
0.

(25)

4. Extra Quantization

We have seen that two parameters a0, b0 should be quan-
tized for polynomial solutions in the modified BCH equation
[3]. Here, we consider the case of quantization of a0 and E.
We examine a few low order N. If we choose d0 = 0 the whole
series solution vanishes. So we set d0 = 1 for simplicity.

1. For N = 0, Eq.(22) gives B1 =
�⌦

2(2L+3) = 0 and d1 =
A0d0 = 0. Therefore for a0 and b0 satisfying

P1(a0, b0) = b0(L + 1) � a0 = 0, (26)

we have E = 2L + 3 � b2
0/4. The polynomial for its eigen-

function is y0(⇢) = 1.
2. For N = 1, B2 =

�⌦+2
3(2L+4) and d2 = A1d1 + B1d0 = (A0A1 +

B1)d0. Requesting B2 = d2 = 0, we get a relation between
a0 and b0, we get

P2(a0, b0) = 0, (27)

which defines a hyperbola in a0, b0 such that there are al-
ways two branches because the discriminant is always pos-
itive, D = b2

0+16(L+1) > 0: for a given b0, a0 always has

real solutions: 2a0 = b0(2L + 3) ±
q

b2
0 + 16(L + 1) and

E = 2L+ 5� b2
0

4 as usual. In this case, y1(⇢) = 1+ d1⇢ with

d1 =
⇣
�b0 ±

q
b2

0 + 16(L + 1)
⌘
/(4L + 4).

3. For N = 2, the contour plot of P3 = 0 is given in figure 1.
For any given a0, three di↵erent b0’s exist. Apart from the
region where a0, b0 ⇠ O(1) the curves are approximately
linear. Such linearity can be confirmed by drawing the
same figure by including asymptotic region as we can see
in figure 2, where we used L = 0. Notice that the slope of
the lines are b0/a0 = 1, 1/2, 1/3. It is also worthwhile to
note that the medium curve with asymptotic slope 1/2 pass
through a0 = 0, b0 = 0. This happens for all even integer
N.

4. Similar story holds for N = 3 using the equation P4 =
0. See figure 3 and figure 4, where we also used L = 0
and the slope of the lines can be read o↵ to give b0/a0 =
1, 1/2, 1/3, 1/4.

Figure 1: Contours of P3(a0, b0) = 0. Figure 2: Asymptotic view of Fig. 1

Figure 3: Contours of P3(a0, b0) = 0. Figure 4: Asymptotic view of Fig. 3

For general N, we can show that for large enough a0, b0, fol-
lowing relation holds.

a0

b0
=

ac
b
= L + 1 + K, for K = 0, 1, · · · ,N. (28)

This means that for any L, there are N + 1 branches of solution
satisfying eq. (24). This is the quantization of a0 (or b0) for
the given value of b0 (or a0). Such extra quantization is an in-
teresting consequence of the Heun’s di↵erential equation. For
the hypergeometric type, the di↵erential equation is reduced to
two term recurrence relation so that we need to fine tune only
one parameter, the energy, to have a normalizable solution. For
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the Heun’s equation, its higher singularity requests higher reg-
ularity: the three term recurrence relation is not reduced to the
two term, which in turn leads to an extra quantization of system
parameter apart from the energy eigenvalue.

4.1. Quantization of a0, b0 in the non-linear regime
In the previous section, we analized the asymptotic regime

of the potential parameter a0, b0 and learned that there are extra
quantization given by a0/b0 = L + 1 + K, for integer K  N.
Here we consider the regime where both |a0|, |b0|  O(1). If we
set a0 = 0, the allowed values of b0 are given by the crossing
points of N + 1 branches of the PN+1 = 0 with the vertical
line a0 = 0. We call such fixing b-quantization. See figure 5.
Previously we examined the solutions numerically and found
that due to the N, L dependence of b0, E is NOT linear in N.

2. For N = 1, B2 =
�⌦+2

3(2L+4) and d2 = A1d1 + B1d0 =
(A0A1 + B1)d0. Requesting B2 = d2 = 0, we get a re-
lation between a0 and b0:

(b0(L + 1) � a0)(b0(L + 2) � a0) � 4(L + 1) = 0, (23)

which defines a hyperbola in a0, b0 such that there are
always two branches because the discriminant is always
positive, D = b2

0+16(L+1) > 0: for a given b0, a0 always

has real solutions: 2a0 = b0(2L + 3) ±
q

b2
0 + 16(L + 1)

and E = 2L+5� b2
0

4 as usual. In this case, y1(⇢) = 1+d1⇢

where d1 =
⇣
�b0 ±

q
b2

0 + 16(L + 1)
⌘
/(4L + 4).

In general, dN+1 = 0 will define a polynomial equation
PN+1 = 0 for given N, L.

3. For N = 2, 3, the P3 and P4 are rather long so they
are written in the appendix. Figs. 1 is a contour plot
of P3 = 0 in a0-b0 plane. For any given a0, 3 di↵er-
ent b0’s exist. Apart from the region where a0, b0 ⇠ O(1)
the curves are actually linear. Such linearity can be con-
firmed by drawing the same figure by including asymp-
totic region as we can see in Fig. 2, where we used L = 0.
Notice that the slope of the lines are b0/a0 = 1, 1/2, 1/3.
It is also worthwhile to note that the medium curve with
asymptotic slope 1/2 pass through a0 = 0, b0 = 0. This
happens for all even integer N.
Similar story holds for N = 3 using the equation P4 = 0.
See Fig. 3 and Fig. 4, where we also used L = 0 and
the slope of the lines can be read o↵ to give b0/a0 =
1, 1/2, 1/3, 1/4.

Figure 1: Contour plot of P3 = 0 in
a0-b0 plane. Figure 2: Asymptotic view of Fig. 1

For general N, Eq. (21) gives,

EN,L = 2N + 2L + 3 � b2
0/4,

PN+1(a0, b0) = 0, (24)

and the resulting wave function is N-th order polynomial yN(⇢) =PN
i=0 di⇢i.

The first of eq.(24) comes from BN+1 = 0, or ⌦ = �µN =
2N, and the second is from dN+1 = 0, which is a (N+1)-th order
polynomial equation in a0 and b0, from which we can show that
for large enough a0, b0, following relation holds.

a0

b0
=

ãc̃
b̃
= L + 1 + K, for K = 0, 1, · · · ,N. (25)
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Figure 3: Contour plot of P4 = 0 in
a0-b0 plane. Figure 4: Asymptotic view of Fig. 3

This means that for any L, there are N + 1 branches of solu-
tion satisfying eq. (24). We can interpret this as quantization
of a0 (or b0) for the given value of b0 (or a0). This is an inter-
esting consequence of the Heun’s di↵erential equation, because
for hypergeometric type, to have a regular solution, we need to
fine tune one parameter, that is, the energy. This is so called
energy eigenvalue. For the Heun’s equation, the higher singu-
larity requests higher regularity which in turn requests an extra
quantization of system parameter apart from the energy eigen-
value.

4.1. Quantization of a0, b0 in the non-linear regime
In the previous section, we analized the asymptotic regime

of the potential parameter a0, b0 and learned that there are extra
quantization given by a0/b0 = L + 1 + K, for integer K  N.
Here we consider the regime where both |a0|, |b0|  O(1). If we
set a0 = 0, the allowed values of b0 are given by the crossing
points of N + 1 branches of the PN+1 = 0 with the vertical line
a0 = 0. Previously we examined the solutions numerically and
found that due to the N, L dependence of b0, E is NOT linear in
N.

On the other hand, if we fix b0 to the value we want, say
1, the allowed values of a0 are given by the crossing points
of N + 1 branches of the PN+1 = 0 with the horizontal line
b0 = 1. In this case, E is linear in N, L and does not depend on
a quantized value of a0 as far as it is given by the fined tuned
or quantized value that depends on N, L and b0. Table 1 tells
us all possible roots of a0’s for each L when N = 4 and b0 = 1.
Similarly, Table 2 shows us all possible roots of a0’s for each L
when N = 5 and b0 = 1.

a(N=4)
00 a(N=4)

01 a(N=4)
02 a(N=4)

03 a(N=4)
04

L=0 -7.50342 -2.26852 2.5487 7.93985 14.2834
L=1 -9.22584 -2.68053 3.72372 10.4374 17.7452
L=2 -10.4722 -2.80774 4.79946 12.6207 20.8598
L=3 -11.4284 -2.78208 5.84226 14.6311 23.7371
L=4 -12.1842 -2.65493 6.8699 16.5287 26.4406

Table 1: Roots of a0 for b0 = 1, N = 4.

From the explicit calculation, we found the following pat-
tern: List N+1 a0 in the increasing order so that let a0K is K-th
a0, K = 0, 1, · · · ,N. Then the polynomial solution for the a0K
has K nodes. The number of nodes does not depend on L.

3

a-quantization	
b-quantization	

Figure 5: Definition of a-(b-) quantization. It depends on whether we fix b or a.

On the other hand, if we fix b0 to the value we want, say
1, the allowed values of a0 are given by the crossing points of
N + 1 branches of the PN+1 = 0 with the horizontal line b0 = 1.
We call such fixing as a-quantization. See figure 5. In this case,
E is linear in N, L and does not depend on a quantized value of
a0 as far as it is given by the quantized value that depends on
N, L and b0. Table 1 tells us all possible roots of a0’s for each
L when N = 4 and b0 = 1. Similarly, Table 2 shows us all
possible roots of a0’s for each L when N = 5 and b0 = 1. As
you can see easily from the table, most of the quantized values
are in the linear regime where a0 ⇡ (N + L + K)b0.

a(N=4)
00 a(N=4)

01 a(N=4)
02 a(N=4)

03 a(N=4)
04

L=0 -7.50342 -2.26852 2.5487 7.93985 14.2834
L=1 -9.22584 -2.68053 3.72372 10.4374 17.7452
L=2 -10.4722 -2.80774 4.79946 12.6207 20.8598
L=3 -11.4284 -2.78208 5.84226 14.6311 23.7371
L=4 -12.1842 -2.65493 6.8699 16.5287 26.4406

Table 1: Roots of a0 for b0 = 1, N = 4.

From the explicit calculation, we found the following pattern:
List N+1 a0 in the increasing order so that let a0K is K-th a0,
K = 0, 1, · · · ,N. Then the polynomial solution for the a0K has
K nodes. The number of nodes does not depend on L.

a(N=5)
00 a(N=5)

01 a(N=5)
02 a(N=5)

03 a(N=5)
04 a(N=5)

05

L=0 -10.5701 -4.75187 0.363597 5.60184 11.6841 18.6724
L=1 -12.7643 -5.82539 0.801156 7.5262 14.7189 22.5434
L=2 -14.4605 -6.49042 1.30825 9.19107 17.3924 26.0593
L=3 -15.834 -6.93228 1.86483 10.7358 19.8467 29.319
L=4 -16.9777 -7.22567 2.45866 12.2089 22.1509 32.3849
L=5 -17.9475 -7.4102 3.08179 13.6334 24.3443 35.2982

Table 2: Every roots of a0 for b0 = 1, N = 5.

Figure 6: Polynomial y4 for each a0K ,
K = 0, · · · , 4. There are K nodes for
a0K . Here with N = 4, L = 0 and
b0 = 1.

Figure 7: Polynomials y5 for various
a03 with N = 5 & L = 0, 1, · · · , 5.
b0 = 1. There are 3 nodes in positive
⇢ region regardless of L.

Figs. 6 shows us polynomials y4 with a0K , K = 0, 1, 2, 3, 4
has K nodes in N = 4 in ⇢ > 0 regime. We fixed L = 0
and b0 = 1. Figs. 7 shows us polynomials y5 with a03 has 3
nodes in N = 5 in ⇢ > 0 regime independent of the value of
L = 0, 1, 2, 3, 4, 5. There are two nodes in the unphysical region
⇢ < 0.

5. Bag model vs Holography

In this section, we will see that two very di↵erent physics
leads to the same Heun’s equation studied in the previous sec-
tion. The first one is the bag model studied in [5, 3] and the
other is the holographic model

5.1. Quark-antiquark system with only scalar interaction
A spin-free Hamiltonian with scalar interaction for the meson

(qq̄) system satisfy the equation [3, 4, 5]
2
666664

 
m +

1
2

br
!2

+ P2
r +

L(L + 1)
r2

3
777775 R(r) =

E2

4
R(r) (29)

where we used ~p2 = P2
r +

L(L+1)
r2 with Pr = �i 1

r
@
@r r and L is the

angular momentum and b is the string tension. Introducing the
reduced radial wave function u(r) = rR(r) and arrive at

�u00 + Vu =
E2

4
u, (30)

V =

 
m +

1
2

br
!2

+
L(L + 1)

r2 . (31)

For m = 0, the spectrum was obtained in [5] and it is linear in
quantum number:

E2 = 4b(N + L + 3/2). (32)

For m , 0, b can not be an arbitrary value. It has to be de-
termined by b-quantization because a = 0 from (15) and (31).
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Whether imposing both of the equations in eq(22) is necessary
or not was studied numerically in our previous paper [3].

In general, dN+1 = 0 will define a N-th order polynomial
PN+1 in a0, b0, so that Eq. (22) gives

EN,L = 2N + 2L + 3 � b2
0/4,

PN+1(a0, b0) = 0. (24)

where the first comes from BN+1 = 0 or equivalently ⌦ =
�µN = 2N. Below we give a few lower order polynomial in
a0 and b0 which will be used in next section.
P1(a0, b0) = b0(L + 1) � a0,

P2(a0, b0) = (b0(L + 1) � a0)(b0(L + 2) � a0) � 4(L + 1),

P3(a0, b0) = (L + 1)(L + 2)(L + 3)b3
0 � (3L(L + 4) + 11)a0b2

0

+
⇣
3(L + 2)a2

0 � 4(L + 1)(4L + 9)
⌘
b0 � a3

0 + 4(4L + 5)a0,

P4(a0, b0) = (L + 1)(L + 2)(L + 3)(L + 4)b4
0 � 2(2L + 5)(L(L + 5) + 5)a0b3

0

+
⇣
(6L(L + 5) + 35)a2

0 � (L + 1)(5L(2L + 11)) + 72
⌘
b2

0

�

⇣
2(2L + 5)a3

0 + 4(20L(L + 4) + 69)a0
⌘
b0 � 20(2L + 3)a2

0

+ 144(L + 1)(L + 2),

P5(a0, b0) = (L + 1)(L + 2)(L + 3)(L + 4)(L + 5)b5
0

�

⇣
5L(L + 6)(L(L + 6) + 15) + 274

⌘
a0b4

0

+
⇣
5(L + 3)(2L(L + 6) + 15)a2

0

� 4(L + 1)(L(5L(4L + 39) + 607) + 600)
⌘
b3

0

�

⇣
5(2L(L + 6) + 17)a3

0 � 4(L(15L(4L + 31) + 1096) + 763)a0
⌘
b2

0

+
⇣
5(L + 3)a4

0 � 12(5L(4L + 19) + 98)a2
0

+ 32(L + 1)(16L(2L + 11) + 225)
⌘
b0

+ 20(4L + 7)a3 � 32(16L(2L + 7) + 89)a0 � a5
0.

(25)

4. Extra Quantization

We have seen that two parameters a0, b0 should be quan-
tized for polynomial solutions in the modified BCH equation
[3]. Here, we consider the case of quantization of a0 and E.
We examine a few low order N. If we choose d0 = 0 the whole
series solution vanishes. So we set d0 = 1 for simplicity.

1. For N = 0, Eq.(22) gives B1 =
�⌦

2(2L+3) = 0 and d1 =
A0d0 = 0. Therefore for a0 and b0 satisfying

P1(a0, b0) = b0(L + 1) � a0 = 0, (26)

we have E = 2L + 3 � b2
0/4. The polynomial for its eigen-

function is y0(⇢) = 1.
2. For N = 1, B2 =

�⌦+2
3(2L+4) and d2 = A1d1 + B1d0 = (A0A1 +

B1)d0. Requesting B2 = d2 = 0, we get a relation between
a0 and b0, we get

P2(a0, b0) = 0, (27)

which defines a hyperbola in a0, b0 such that there are al-
ways two branches because the discriminant is always pos-
itive, D = b2

0+16(L+1) > 0: for a given b0, a0 always has

real solutions: 2a0 = b0(2L + 3) ±
q

b2
0 + 16(L + 1) and

E = 2L+ 5� b2
0

4 as usual. In this case, y1(⇢) = 1+ d1⇢ with

d1 =
⇣
�b0 ±

q
b2

0 + 16(L + 1)
⌘
/(4L + 4).

3. For N = 2, the contour plot of P3 = 0 is given in figure 1.
For any given a0, three di↵erent b0’s exist. Apart from the
region where a0, b0 ⇠ O(1) the curves are approximately
linear. Such linearity can be confirmed by drawing the
same figure by including asymptotic region as we can see
in figure 2, where we used L = 0. Notice that the slope of
the lines are b0/a0 = 1, 1/2, 1/3. It is also worthwhile to
note that the medium curve with asymptotic slope 1/2 pass
through a0 = 0, b0 = 0. This happens for all even integer
N.

4. Similar story holds for N = 3 using the equation P4 =
0. See figure 3 and figure 4, where we also used L = 0
and the slope of the lines can be read o↵ to give b0/a0 =
1, 1/2, 1/3, 1/4.

Figure 1: Contours of P3(a0, b0) = 0. Figure 2: Asymptotic view of Fig. 1
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Figure 3: Contours of P3(a0, b0) = 0.
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Figure 4: Asymptotic view of Fig. 3

For general N, we can show that for large enough a0, b0, fol-
lowing relation holds.

a0

b0
=

ac
b
= L + 1 + K, for K = 0, 1, · · · ,N. (28)

This means that for any L, there are N + 1 branches of solution
satisfying eq. (24). This is the quantization of a0 (or b0) for
the given value of b0 (or a0). Such extra quantization is an in-
teresting consequence of the Heun’s di↵erential equation. For
the hypergeometric type, the di↵erential equation is reduced to
two term recurrence relation so that we need to fine tune only
one parameter, the energy, to have a normalizable solution. For

3

A	degree	N+1	polynomial	eq.	

dN+1(a0, b0) = 0

Parameters	of	V



constant string tension b. We will call the model simply a bag
model afterward. For m = 0, they could solve the eigenvalue
problem H2 = E2 and obtained energy eigenvalues

E2 = 4b (L + Nr + 3/2) , (5)

where Nr = 0, 1, 2, · · · is the quantum number counting the ra-
dial nodes.

Notice that the energy is measured in the center of mass sys-
tem therefore it is equal to the total mass of the system, namely
the meson mass. Therefore above result is consistent with the
Regge trajectories of slope 1

4b . The purpose of this paper is to
understand what happens in the case m , 0.

3. Heun’s equation

We start from the Schroedinger type equation H2 = E2 
with H2 given by the Eq.(4), which can be considered as a non-
relativistic Shcrödinger equation of the harmonic oscillator with
extra linear potential apart from the usual quadratic potential.

Factoring out the asymptotic behaviors of wave function  
near r = 0 and r = 1 by

 (r) = exp
0
BBBBB@�

b
4

 
r +

2m
b

!21CCCCCA rLy(r)Y M
L (✓, �), (6)

the di↵erential equation for (4) becomes

r
@2y
@r2 +

⇣
�br2 � 2mr + 2(l + 1)

⌘ @y
@r
+

  
E2

4
� b

 
L +

3
2

!!
r � 2m(L + 1)

!
y = 0

(7)
which is a bi-confluent Heun (BCH) equation whose canonical
form is defined by

⇢
d2y
d⇢2 +

⇣
µ⇢2 + "⇢ + ⌫

⌘ dy
d⇢
+ (⌦⇢ + "!) y = 0 (8)

where µ, ", ⌫, ⌦ and ! are real or imaginary parameters. It has
a regular singularity at the origin and an irregular singularity at
the infinity of rank 2 [5, 6].

Substituting y(⇢) =
P1

n=0 dn⇢n into (8), we obtain the fol-
lowing recurrence relation:

dn+1 = An dn + Bn dn�1 for n � 1, (9)

where An = �
"(n + !)

(n + 1)(n + ⌫)
, Bn = �

⌦ + µ(n � 1)
(n + 1)(n + ⌫)

, (10)

and d1 = A0d0 for n = 0. Comparing (7) with (8), the former is
a special case of the latter with µ = �b, " = �2m, ⌫ = 2(L + 1),
! = L + 1 and

⌦ = E2/4 � b(L + 3/2). (11)

Unless y(⇢) is a polynomial,  is divergent as ⇢! 1.

4. Normalizable solutions for the modified BCH equation

It has been believed that we can make the wave function
normalizable whatever form is the Schroeding equation by tun-
ing the energy eigenvalue. However, what we shall meet is the

fact that we need to fine tune one more parameter apart from
the energy in order to build normalizable (polynomial) solu-
tion for the Heun equations. This is because their series expan-
sions consist of a three term recurrence relation given in Eq.(9)
even after we factored out asymptotic behavior. Notice, on the
other hand, hypergeometric-type functions gives only two term
recursive relations, in which case we can construct normaliz-
able polynomial solution by tuning the single parameter, en-
ergy. Actually, the necessary and su�cient condition for con-
structing polynomials with a single parameter is that its power
series should be reduced to the two term recurrence relation.
For the Heun equation case, we cannot reduce its recursive re-
lation to the two term case. We can build polynomials by fine
tuning two parameters, for example, b and E2.

For polynomials of (7) around r = 0, we treat m as a free
variable; consider �⌦/µ = E2/4b � (L + 3/2) to be a positive
integer; and treat b as a fixed value. Through (9), we are able to
see that a series expansion becomes a polynomial of degree N
if we impose two conditions

BN+1 = dN+1 = 0 for some N 2 N0 (12)

Eq. (12) is su�cient to give dN+2 = dN+3 = dN+4 = · · · = 0
successively and the solution to eq.(7) becomes a polynomial
of order N.

To see what is going on we follow a few low order process.
For N = 0, Eq.(12) gives B1 =

�⌦
2(2L+3) = 0 and d1 = A0d0 =

md0 = 0. If we choose d0 = 0 the whole series solution van-
ishes. Therefore there is no solution unless m = 0, in which
case the solution is reduced to that of the Hypergeometric case
with E2 = 4b(L+3/2). Since we are considering the case m , 0,
we conclude that there is no solution with radial nodal number
N = 0.

For N = 1, B2 =
�⌦+b

3(2L+4) and d2 = A1d1 + B1d0 = (A0A1 +

B1)d0 =
⇣

4m2(L+1)(L+2)
2(2L+2)(2L+3) � b

2(2L+3)

⌘
d0. Requesting both B2 and d2

to be zero, we get b = 2m2(L + 2) and E2 = 4b(L + 1 + 3/2) =
8m2(L + 2)(L + N + 3/2) with L = 0, 1. In this case, y(⇢) =P1

n=0 dn⇢n = 1 + m⇢ where d0 = 1 chosen for simplicity from
now on. Since N=0 is not allowed for m , 0, N = 1 is the case
containing the ground state.

For N = 2, we have B3 =
�⌦+2b
4(2L+5) and d3 = A2d2 + B2d1 =⇣

2(L+2)(L+3)m3

3(2L+3)(2L+4) �
2(L+3)mb

3(2L+3)(2L+4) � mb
3(2L+4)

⌘
d0. So, the Eq.(12) gives

b = 2m2(L+2)(L+3)
4L+9 and E2 = 8m2(L+2)(L+3)(L+2+3/2)

4L+9 with L = 0, 1, 2.
Its eigenfunction is y(⇢) =

P2
n=0 dn⇢n = 1 + m⇢ + L+2

4L+9 m2⇢2.
For larger N, the energy eigenvalue is determined from BN+1 =

0, or equivalently ⌦ = �µN = bN. Eq.(11) gives

E2 = 4b
 
N + L +

3
2

!
, (13)

with L = 0, 1, 2, · · · ,N. Allowed values of b’s are obtained
from dN+1 = 0, which are quantized. Its eigenfunction is N-th
order polynomial

yN(⇢) = 1 + m⇢ +
NX

i=2

di⇢
i. (14)

2

5. Necessity of extra quantization

We observed that both E and b are quantized in order to
have a polynomial solution (14) when we have three term re-
currence relation. However, for many people including the au-
thors, it is not easy to accept the idea that one more parameter
other than the energy should be quantized. The question of ex-
tra quantization is equivalent to asking whether imposing both
conditions in Eq.(12) are the only way to get the normalizable
solution, although it is clear that they are su�cient.

Here we demonstrate numerically that we can not construct
a normalizable solution of the BCH equation by tuning only E2

using the shooting method. Let m = 1 and L = 0 in (7) for
simplicity. According to previous section, the ground state for
m , 1 happened at N = 1 with E2 = E0 = 40, but b = b0 = 4
was also required. In this case polynomial was given by 1 + r.
What will happen if we do not request quantizing b?

Let b is di↵erent from the quantized value b0 so that b =
b0+1.0. We look for a proper value of E2 with initial conditions
y(0) = d0 = 1, y0(0) = d1 = m = 1. Then we try to construct a
normalizable solution by shooting method.

(1) E2 = E0 + 7.496817
(2) E2 = E0 + 7.496818
(3) E2 = E0 + 7.49681789
(4) E2 = E0 + 7.49681790
(5) E2 = E0 + 7.4968178907
(6) E2 = E0 + 7.4968178908
(7) E2 = E0 + 7.496817890781
(8) E2 = E0 + 7.496817890782
(9) E2 = E0 + 7.4968178907817
(10) E2 = E0 + 7.4968178907818
(11) E2 = E0 + 7.49681789078176
(12) E2 = E0 + 7.49681789078177
(13) E2 = E0 + 7.496817890781766
(14) E2 = E0 + 7.496817890781767
(15) E2 = E0 + 7.4968178907817661
(16) E2 = E0 + 7.4968178907817662

Table 1: E2 of y(r) for b = b0 + 1.0.
See Fig. 1

.

(1) E2 = E0 � 10�6

(2) E2 = E0 + 10�6

(3) E2 = E0 � 10�8

(4) E2 = E0 + 10�8

(5) E2 = E0 � 10�10

(6) E2 = E0 + 10�10

(7) E2 = E0 � 10�12

(8) E2 = E0 + 10�12

(9) E2 = E0 � 10�13

(10) E2 = E0 + 10�13

(11) E2 = E0 � 10�14

(12) E2 = E0 + 10�14

(13) E2 = E0 � 10�15

(14) E2 = E0 + 10�15

(15) E2 = E0 � 10�16

(16) E2 = E0 + 10�16

Table 2: E2 of y(r) for b = b0.
See Fig. 2

.

In Fig. 1 shows how the trial wave functions approach to
1+ r as we increase the precision of the eigenvalue E2. The odd
numbered solutions (1),(2), ... are undershooted ones and even
numbered ones are overshooted ones. Starting from a under-
shooted solution, one can increase the precision of the eigen-
value E2 by increasing minimal amount in the next digit to
get the over-shooted solution. Similarly, starting from a over-
shooted solution one can increase the precision of the eigen-
value by decreasing minimal amount in the next digit to get the
under-shooted solution. After a number of iterations, the solu-
tions stop to approach to 1 + r although we increase the pre-
cision by alternating the over- and under-shooting. This can
be seen from the Fig. 1: there is a limit to pushing the so-
lution to the right as we see from overlapped solutions (11),
(13), (15), and (12), (14), (16). When E2 reaches around E0 +
7.49681789078176, y(r) starts to be flipped violently without
moving to the right any more.

This should be contrasted with b = b0 case shown in Fig. 2
where the solution y(r) is pushed to the right as E2 approaches
40 with b = b0 = 4 without problem. And we can easily check
that if E2 is exactly 40, y(r) = 1 + r numerically also.

Above demonstration help us to accept necessity of two
quantized parameters (E2 and b) to create a polynomial, when
a series solution of (7) have of a three term recurrence relation.

Figure 1: y(r) with a fixed b = b0 + 1.0 and unfixed E2’s as m = 1

Figure 2: y(r) with a fixed b = b0 and unfixed E2’s as m = 1

6. Quantization of b

Once we are convinced that both E and b are quantized, we
will find what are the available quantized values of b for lower
orders. For N = L = 10, there are 5 possible real values of
b/m2: 0.366018, 0.579236, 1.03967, 2.35494 and 9.45702. We
choose the smallest real roots of b/m2 in each case to get the
lowest energy eigenvalues.

Fig. 3 shows us the smallest real values of b/m2 with given
N and L. There are N + 1 of b/m2 corresponding to each L =
0, 1, 2, · · · ,N. For N  6, some of N + 1 solutions are above
the plot range. In each N, the lowest point is the numeric value
of b/m2 for L = 0; the next point is for L = 1; the top point is
for L = N. We observe that b/m2 decreases as N increases with
fixed L. And the gap between the bottom and the top points
decreases as N increases. As N ! 1, b/m2 goes to 0 for any
fixed L. Fig. 3 shows us that the gap between two successive
points is constant with given N as L increases.

Fig. 4 shows us that the allowed value of b/m2 is linear in L
and can be approximated by the rational function

b
m2 =

2.18( 4
7 N + L + 10

7 )

N2 + 1
9 N � 1

40

(15)

with L � 3. For the figure, we calculated 275 di↵erent values
of b/m2’s at various (N, L). The lowest fit line is for N = 22,

3

constant string tension b. We will call the model simply a bag
model afterward. For m = 0, they could solve the eigenvalue
problem H2 = E2 and obtained energy eigenvalues

E2 = 4b (L + Nr + 3/2) , (5)

where Nr = 0, 1, 2, · · · is the quantum number counting the ra-
dial nodes.

Notice that the energy is measured in the center of mass sys-
tem therefore it is equal to the total mass of the system, namely
the meson mass. Therefore above result is consistent with the
Regge trajectories of slope 1

4b . The purpose of this paper is to
understand what happens in the case m , 0.

3. Heun’s equation

We start from the Schroedinger type equation H2 = E2 
with H2 given by the Eq.(4), which can be considered as a non-
relativistic Shcrödinger equation of the harmonic oscillator with
extra linear potential apart from the usual quadratic potential.

Factoring out the asymptotic behaviors of wave function  
near r = 0 and r = 1 by

 (r) = exp
0
BBBBB@�

b
4

 
r +

2m
b

!21CCCCCA rLy(r)Y M
L (✓, �), (6)

the di↵erential equation for (4) becomes

r
@2y
@r2 +

⇣
�br2 � 2mr + 2(l + 1)

⌘ @y
@r
+

  
E2

4
� b

 
L +

3
2

!!
r � 2m(L + 1)

!
y = 0

(7)
which is a bi-confluent Heun (BCH) equation whose canonical
form is defined by

⇢
d2y
d⇢2 +

⇣
µ⇢2 + "⇢ + ⌫

⌘ dy
d⇢
+ (⌦⇢ + "!) y = 0 (8)

where µ, ", ⌫, ⌦ and ! are real or imaginary parameters. It has
a regular singularity at the origin and an irregular singularity at
the infinity of rank 2 [5, 6].

Substituting y(⇢) =
P1

n=0 dn⇢n into (8), we obtain the fol-
lowing recurrence relation:

dn+1 = An dn + Bn dn�1 for n � 1, (9)

where An = �
"(n + !)

(n + 1)(n + ⌫)
, Bn = �

⌦ + µ(n � 1)
(n + 1)(n + ⌫)

, (10)

and d1 = A0d0 for n = 0. Comparing (7) with (8), the former is
a special case of the latter with µ = �b, " = �2m, ⌫ = 2(L + 1),
! = L + 1 and

⌦ = E2/4 � b(L + 3/2). (11)

Unless y(⇢) is a polynomial,  is divergent as ⇢! 1.

4. Normalizable solutions for the modified BCH equation

It has been believed that we can make the wave function
normalizable whatever form is the Schroeding equation by tun-
ing the energy eigenvalue. However, what we shall meet is the

fact that we need to fine tune one more parameter apart from
the energy in order to build normalizable (polynomial) solu-
tion for the Heun equations. This is because their series expan-
sions consist of a three term recurrence relation given in Eq.(9)
even after we factored out asymptotic behavior. Notice, on the
other hand, hypergeometric-type functions gives only two term
recursive relations, in which case we can construct normaliz-
able polynomial solution by tuning the single parameter, en-
ergy. Actually, the necessary and su�cient condition for con-
structing polynomials with a single parameter is that its power
series should be reduced to the two term recurrence relation.
For the Heun equation case, we cannot reduce its recursive re-
lation to the two term case. We can build polynomials by fine
tuning two parameters, for example, b and E2.

For polynomials of (7) around r = 0, we treat m as a free
variable; consider �⌦/µ = E2/4b � (L + 3/2) to be a positive
integer; and treat b as a fixed value. Through (9), we are able to
see that a series expansion becomes a polynomial of degree N
if we impose two conditions

BN+1 = dN+1 = 0 for some N 2 N0 (12)

Eq. (12) is su�cient to give dN+2 = dN+3 = dN+4 = · · · = 0
successively and the solution to eq.(7) becomes a polynomial
of order N.

To see what is going on we follow a few low order process.
For N = 0, Eq.(12) gives B1 =

�⌦
2(2L+3) = 0 and d1 = A0d0 =

md0 = 0. If we choose d0 = 0 the whole series solution van-
ishes. Therefore there is no solution unless m = 0, in which
case the solution is reduced to that of the Hypergeometric case
with E2 = 4b(L+3/2). Since we are considering the case m , 0,
we conclude that there is no solution with radial nodal number
N = 0.

For N = 1, B2 =
�⌦+b

3(2L+4) and d2 = A1d1 + B1d0 = (A0A1 +

B1)d0 =
⇣

4m2(L+1)(L+2)
2(2L+2)(2L+3) � b

2(2L+3)

⌘
d0. Requesting both B2 and d2

to be zero, we get b = 2m2(L + 2) and E2 = 4b(L + 1 + 3/2) =
8m2(L + 2)(L + N + 3/2) with L = 0, 1. In this case, y(⇢) =P1

n=0 dn⇢n = 1 + m⇢ where d0 = 1 chosen for simplicity from
now on. Since N=0 is not allowed for m , 0, N = 1 is the case
containing the ground state.

For N = 2, we have B3 =
�⌦+2b
4(2L+5) and d3 = A2d2 + B2d1 =⇣

2(L+2)(L+3)m3

3(2L+3)(2L+4) �
2(L+3)mb

3(2L+3)(2L+4) � mb
3(2L+4)

⌘
d0. So, the Eq.(12) gives

b = 2m2(L+2)(L+3)
4L+9 and E2 = 8m2(L+2)(L+3)(L+2+3/2)

4L+9 with L = 0, 1, 2.
Its eigenfunction is y(⇢) =

P2
n=0 dn⇢n = 1 + m⇢ + L+2

4L+9 m2⇢2.
For larger N, the energy eigenvalue is determined from BN+1 =

0, or equivalently ⌦ = �µN = bN. Eq.(11) gives

E2 = 4b
 
N + L +

3
2

!
, (13)

with L = 0, 1, 2, · · · ,N. Allowed values of b’s are obtained
from dN+1 = 0, which are quantized. Its eigenfunction is N-th
order polynomial

yN(⇢) = 1 + m⇢ +
NX

i=2

di⇢
i. (14)

2

Figure 3: Real values of b/m2’s for N = 1, 2, 3, · · · & L =
0, 1, 2, · · · ,N. For N  6, some of the solutions are above the
plot range.
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Figure 4: Fitting of b/m2 by eq.(15) as functions of L with a few
fixed values of N.

Figure 5: Fitting of b/m2 by eq.(15) as functions of N with a few
fixed values of L.

the top one which has the most steep slop is for N = 4.
Fig. 5 shows the result as a function of N for a few fixed L’s;
the lowest fit line is for L = 0 and the top one is for L = 21.

By substituting eq.(15) into eq.(13), we get the experimen-
tal fit to the eigenvalue E2

E2 ⇡
8.72m2

⇣
4
7 N + L + 10

7

⌘

N2 + 1
9 N � 1

40

 
N + L +

3
2

!
. (16)

One obvious consequence of our analysis is that the mass
spectrum which is roughly given by Eq.(16) can not be linear
in N unlike m = 0 case given in Eq.(5). This is attributed to

the fact that higher order singularity of the di↵erential equation
requests higher regularity condition so that b should be deter-
mined by other parameters, which in turn introduces extra de-
pendence of E2 on N and L through that of b.

7. Conclusion

In this paper, we considered the spectrum of a bag model
with non-zero quark mass, and found that the mass of the hadrons
are non-linear, while it is linear if the quark mass is zero. In
the model given by Eq.(4), the presence of current quark mass
introduces a higher order singularity which requires extra reg-
ularity condition so that the string tension b must be related to
the other parameter of the model and should be quantized. As
a result, b gets extra N dependence and the spectrum becomes
non linear, which is inconsistent with the Regge trajectory that
is tied with the color confinement. In this sense and context, we
can say that chiral symmetry is induced by the color confine-
ment. It would be interesting if similar argument can be done
in other approach of hadrons.
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the top one which has the most steep slop is for N = 4.
Fig. 5 shows the result as a function of N for a few fixed L’s;
the lowest fit line is for L = 0 and the top one is for L = 21.

By substituting eq.(15) into eq.(13), we get the experimen-
tal fit to the eigenvalue E2

E2 ⇡
8.72m2

⇣
4
7 N + L + 10

7

⌘

N2 + 1
9 N � 1

40

 
N + L +

3
2

!
. (16)

One obvious consequence of our analysis is that the mass
spectrum which is roughly given by Eq.(16) can not be linear
in N unlike m = 0 case given in Eq.(5). This is attributed to

the fact that higher order singularity of the di↵erential equation
requests higher regularity condition so that b should be deter-
mined by other parameters, which in turn introduces extra de-
pendence of E2 on N and L through that of b.

7. Conclusion

In this paper, we considered the spectrum of a bag model
with non-zero quark mass, and found that the mass of the hadrons
are non-linear, while it is linear if the quark mass is zero. In
the model given by Eq.(4), the presence of current quark mass
introduces a higher order singularity which requires extra reg-
ularity condition so that the string tension b must be related to
the other parameter of the model and should be quantized. As
a result, b gets extra N dependence and the spectrum becomes
non linear, which is inconsistent with the Regge trajectory that
is tied with the color confinement. In this sense and context, we
can say that chiral symmetry is induced by the color confine-
ment. It would be interesting if similar argument can be done
in other approach of hadrons.
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5. Necessity of extra quantization

We observed that both E and b are quantized in order to
have a polynomial solution (14) when we have three term re-
currence relation. However, for many people including the au-
thors, it is not easy to accept the idea that one more parameter
other than the energy should be quantized. The question of ex-
tra quantization is equivalent to asking whether imposing both
conditions in Eq.(12) are the only way to get the normalizable
solution, although it is clear that they are su�cient.

Here we demonstrate numerically that we can not construct
a normalizable solution of the BCH equation by tuning only E2

using the shooting method. Let m = 1 and L = 0 in (7) for
simplicity. According to previous section, the ground state for
m , 1 happened at N = 1 with E2 = E0 = 40, but b = b0 = 4
was also required. In this case polynomial was given by 1 + r.
What will happen if we do not request quantizing b?

Let b is di↵erent from the quantized value b0 so that b =
b0+1.0. We look for a proper value of E2 with initial conditions
y(0) = d0 = 1, y0(0) = d1 = m = 1. Then we try to construct a
normalizable solution by shooting method.

(1) E2 = E0 + 7.496817
(2) E2 = E0 + 7.496818
(3) E2 = E0 + 7.49681789
(4) E2 = E0 + 7.49681790
(5) E2 = E0 + 7.4968178907
(6) E2 = E0 + 7.4968178908
(7) E2 = E0 + 7.496817890781
(8) E2 = E0 + 7.496817890782
(9) E2 = E0 + 7.4968178907817
(10) E2 = E0 + 7.4968178907818
(11) E2 = E0 + 7.49681789078176
(12) E2 = E0 + 7.49681789078177
(13) E2 = E0 + 7.496817890781766
(14) E2 = E0 + 7.496817890781767
(15) E2 = E0 + 7.4968178907817661
(16) E2 = E0 + 7.4968178907817662

Table 1: E2 of y(r) for b = b0 + 1.0.
See Fig. 1

.

(1) E2 = E0 � 10�6

(2) E2 = E0 + 10�6

(3) E2 = E0 � 10�8

(4) E2 = E0 + 10�8

(5) E2 = E0 � 10�10

(6) E2 = E0 + 10�10

(7) E2 = E0 � 10�12

(8) E2 = E0 + 10�12

(9) E2 = E0 � 10�13

(10) E2 = E0 + 10�13

(11) E2 = E0 � 10�14

(12) E2 = E0 + 10�14

(13) E2 = E0 � 10�15

(14) E2 = E0 + 10�15

(15) E2 = E0 � 10�16

(16) E2 = E0 + 10�16

Table 2: E2 of y(r) for b = b0.
See Fig. 2

.

In Fig. 1 shows how the trial wave functions approach to
1+ r as we increase the precision of the eigenvalue E2. The odd
numbered solutions (1),(2), ... are undershooted ones and even
numbered ones are overshooted ones. Starting from a under-
shooted solution, one can increase the precision of the eigen-
value E2 by increasing minimal amount in the next digit to
get the over-shooted solution. Similarly, starting from a over-
shooted solution one can increase the precision of the eigen-
value by decreasing minimal amount in the next digit to get the
under-shooted solution. After a number of iterations, the solu-
tions stop to approach to 1 + r although we increase the pre-
cision by alternating the over- and under-shooting. This can
be seen from the Fig. 1: there is a limit to pushing the so-
lution to the right as we see from overlapped solutions (11),
(13), (15), and (12), (14), (16). When E2 reaches around E0 +
7.49681789078176, y(r) starts to be flipped violently without
moving to the right any more.

This should be contrasted with b = b0 case shown in Fig. 2
where the solution y(r) is pushed to the right as E2 approaches
40 with b = b0 = 4 without problem. And we can easily check
that if E2 is exactly 40, y(r) = 1 + r numerically also.

Above demonstration help us to accept necessity of two
quantized parameters (E2 and b) to create a polynomial, when
a series solution of (7) have of a three term recurrence relation.

(1)
(3)
(5)
(7)
(9)

(11)
(13)
(15)

(2)
(4)
(6)
(8)
(10)

(12)
(14)
(16)

1 2 3 4 5 6
r

-10

-5

5

10
y(r)

Figure 1: y(r) with a fixed b = b0 + 1.0 and unfixed E2’s as m = 1

Figure 2: y(r) with a fixed b = b0 and unfixed E2’s as m = 1

6. Quantization of b

Once we are convinced that both E and b are quantized, we
will find what are the available quantized values of b for lower
orders. For N = L = 10, there are 5 possible real values of
b/m2: 0.366018, 0.579236, 1.03967, 2.35494 and 9.45702. We
choose the smallest real roots of b/m2 in each case to get the
lowest energy eigenvalues.

Fig. 3 shows us the smallest real values of b/m2 with given
N and L. There are N + 1 of b/m2 corresponding to each L =
0, 1, 2, · · · ,N. For N  6, some of N + 1 solutions are above
the plot range. In each N, the lowest point is the numeric value
of b/m2 for L = 0; the next point is for L = 1; the top point is
for L = N. We observe that b/m2 decreases as N increases with
fixed L. And the gap between the bottom and the top points
decreases as N increases. As N ! 1, b/m2 goes to 0 for any
fixed L. Fig. 3 shows us that the gap between two successive
points is constant with given N as L increases.

Fig. 4 shows us that the allowed value of b/m2 is linear in L
and can be approximated by the rational function

b
m2 =

2.18( 4
7 N + L + 10

7 )

N2 + 1
9 N � 1

40

(15)

with L � 3. For the figure, we calculated 275 di↵erent values
of b/m2’s at various (N, L). The lowest fit line is for N = 22,
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5. Necessity of extra quantization

We observed that both E and b are quantized in order to
have a polynomial solution (14) when we have three term re-
currence relation. However, for many people including the au-
thors, it is not easy to accept the idea that one more parameter
other than the energy should be quantized. The question of ex-
tra quantization is equivalent to asking whether imposing both
conditions in Eq.(12) are the only way to get the normalizable
solution, although it is clear that they are su�cient.

Here we demonstrate numerically that we can not construct
a normalizable solution of the BCH equation by tuning only E2

using the shooting method. Let m = 1 and L = 0 in (7) for
simplicity. According to previous section, the ground state for
m , 1 happened at N = 1 with E2 = E0 = 40, but b = b0 = 4
was also required. In this case polynomial was given by 1 + r.
What will happen if we do not request quantizing b?

Let b is di↵erent from the quantized value b0 so that b =
b0+1.0. We look for a proper value of E2 with initial conditions
y(0) = d0 = 1, y0(0) = d1 = m = 1. Then we try to construct a
normalizable solution by shooting method.

(1) E2 = E0 + 7.496817
(2) E2 = E0 + 7.496818
(3) E2 = E0 + 7.49681789
(4) E2 = E0 + 7.49681790
(5) E2 = E0 + 7.4968178907
(6) E2 = E0 + 7.4968178908
(7) E2 = E0 + 7.496817890781
(8) E2 = E0 + 7.496817890782
(9) E2 = E0 + 7.4968178907817
(10) E2 = E0 + 7.4968178907818
(11) E2 = E0 + 7.49681789078176
(12) E2 = E0 + 7.49681789078177
(13) E2 = E0 + 7.496817890781766
(14) E2 = E0 + 7.496817890781767
(15) E2 = E0 + 7.4968178907817661
(16) E2 = E0 + 7.4968178907817662

Table 1: E2 of y(r) for b = b0 + 1.0.
See Fig. 1

.

(1) E2 = E0 � 10�6

(2) E2 = E0 + 10�6

(3) E2 = E0 � 10�8

(4) E2 = E0 + 10�8

(5) E2 = E0 � 10�10

(6) E2 = E0 + 10�10

(7) E2 = E0 � 10�12

(8) E2 = E0 + 10�12

(9) E2 = E0 � 10�13

(10) E2 = E0 + 10�13

(11) E2 = E0 � 10�14

(12) E2 = E0 + 10�14

(13) E2 = E0 � 10�15

(14) E2 = E0 + 10�15

(15) E2 = E0 � 10�16

(16) E2 = E0 + 10�16

Table 2: E2 of y(r) for b = b0.
See Fig. 2

.

In Fig. 1 shows how the trial wave functions approach to
1+ r as we increase the precision of the eigenvalue E2. The odd
numbered solutions (1),(2), ... are undershooted ones and even
numbered ones are overshooted ones. Starting from a under-
shooted solution, one can increase the precision of the eigen-
value E2 by increasing minimal amount in the next digit to
get the over-shooted solution. Similarly, starting from a over-
shooted solution one can increase the precision of the eigen-
value by decreasing minimal amount in the next digit to get the
under-shooted solution. After a number of iterations, the solu-
tions stop to approach to 1 + r although we increase the pre-
cision by alternating the over- and under-shooting. This can
be seen from the Fig. 1: there is a limit to pushing the so-
lution to the right as we see from overlapped solutions (11),
(13), (15), and (12), (14), (16). When E2 reaches around E0 +
7.49681789078176, y(r) starts to be flipped violently without
moving to the right any more.

This should be contrasted with b = b0 case shown in Fig. 2
where the solution y(r) is pushed to the right as E2 approaches
40 with b = b0 = 4 without problem. And we can easily check
that if E2 is exactly 40, y(r) = 1 + r numerically also.

Above demonstration help us to accept necessity of two
quantized parameters (E2 and b) to create a polynomial, when
a series solution of (7) have of a three term recurrence relation.

Figure 1: y(r) with a fixed b = b0 + 1.0 and unfixed E2’s as m = 1
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Figure 2: y(r) with a fixed b = b0 and unfixed E2’s as m = 1

6. Quantization of b

Once we are convinced that both E and b are quantized, we
will find what are the available quantized values of b for lower
orders. For N = L = 10, there are 5 possible real values of
b/m2: 0.366018, 0.579236, 1.03967, 2.35494 and 9.45702. We
choose the smallest real roots of b/m2 in each case to get the
lowest energy eigenvalues.

Fig. 3 shows us the smallest real values of b/m2 with given
N and L. There are N + 1 of b/m2 corresponding to each L =
0, 1, 2, · · · ,N. For N  6, some of N + 1 solutions are above
the plot range. In each N, the lowest point is the numeric value
of b/m2 for L = 0; the next point is for L = 1; the top point is
for L = N. We observe that b/m2 decreases as N increases with
fixed L. And the gap between the bottom and the top points
decreases as N increases. As N ! 1, b/m2 goes to 0 for any
fixed L. Fig. 3 shows us that the gap between two successive
points is constant with given N as L increases.

Fig. 4 shows us that the allowed value of b/m2 is linear in L
and can be approximated by the rational function

b
m2 =

2.18( 4
7 N + L + 10

7 )

N2 + 1
9 N � 1

40

(15)

with L � 3. For the figure, we calculated 275 di↵erent values
of b/m2’s at various (N, L). The lowest fit line is for N = 22,
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True	solution	:	y=1+r
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We observed that both E and b are quantized in order to
have a polynomial solution (14) when we have three term re-
currence relation. However, for many people including the au-
thors, it is not easy to accept the idea that one more parameter
other than the energy should be quantized. The question of ex-
tra quantization is equivalent to asking whether imposing both
conditions in Eq.(12) are the only way to get the normalizable
solution, although it is clear that they are su�cient.

Here we demonstrate numerically that we can not construct
a normalizable solution of the BCH equation by tuning only E2

using the shooting method. Let m = 1 and L = 0 in (7) for
simplicity. According to previous section, the ground state for
m , 1 happened at N = 1 with E2 = E0 = 40, but b = b0 = 4
was also required. In this case polynomial was given by 1 + r.
What will happen if we do not request quantizing b?

Let b is di↵erent from the quantized value b0 so that b =
b0+1.0. We look for a proper value of E2 with initial conditions
y(0) = d0 = 1, y0(0) = d1 = m = 1. Then we try to construct a
normalizable solution by shooting method.

(1) E2 = E0 + 7.496817
(2) E2 = E0 + 7.496818
(3) E2 = E0 + 7.49681789
(4) E2 = E0 + 7.49681790
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(14) E2 = E0 + 7.496817890781767
(15) E2 = E0 + 7.4968178907817661
(16) E2 = E0 + 7.4968178907817662

Table 1: E2 of y(r) for b = b0 + 1.0.
See Fig. 1
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(2) E2 = E0 + 10�6
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(4) E2 = E0 + 10�8
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(11) E2 = E0 � 10�14
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(13) E2 = E0 � 10�15

(14) E2 = E0 + 10�15

(15) E2 = E0 � 10�16

(16) E2 = E0 + 10�16

Table 2: E2 of y(r) for b = b0.
See Fig. 2
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In Fig. 1 shows how the trial wave functions approach to
1+ r as we increase the precision of the eigenvalue E2. The odd
numbered solutions (1),(2), ... are undershooted ones and even
numbered ones are overshooted ones. Starting from a under-
shooted solution, one can increase the precision of the eigen-
value E2 by increasing minimal amount in the next digit to
get the over-shooted solution. Similarly, starting from a over-
shooted solution one can increase the precision of the eigen-
value by decreasing minimal amount in the next digit to get the
under-shooted solution. After a number of iterations, the solu-
tions stop to approach to 1 + r although we increase the pre-
cision by alternating the over- and under-shooting. This can
be seen from the Fig. 1: there is a limit to pushing the so-
lution to the right as we see from overlapped solutions (11),
(13), (15), and (12), (14), (16). When E2 reaches around E0 +
7.49681789078176, y(r) starts to be flipped violently without
moving to the right any more.

This should be contrasted with b = b0 case shown in Fig. 2
where the solution y(r) is pushed to the right as E2 approaches
40 with b = b0 = 4 without problem. And we can easily check
that if E2 is exactly 40, y(r) = 1 + r numerically also.

Above demonstration help us to accept necessity of two
quantized parameters (E2 and b) to create a polynomial, when
a series solution of (7) have of a three term recurrence relation.

Figure 1: y(r) with a fixed b = b0 + 1.0 and unfixed E2’s as m = 1
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will find what are the available quantized values of b for lower
orders. For N = L = 10, there are 5 possible real values of
b/m2: 0.366018, 0.579236, 1.03967, 2.35494 and 9.45702. We
choose the smallest real roots of b/m2 in each case to get the
lowest energy eigenvalues.

Fig. 3 shows us the smallest real values of b/m2 with given
N and L. There are N + 1 of b/m2 corresponding to each L =
0, 1, 2, · · · ,N. For N  6, some of N + 1 solutions are above
the plot range. In each N, the lowest point is the numeric value
of b/m2 for L = 0; the next point is for L = 1; the top point is
for L = N. We observe that b/m2 decreases as N increases with
fixed L. And the gap between the bottom and the top points
decreases as N increases. As N ! 1, b/m2 goes to 0 for any
fixed L. Fig. 3 shows us that the gap between two successive
points is constant with given N as L increases.

Fig. 4 shows us that the allowed value of b/m2 is linear in L
and can be approximated by the rational function

b
m2 =
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with L � 3. For the figure, we calculated 275 di↵erent values
of b/m2’s at various (N, L). The lowest fit line is for N = 22,
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Is	extra	quantization	Really	Necessary?			



• Where	the	equation	

 
																																														came	from?

the Heun’s equation, its higher singularity requests higher reg-
ularity: the three term recurrence relation is not reduced to the
two term, which in turn leads to an extra quantization of system
parameter apart from the energy eigenvalue.

4.1. Quantization of a0, b0 in the non-linear regime
In the previous section, we analized the asymptotic regime

of the potential parameter a0, b0 and learned that there are extra
quantization given by a0/b0 = L + 1 + K, for integer K  N.
Here we consider the regime where both |a0|, |b0|  O(1). If we
set a0 = 0, the allowed values of b0 are given by the crossing
points of N + 1 branches of the PN+1 = 0 with the vertical
line a0 = 0. We call such fixing b-quantization. See figure 5.
Previously we examined the solutions numerically and found
that due to the N, L dependence of b0, E is NOT linear in N.

2. For N = 1, B2 =
�⌦+2

3(2L+4) and d2 = A1d1 + B1d0 =
(A0A1 + B1)d0. Requesting B2 = d2 = 0, we get a re-
lation between a0 and b0:

(b0(L + 1) � a0)(b0(L + 2) � a0) � 4(L + 1) = 0, (23)

which defines a hyperbola in a0, b0 such that there are
always two branches because the discriminant is always
positive, D = b2

0+16(L+1) > 0: for a given b0, a0 always

has real solutions: 2a0 = b0(2L + 3) ±
q

b2
0 + 16(L + 1)

and E = 2L+5� b2
0

4 as usual. In this case, y1(⇢) = 1+d1⇢

where d1 =
⇣
�b0 ±

q
b2

0 + 16(L + 1)
⌘
/(4L + 4).

In general, dN+1 = 0 will define a polynomial equation
PN+1 = 0 for given N, L.

3. For N = 2, 3, the P3 and P4 are rather long so they
are written in the appendix. Figs. 1 is a contour plot
of P3 = 0 in a0-b0 plane. For any given a0, 3 di↵er-
ent b0’s exist. Apart from the region where a0, b0 ⇠ O(1)
the curves are actually linear. Such linearity can be con-
firmed by drawing the same figure by including asymp-
totic region as we can see in Fig. 2, where we used L = 0.
Notice that the slope of the lines are b0/a0 = 1, 1/2, 1/3.
It is also worthwhile to note that the medium curve with
asymptotic slope 1/2 pass through a0 = 0, b0 = 0. This
happens for all even integer N.
Similar story holds for N = 3 using the equation P4 = 0.
See Fig. 3 and Fig. 4, where we also used L = 0 and
the slope of the lines can be read o↵ to give b0/a0 =
1, 1/2, 1/3, 1/4.

Figure 1: Contour plot of P3 = 0 in
a0-b0 plane. Figure 2: Asymptotic view of Fig. 1

For general N, Eq. (21) gives,

EN,L = 2N + 2L + 3 � b2
0/4,

PN+1(a0, b0) = 0, (24)

and the resulting wave function is N-th order polynomial yN(⇢) =PN
i=0 di⇢i.

The first of eq.(24) comes from BN+1 = 0, or ⌦ = �µN =
2N, and the second is from dN+1 = 0, which is a (N+1)-th order
polynomial equation in a0 and b0, from which we can show that
for large enough a0, b0, following relation holds.

a0

b0
=

ãc̃
b̃
= L + 1 + K, for K = 0, 1, · · · ,N. (25)

Figure 3: Contour plot of P4 = 0 in
a0-b0 plane. Figure 4: Asymptotic view of Fig. 3

This means that for any L, there are N + 1 branches of solu-
tion satisfying eq. (24). We can interpret this as quantization
of a0 (or b0) for the given value of b0 (or a0). This is an inter-
esting consequence of the Heun’s di↵erential equation, because
for hypergeometric type, to have a regular solution, we need to
fine tune one parameter, that is, the energy. This is so called
energy eigenvalue. For the Heun’s equation, the higher singu-
larity requests higher regularity which in turn requests an extra
quantization of system parameter apart from the energy eigen-
value.

4.1. Quantization of a0, b0 in the non-linear regime
In the previous section, we analized the asymptotic regime

of the potential parameter a0, b0 and learned that there are extra
quantization given by a0/b0 = L + 1 + K, for integer K  N.
Here we consider the regime where both |a0|, |b0|  O(1). If we
set a0 = 0, the allowed values of b0 are given by the crossing
points of N + 1 branches of the PN+1 = 0 with the vertical line
a0 = 0. Previously we examined the solutions numerically and
found that due to the N, L dependence of b0, E is NOT linear in
N.

On the other hand, if we fix b0 to the value we want, say
1, the allowed values of a0 are given by the crossing points
of N + 1 branches of the PN+1 = 0 with the horizontal line
b0 = 1. In this case, E is linear in N, L and does not depend on
a quantized value of a0 as far as it is given by the fined tuned
or quantized value that depends on N, L and b0. Table 1 tells
us all possible roots of a0’s for each L when N = 4 and b0 = 1.
Similarly, Table 2 shows us all possible roots of a0’s for each L
when N = 5 and b0 = 1.

a(N=4)
00 a(N=4)

01 a(N=4)
02 a(N=4)

03 a(N=4)
04

L=0 -7.50342 -2.26852 2.5487 7.93985 14.2834
L=1 -9.22584 -2.68053 3.72372 10.4374 17.7452
L=2 -10.4722 -2.80774 4.79946 12.6207 20.8598
L=3 -11.4284 -2.78208 5.84226 14.6311 23.7371
L=4 -12.1842 -2.65493 6.8699 16.5287 26.4406

Table 1: Roots of a0 for b0 = 1, N = 4.

From the explicit calculation, we found the following pat-
tern: List N+1 a0 in the increasing order so that let a0K is K-th
a0, K = 0, 1, · · · ,N. Then the polynomial solution for the a0K
has K nodes. The number of nodes does not depend on L.

3

a-quantization	
b-quantization	

Figure 5: Definition of a-(b-) quantization. It depends on whether we fix b or a.

On the other hand, if we fix b0 to the value we want, say
1, the allowed values of a0 are given by the crossing points of
N + 1 branches of the PN+1 = 0 with the horizontal line b0 = 1.
We call such fixing as a-quantization. See figure 5. In this case,
E is linear in N, L and does not depend on a quantized value of
a0 as far as it is given by the quantized value that depends on
N, L and b0. Table 1 tells us all possible roots of a0’s for each
L when N = 4 and b0 = 1. Similarly, Table 2 shows us all
possible roots of a0’s for each L when N = 5 and b0 = 1. As
you can see easily from the table, most of the quantized values
are in the linear regime where a0 ⇡ (N + L + K)b0.

a(N=4)
00 a(N=4)

01 a(N=4)
02 a(N=4)

03 a(N=4)
04

L=0 -7.50342 -2.26852 2.5487 7.93985 14.2834
L=1 -9.22584 -2.68053 3.72372 10.4374 17.7452
L=2 -10.4722 -2.80774 4.79946 12.6207 20.8598
L=3 -11.4284 -2.78208 5.84226 14.6311 23.7371
L=4 -12.1842 -2.65493 6.8699 16.5287 26.4406

Table 1: Roots of a0 for b0 = 1, N = 4.

From the explicit calculation, we found the following pattern:
List N+1 a0 in the increasing order so that let a0K is K-th a0,
K = 0, 1, · · · ,N. Then the polynomial solution for the a0K has
K nodes. The number of nodes does not depend on L.

a(N=5)
00 a(N=5)

01 a(N=5)
02 a(N=5)

03 a(N=5)
04 a(N=5)

05

L=0 -10.5701 -4.75187 0.363597 5.60184 11.6841 18.6724
L=1 -12.7643 -5.82539 0.801156 7.5262 14.7189 22.5434
L=2 -14.4605 -6.49042 1.30825 9.19107 17.3924 26.0593
L=3 -15.834 -6.93228 1.86483 10.7358 19.8467 29.319
L=4 -16.9777 -7.22567 2.45866 12.2089 22.1509 32.3849
L=5 -17.9475 -7.4102 3.08179 13.6334 24.3443 35.2982

Table 2: Every roots of a0 for b0 = 1, N = 5.

Figure 6: Polynomial y4 for each a0K ,
K = 0, · · · , 4. There are K nodes for
a0K . Here with N = 4, L = 0 and
b0 = 1.

Figure 7: Polynomials y5 for various
a03 with N = 5 & L = 0, 1, · · · , 5.
b0 = 1. There are 3 nodes in positive
⇢ region regardless of L.

Figs. 6 shows us polynomials y4 with a0K , K = 0, 1, 2, 3, 4
has K nodes in N = 4 in ⇢ > 0 regime. We fixed L = 0
and b0 = 1. Figs. 7 shows us polynomials y5 with a03 has 3
nodes in N = 5 in ⇢ > 0 regime independent of the value of
L = 0, 1, 2, 3, 4, 5. There are two nodes in the unphysical region
⇢ < 0.

5. Bag model vs Holography

In this section, we will see that two very di↵erent physics
leads to the same Heun’s equation studied in the previous sec-
tion. The first one is the bag model studied in [5, 3] and the
other is the holographic model

5.1. Quark-antiquark system with only scalar interaction
A spin-free Hamiltonian with scalar interaction for the meson

(qq̄) system satisfy the equation [3, 4, 5]
2
666664

 
m +
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2

br
!2

+ P2
r +

L(L + 1)
r2

3
777775 R(r) =

E2

4
R(r) (29)

where we used ~p2 = P2
r +

L(L+1)
r2 with Pr = �i 1

r
@
@r r and L is the

angular momentum and b is the string tension. Introducing the
reduced radial wave function u(r) = rR(r) and arrive at

�u00 + Vu =
E2

4
u, (30)

V =

 
m +

1
2

br
!2

+
L(L + 1)

r2 . (31)

For m = 0, the spectrum was obtained in [5] and it is linear in
quantum number:

E2 = 4b(N + L + 3/2). (32)

For m , 0, b can not be an arbitrary value. It has to be de-
termined by b-quantization because a = 0 from (15) and (31).
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Quark-antiquark	system	with	scalar	interaction	

• Lichtenberg	spinless	Bag	Model	(1982)  

• Notice	that	this	is	3d	eq.	

constant string tension b. We will call the model simply a bag
model afterward. For m = 0, they could solve the eigenvalue
problem H2 = E2 and obtained energy eigenvalues

E2 = 4b (L + Nr + 3/2) , (5)

where Nr = 0, 1, 2, · · · is the quantum number counting the ra-
dial nodes.

Notice that the energy is measured in the center of mass sys-
tem therefore it is equal to the total mass of the system, namely
the meson mass. Therefore above result is consistent with the
Regge trajectories of slope 1

4b . The purpose of this paper is to
understand what happens in the case m , 0.

3. Heun’s equation

We start from the Schroedinger type equation H2 = E2 
with H2 given by the Eq.(4), which can be considered as a non-
relativistic Shcrödinger equation of the harmonic oscillator with
extra linear potential apart from the usual quadratic potential.

Factoring out the asymptotic behaviors of wave function  
near r = 0 and r = 1 by

 (r) = exp
0
BBBBB@�

b
4

 
r +

2m
b

!21CCCCCA rLy(r)Y M
L (✓, �), (6)

the di↵erential equation for (4) becomes

r
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⇣
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@r
+

  
E2

4
� b

 
L +

3
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!!
r � 2m(L + 1)

!
y = 0

(7)
which is a bi-confluent Heun (BCH) equation whose canonical
form is defined by

⇢
d2y
d⇢2 +

⇣
µ⇢2 + "⇢ + ⌫

⌘ dy
d⇢
+ (⌦⇢ + "!) y = 0 (8)

where µ, ", ⌫, ⌦ and ! are real or imaginary parameters. It has
a regular singularity at the origin and an irregular singularity at
the infinity of rank 2 [5, 6].

Substituting y(⇢) =
P1

n=0 dn⇢n into (8), we obtain the fol-
lowing recurrence relation:

dn+1 = An dn + Bn dn�1 for n � 1, (9)

where An = �
"(n + !)

(n + 1)(n + ⌫)
, Bn = �

⌦ + µ(n � 1)
(n + 1)(n + ⌫)

, (10)

and d1 = A0d0 for n = 0. Comparing (7) with (8), the former is
a special case of the latter with µ = �b, " = �2m, ⌫ = 2(L + 1),
! = L + 1 and

⌦ = E2/4 � b(L + 3/2). (11)

Unless y(⇢) is a polynomial,  is divergent as ⇢! 1.

4. Normalizable solutions for the modified BCH equation

It has been believed that we can make the wave function
normalizable whatever form is the Schroeding equation by tun-
ing the energy eigenvalue. However, what we shall meet is the

fact that we need to fine tune one more parameter apart from
the energy in order to build normalizable (polynomial) solu-
tion for the Heun equations. This is because their series expan-
sions consist of a three term recurrence relation given in Eq.(9)
even after we factored out asymptotic behavior. Notice, on the
other hand, hypergeometric-type functions gives only two term
recursive relations, in which case we can construct normaliz-
able polynomial solution by tuning the single parameter, en-
ergy. Actually, the necessary and su�cient condition for con-
structing polynomials with a single parameter is that its power
series should be reduced to the two term recurrence relation.
For the Heun equation case, we cannot reduce its recursive re-
lation to the two term case. We can build polynomials by fine
tuning two parameters, for example, b and E2.

For polynomials of (7) around r = 0, we treat m as a free
variable; consider �⌦/µ = E2/4b � (L + 3/2) to be a positive
integer; and treat b as a fixed value. Through (9), we are able to
see that a series expansion becomes a polynomial of degree N
if we impose two conditions

BN+1 = dN+1 = 0 for some N 2 N0 (12)

Eq. (12) is su�cient to give dN+2 = dN+3 = dN+4 = · · · = 0
successively and the solution to eq.(7) becomes a polynomial
of order N.

To see what is going on we follow a few low order process.
For N = 0, Eq.(12) gives B1 =

�⌦
2(2L+3) = 0 and d1 = A0d0 =

md0 = 0. If we choose d0 = 0 the whole series solution van-
ishes. Therefore there is no solution unless m = 0, in which
case the solution is reduced to that of the Hypergeometric case
with E2 = 4b(L+3/2). Since we are considering the case m , 0,
we conclude that there is no solution with radial nodal number
N = 0.

For N = 1, B2 =
�⌦+b
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⌘
d0. Requesting both B2 and d2

to be zero, we get b = 2m2(L + 2) and E2 = 4b(L + 1 + 3/2) =
8m2(L + 2)(L + N + 3/2) with L = 0, 1. In this case, y(⇢) =P1

n=0 dn⇢n = 1 + m⇢ where d0 = 1 chosen for simplicity from
now on. Since N=0 is not allowed for m , 0, N = 1 is the case
containing the ground state.
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�⌦+2b
4(2L+5) and d3 = A2d2 + B2d1 =⇣
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d0. So, the Eq.(12) gives
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Its eigenfunction is y(⇢) =
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For larger N, the energy eigenvalue is determined from BN+1 =

0, or equivalently ⌦ = �µN = bN. Eq.(11) gives

E2 = 4b
 
N + L +

3
2

!
, (13)

with L = 0, 1, 2, · · · ,N. Allowed values of b’s are obtained
from dN+1 = 0, which are quantized. Its eigenfunction is N-th
order polynomial

yN(⇢) = 1 + m⇢ +
NX

i=2

di⇢
i. (14)
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Abstract

We show that the current quark mass should vanish to be consistent with the QCD color confinement: a bag model leads us to
Heun’s equation, which requests that not only the energy but also the string tension should be quantized. This is due to the presence
of higher order singularity which requests higher regularity condition demanding that parameters of the theory should be related to
one another. As a result, the Hadron spectrum is consistent with the Regge trajectory only when quark mass vanishes. Therefore,
in this model, the chiral symmetry is a consequence of the confinement.
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1. Introduction

It has been understood that the QCD vacuum is working as a
dual superconductor confining the color flux. As a consequence
the Hadron spectrum is linear in quantum number n,

↵0m2 = n + �, (1)

which is the Regge trajectory that led to the discovery of the
string theory. It is also known that chiral symmetry is one of
the leading principle for the Hadron dynamics. For the chiral
symmetry, the mass of the quarks should vanish at least approx-
imately. Indeed, the current quark mass contribute less than 1%
in counting the proton mass. However, little is understood why
this should be so. In this paper, we will relate the vanishingly
small quark mass to the Regge trajectory itself, which is a con-
sequence of the confinement of the QCD color flux.

To show this, we will use a bag model which will lead us
to the Heun’s di↵erential equation(DE), which can be charac-
terized by a DE with more than three singularities. The high-
est singularity at infinity and the one at 0, can be cancelled by
factoring out two asymptotic behaviors. So if we have three
singularities the left over singularity leads us two term recur-
rence relation and we can make the wave function normalizable
by tuning the energy parameter such that the remaining factor
of the wave function is truncated to a polynomial, which is the
well known energy quantization.

Now if we have four or more singularities, then we need to
tune two or more parameters of the di↵erential equation to make
the wave function normalizable. In terms of the Schrödinger
equation, the result is rather dramatic: Not only the energy but
also a parameter of the potential must be quantized. Sometimes,
such extra quantization leads to obvious mismatch with the ex-
perimental data or well known principle unless some parameter

Email addresses: ychoun@gmail.com (Yoon-Seok Choun),
sjsin@hanyang.ac.kr (Sang-Jin Sin)

vanishes. In our case, the spectrum of the hadron will be con-
sistent with Regge trajectory only when the current quark mass
vanishes. This result can be used to relate the origin of the chi-
ral symmetry to QCD color confinement.

2. Quark-antiquark system with scalar interaction

To discuss the relation between the quark-mass and confine-
ment, we use an old but simplest model where the confinement
dynamics is captured as a Regge trajectory. Lichitenberg and
collaborators[7] found a semi-relativistic Hamiltonian which
leads to a Krolikowski type second order di↵erential equation
[8, 9, 10] in order to calculate meson and baryon masses in
1982. In the center-of-mass system, the relativistic expression
for the total energy H of two free particles of masses m1, and
m2, and three-momentum ~p is

H =
q
~p2 + m2

1 +

q
~p2 + m2

2 (2)

Let S be an interaction which is a Lorentz scalar and V be an
interaction which is a time component of a Lorentz vector. Then
it is natural to incorporate the V and S into (2) by making the
replacements

H ! H � V, mi ! mi +
1
2

S , i = 1, 2. (3)

Setting m1 = m2 = m, V = 0 followed by (3), and introduc-
ing the scalar potential S = br, Gürsey et al. got a spin-free
Hamiltonian for the meson (qq̄) system [1, 2, 3, 4]:

H2 = 4
"
(m +

1
2

br)2 + P2
r +

L(L + 1)
r2

#
(4)

where we used ~p2 = P2
r +

L(L+1)
r2 with P2

r = � @
2

@r2 � 2
r
@
@r , and L is

the angular momentum and b is real positive constant. Notice
that the meaning of the linear scalar potential is to enforce the
confinement of the quarks bound by a QCD flux string with
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• if	the	bare	quark	mass	is	not	zero,	the	string	tension	
is	also	quantized	(apart	from	the	energy),	 
which	ruin	the	Regge	trajectory,	 
which	is	the	requirement	of	confinement.		

• So	confinement	request	bare	quark	mass	=0	

• Then,	chiral	symmetry	is	consequence	of	
confinement.	
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