Why light quark mass is so small?

Sang-Jin Sin (Hanyang)
2019.12@Ibs+Pusan

Motivation

- Proton mass $=947 \mathrm{MeV}$ vs.

Bare quark (u,d) $=2-4 \mathrm{MeV} \rightarrow$ Quark mass is less than 1\%

- Confinement and deconfiment phase transition almost overlapping. Why two completely different concepts gives related phase diagram?

Chiral symmetry and the confinement

- Regge trajectory : < Dynamics of QCD
- Chiral symmetry need $\mathrm{m}_{\mathrm{q}}=0$: Initial condition

However, chiral transition
~ confinement/dc transition

- Is there any relation?

1. Take holographic QCD in $2+1$.
2. Show that if $m_{q}=0$, we have a Regge traj.
3. Show that if $m_{q} \neq 0$, we have non-linear traj.
4. Since low E QCD dynamics has Regge traj, having non-zero quark mass is not consistent with low E QCD. That is, QCD vac forbid the light quark mass.

Idea: consider the constituent quark mass

$$
S_{D}=i \int d^{d} x \sqrt{-g} \bar{\psi}\left(\Gamma^{M} \mathcal{D}_{M}-m-\Phi\right) \psi+S_{b d},
$$

We could take a hard wall condition
Then hard wall =dual to a Bag !
\rightarrow BUT, will get $m_{n}^{2}=n^{2} \tau$.
So, we consider soft wall instead, using a scalar Φ :

If Φ cost a lot in the central region, it works!

The scalar in AdS4

For any conserved $U(1)$, if there is charged field

$$
S=\int d^{d+1} x \sqrt{-g}\left(\quad-\left|D_{\mu} \Phi\right|^{2}-m_{\Phi}^{2}|\Phi|^{2}\right)
$$

$$
\begin{aligned}
& d s^{2}=\left(d z^{2}+\eta^{\mu \nu} d x^{u} d x^{\nu}\right) / z^{2}, \text { with } \eta^{00}=-1 . \\
& m_{\Phi}^{2}=\Delta(\Delta-d) \quad d=2+1 \quad \Delta=2 \\
& \Phi=M_{0} z+M z^{2}, \text { in } \operatorname{AdS}_{4},
\end{aligned}
$$

we set the source $M_{0}=0$ so that $\Phi=M z^{2}$.
$z \rightarrow \infty$ at the core!

Idea: consider constituent quark mass

$$
\begin{aligned}
& \psi_{ \pm}=\left(-g g^{r r}\right)^{-\frac{1}{4}} \phi_{ \pm}, \quad \phi_{ \pm}=\binom{y_{ \pm}}{z_{ \pm}} \\
& \xi_{+}=i \frac{y_{-}}{z_{+}}, \quad \text { and } \quad \xi_{-}=-i \frac{z_{-}}{y_{+}} . \\
& r^{2} \partial_{r} \xi_{-}+\left(2 m r+2 \frac{M}{r}\right) \xi_{-}+\left(k_{1}-w\right) \xi_{-}^{2}-k_{1}-w=1
\end{aligned}
$$

Spin 1/2

$$
G_{R}=\lim _{r \rightarrow \infty} r^{2 m} \operatorname{diag}\left(\xi_{+}, \xi_{-}\right)
$$

Linear spectrum

$$
\begin{gathered}
G_{22}=\frac{M^{-\frac{1}{2}+m}\left(k_{1}+w\right) \Gamma\left(\frac{1}{2}-m\right) \Gamma\left(m+\frac{1}{2}+\frac{k_{1}^{2}-w^{2}}{4 M}\right)}{2 \Gamma\left(\frac{1}{2}+m\right) \Gamma\left(1+\frac{k_{1}^{2}-w^{2}}{4 M}\right)}, \\
\frac{k^{2}-\omega^{2}}{4 M}+m+\frac{1}{2}=-n, \quad \text { for } \quad n \in \mathbf{Z}, \\
\alpha^{\prime} m_{n}^{2}=\left(n+m+\frac{1}{2}\right),
\end{gathered}
$$

\rightarrow Open string with tension

$$
T=1 /\left(2 \pi \alpha^{\prime}\right) \text { with } \alpha^{\prime}=\frac{1}{4 M}, \text { if } M \neq 0 .
$$

\rightarrow Zero tension in zero condensation

$$
M \rightarrow 0
$$

(a) gapless $m=-\frac{1}{2}, M=1$

(b) gaped $m=-\frac{1}{4}, M=1$

Fermion on top of the Scalar condensation

2.2. Fermion with scalar interaction in holography

For the baryon spectrum, we consider following fermion tion in AdS space.

$$
S_{\psi}=\int d^{d+1} x \sqrt{-g} i \bar{\psi}\left(\Gamma^{\mu} \mathcal{D}_{\mu}-m-\Phi\right) \psi
$$

where $\mathcal{D}_{\mu}=\partial_{\mu}+\frac{1}{4} \omega_{a b \mu} \Gamma^{a b}$. In this paper, we consider ($d=3$. The equation of motion of (10) is given by

$$
\left(\Gamma^{\mu} \mathcal{D}_{\mu}-m-\Phi\right) \psi=0, \quad \curvearrowright-\Psi_{n}^{\prime \prime}+V \Psi_{n}=E_{n} \Psi_{n}
$$

which can be written as a Schrödinger form Eq.(7) with

$$
V(z)=\frac{m(m-1)+\Phi^{2}}{z^{2}}=\frac{m(m-1)}{z^{2}}+\left(M z+M_{0}\right)^{2} . \quad\left(\psi=e^{i k . x}, E_{n}=k^{2}\right.
$$

If $\quad M_{0}=0 \quad \quad m_{n}^{2}=4 M^{2}(n+m+1 / 2$.

The Question

What if $M_{0} \neq 0$?

$$
\begin{aligned}
& -\Psi_{n}^{\prime \prime}+V \Psi_{n}=E_{n} \Psi_{n} \\
& \quad V(z)=\frac{m(m-1)+\Phi^{2}}{z^{2}}=\frac{m(m-1)}{z^{2}}+\left(M z+M_{0}\right)^{2} .
\end{aligned}
$$

Some 3d QM problem

$$
\begin{aligned}
-u^{\prime \prime} & +V u=\frac{E^{2}}{4} u \\
V & =\left(m+\frac{1}{2} b r\right)^{2}+\frac{L(L+1)}{r^{2}}
\end{aligned}
$$

$m \leftrightarrow M_{0}, \quad b / 2 \leftrightarrow M, \quad$ and $E^{2} / 4 \leftrightarrow E_{n}$.

Heun's equation

$$
\begin{gathered}
u=r \Psi(r)=\exp \left(-\frac{b}{4}\left(r+\frac{2 m}{b}\right)^{2}\right) r^{L} y(r) \\
r \frac{\partial^{2} y}{\partial r^{2}}+\left(-b r^{2}-2 m r+2(l+1)\right) \frac{\partial y}{\partial r}+\left(\left(\frac{E^{2}}{4}-b\left(L+\frac{3}{2}\right)\right) r-2 m(L+1)\right) y=0 \\
\rho \frac{d^{2} y}{d \rho^{2}}+\left(\mu \rho^{2}+\varepsilon \rho+v\right) \frac{d y}{d \rho}+(\Omega \rho+\varepsilon \omega) y=0 \quad \text { Heun's equation } \\
y(\rho)=\sum_{n=0}^{\infty} d_{n} \rho^{n} \\
d_{n+1}=A_{n} d_{n}+B_{n} d_{n-1} \quad \text { for } n \geq 1, \\
A_{n}=-\frac{\varepsilon(n+\omega)}{(n+1)(n+v)}, \quad B_{n}=-\frac{\Omega+\mu(n-1)}{(n+1)(n+v)},
\end{gathered}
$$

Two vs Three term recurrence rel.

after factoring asymptotic behavior Hypergeometric \rightarrow Two term recurrence $d_{n+2}=B_{n+1} d_{n}$ Heun \rightarrow Three term recurrence $d_{n+2}=A_{n+1} d_{n+1}+B_{n+1} d_{n}$

Request

$$
B_{N+1}=d_{N+1}=0 \quad \text { for some } \quad N \in \mathbb{N}_{0}
$$

Then $d_{N+2}=d_{N+3}=d_{N+4}=\cdots=0$

Need expression of $d_{N+1}=$ polynomial \mathscr{P}_{N+1}

$$
\begin{align*}
& \mathcal{P}_{1}\left(a_{0}, b_{0}\right)= b_{0}(L+1)-a_{0}, \\
& \mathcal{P}_{2}\left(a_{0}, b_{0}\right)=\left(b_{0}(L+1)-a_{0}\right)\left(b_{0}(L+2)-a_{0}\right)-4(L+1), \\
& \mathcal{P}_{3}\left(a_{0}, b_{0}\right)=(L+1)(L+2)(L+3) b_{0}^{3}-(3 L(L+4)+11) a_{0} b_{0}^{2} \\
&+\left(3(L+2) a_{0}^{2}-4(L+1)(4 L+9)\right) b_{0}-a_{0}^{3}+4(4 L+5) a_{0}, \\
& \mathcal{P}_{4}\left(a_{0}, b_{0}\right)=(L+1)(L+2)(L+3)(L+4) b_{0}^{4}-2(2 L+5)(L(L+5)+5) a_{0} b_{0}^{3} \\
&+\left((6 L(L+5)+35) a_{0}^{2}-(L+1)(5 L(2 L+11))+72\right) b_{0}^{2} \\
&-\left(2(2 L+5) a_{0}^{3}+4(20 L(L+4)+69) a_{0}\right) b_{0}-20(2 L+3) a_{0}^{2} \\
&+ 144(L+1)(L+2), \\
& \mathcal{P}_{5}\left(a_{0}, b_{0}\right)=(L+1)(L+2)(L+3)(L+4)(L+5) b_{0}^{5} \\
&-(5 L(L+6)(L(L+6)+15)+274) a_{0} b_{0}^{4} \\
&+\left(5(L+3)(2 L(L+6)+15) a_{0}^{2}\right. \\
&\quad-4(L+1)(L(5 L(4 L+39)+607)+600)) b_{0}^{3} \\
&-\left(5(2 L(L+6)+17) a_{0}^{3}-4(L(15 L(4 L+31)+1096)+763) a_{0}\right) b_{0}^{2} \\
&+\left(5(L+3) a_{0}^{4}-12(5 L(4 L+19)+98) a_{0}^{2}\right. \\
&+32(L+1)(16 L(2 L+11)+225)) b_{0} \\
&+ 20(4 L+7) a_{3}-32(16 L(2 L+7)+89) a_{0}-a_{0}^{5} . \tag{25}
\end{align*}
$$

$d_{N+1}\left(a_{0}, b_{0}\right)=0$

Figure 3: Contours of $\mathcal{P}_{3}\left(a_{0}, b_{0}\right)=0$. Figure 4: Asymptotic view of Fig. 3 Parameters of V

$$
d_{N+1}\left(a_{0}, b_{0}\right)=0
$$

A degree $N+1$ polynomial eq.

Consequence of three term recurrence rel.

$$
B_{N+1}=d_{N+1}=0 \quad \text { for some } N \in \mathbb{N}_{0}
$$

$$
\frac{b}{m^{2}}=\frac{2.18\left(\frac{4}{7} N+L+\frac{10}{7}\right)}{N^{2}+\frac{1}{9} N-\frac{1}{40}} \quad \text { Extra quantization }
$$

$$
E^{2}=4 b\left(N+L+\frac{3}{2}\right) \quad \begin{gathered}
\text { Becomes Non- } \\
\text { linear }
\end{gathered}
$$

Is extra quantization Really Necessary?

```
True solution : \(y=1+r\)
```


- Where the equation

$$
\begin{aligned}
-u^{\prime \prime} & +V u=\frac{E^{2}}{4} u \\
V & =\left(m+\frac{1}{2} b r\right)^{2}+\frac{L(L+1)}{r^{2}}
\end{aligned}
$$

came from?

Quark-antiquark system with scalar interaction

- Lichtenberg spinless Bag Model (1982)

$$
\begin{aligned}
& H=\sqrt{\overrightarrow{\mathbf{p}}^{2}+m_{1}^{2}}+\sqrt{\overrightarrow{\mathbf{p}}^{2}+m_{2}^{2}} \\
& m_{i} \rightarrow m_{i}+\frac{1}{2} S, \\
& H^{2}=4\left[\left(m+\frac{1}{2} b r\right)^{2}+P_{r}^{2}+\frac{L(L+1)}{r^{2}}\right]
\end{aligned}
$$

- Notice that this is 3d eq.

For $m=0, \quad E^{2}=4 b\left(L+N_{r}+3 / 2\right) \quad$ Gursey : 1992

CONCLUSION

- if the bare quark mass is not zero, the string tension is also quantized (apart from the energy), which ruin the Regge trajectory, which is the requirement of confinement.
- So confinement request bare quark mass $=0$
- Then, chiral symmetry is consequence of confinement.
－Thank you
－谢谢
－ございます

