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Astronomy has been,  
traditionally, 
an experience of 
solitude

Context  ...

Meaning … 

Discovery happened by chance 

or

By careful analysis of small volume of highly 
informative data 



Context  ...

2 types of Astronomical data

Spectroscopic

● Pros:
○ High resolution
○ Large information content
○ Enable astrophysical analysis

● Cons:
○ Super expensive
○ Strong requirements on observation 

conditions
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Context  ...

2 types of Astronomical data

Spectroscopic

● Pros:
○ High resolution
○ Large information content
○ Enable astrophysical analysis

● Cons:
○ Super expensive
○ Strong requirements on observation 

conditions

Photometry

● Pros:
○ Easy to obtain
○ Allows environmental and 

morphological analysis
○ Enables time domain research of a 

large number of objects

● Cons:
○ Low resolution (integration over large 

wavelength range)

The Vera Rubin Observatory Legacy Survey of Space and Time 
(LSST)

~10 million candidates/night
Over a total life span of 10 years

Serendipitous discoveries will not happen...
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https://donghwa-kim.github.io/iforest.html

Anomaly Detection:

Isolation Forest
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Anomaly detection:

First try: the Open Supernova Catalog

Pruzhinskaya et al., 2019 - MNRAS - https://arxiv.org/abs/1905.11516

● Real data:
○ Uncertainties
○ Upper limits
○ Different filter sets

● Pre-processing:
○ Filter translation
○ Selection cuts
○ 2D Gaussian Process
○ 3 sets: photo, photo + GP param, tSNE

● Data and analysis:
○ Initial data: 2000 light curves
○ Anomaly detection via Isolation Forest
○ Visually inspected 2% in each set (~100 objs) 

● Results:
○ 81 identified anomalies
○ SLSN, peculiar SNe, miss-classified stars
○ 1 AGN and 1 binary micro-lensing
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Anomaly detection:

First try: the Open Supernova Catalog

Pruzhinskaya et al., 2019 - MNRAS - https://arxiv.org/abs/1905.11516

● Real data:
○ Uncertainties
○ Upper limits
○ Different filter sets

● Pre-processing:
○ Filter translation
○ Selection cuts
○ 2D Gaussian Process
○ 3 sets: photo, photo + GP param, tSNE

● Data and analysis:
○ Initial data: 2000 light curves
○ Anomaly detection via Isolation Forest
○ Visually inspected 2% in each set (~100 objs) 

● Results:
○ 81 identified anomalies
○ SLSN, peculiar SNe, miss-classified stars
○ 1 AGN and 1 binary micro-lensing

Problem: 
What is scientifically interesting is in the eye 
of the beholder.
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Human in the loop:

Active Learning for Anomaly Detection

Data
Object with highest 

anomaly score

Anomaly Detection Algorithm

Show to the expert:
Is this an anomaly?

Yes/No
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● Ensemble learning: when you do not know, ask around!

● 2 perfectly accurate AD algorithms will agree on the scores for 
true anomalies

● In the real case one will be more accurate than the other, so 
we need to assign weights

● Active Anomaly Discovery:
○ Start with a normal Isolation Forest

○ Consider each decision path leading to a leaf node as an 
weak AD algorithm (ensemble member)

○ Assign an equal weight to each ensemble member

■ Show the most anomalous obj to the expert

■ If expert_answer == yes:
Show next obj with highest anomaly score

else:
Update weights

Das, S., Wong, W-K., Dietterich, T., Fern, A. and Emmott, A. (2016). Incorporating Expert Feedback into Active Anomaly Discovery 
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Human in the loop:

Ensemble learning and expert feedback



Ishida et al., 2019 - https://arxiv.org/pdf/1909.13260v1.pdf 14

Applications to astronomy:

Simulations: the PLAsTiCC data set
● Data from the Kaggle PLAsTiCC data set restricted to Supernova-like events
● Initial sample: ~ 7000 light curves, 3 known classes, 3 peculiar classes (277 anomalies, 4%)
● 145 objects scrutinized (~2%), on average: 

○ Random Sampling: 5  real anomalies
○ Isolation Forest: 12 real anomalies
○ Active Anomaly Discovery: 120 real anomalies

https://arxiv.org/pdf/1909.13260v1.pdf


Ishida et al., 2019 - https://arxiv.org/pdf/1909.13260v1.pdf
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● Anomaly:
○ Miss-classification (non-SNe)
○ Unusual light curve behavior
○ Previously known 

91bg-like and 91T-like

● Not-anomaly:
○ Bad Gaussian process fitting
○ Not enough signal
○ Identified artifacts

● Results within 2% contamination (40 objs):
○ Random sampling: 2 (5%)
○ Isolation Forest: 5 (15%)
○ Active Anomaly Discovery: 11 (27%)

AAD was able to increase the incidence of true anomalies 
presented to the expert in 80%
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Applications to astronomy:

Real data: The Open Supernova Catalog

https://arxiv.org/pdf/1909.13260v1.pdf


Ishida et al., 2019 - https://arxiv.org/pdf/1909.13260v1.pdf

● It requires some time for changes to be effectively incorporated

● Late queries:
○ Objects which were not found in the static case
○ Higher concentration of true anomalies
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Applications to astronomy:

Real data: The Open Supernova Catalog

https://arxiv.org/pdf/1909.13260v1.pdf


Active Anomaly Detection for 
time-domain discoveries

Ishida et al., 2019 - https://arxiv.org/pdf/1909.13260v1.pdf

33

14

Fast identification of binary 
microlensing event
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Conclusions

● Active Anomaly Detection can be a powerful tool to 
boost discoveries

● Approach is still under development in other fields
○ Opportunity to develop astronomy-oriented 

strategies

● Astronomical data has many caveats which are not 
necessarily taken into account by off-the-shelf 
algorithms

● Collaboration is essential

https://snad.space/ 18
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Implications
A French-born broker to digest LSST alerts and search for interesting astrophysical objects

Moller, Peloton, Ishida et al., MNRAS, 2020 - accepted  - arXiv:astro-ph/2009.10185 https://fink-broker.org/ 

Community-driven project with important elements on 
Adaptive Learning and Bayesian Deep Learning

https://arxiv.org/abs/2009.10185
https://fink-broker.org/


https://snad.space/

Thank you, Merci, Спасибо
From the SИAD team!
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Back-up slides
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Active Anomaly Discovery

Das, S., Wong, W-K., Dietterich, T., Fern, A. and Emmott, A. (2016). Incorporating Expert Feedback into Active Anomaly Discovery 

22



Introduction: Difficulties in Big Data Scenarios

Photometry x Spectroscopy
An example from SDSS

http://www.preposterousuniverse.com/blog/2009/10/06/practicality-and-the-universe/ http://www.stsci.edu/~inr/bdpics/bd5.htm

Integration time of at least 
                                               45 minutes
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Introduction: Difficulties in Big Data Scenarios

Photometry x Spectroscopy
An example from the Australian Astronomical Observatory

https://www.gmto.org/ https://arxiv.org/pdf/1311.7371.pdf

For the Giant Magelean Telescope (GMT)
First light 2025

Integration time much larger...
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