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Dwarf Spheroidal Galaxy
and Dark Matter

« Dwarf Spheroidal Galaxy (dSph):

a small, faint galaxy with little dust, and

an old stellar population.
* Why this galaxy is useful?

« dSph may contain lots of
dark matter (DM). The visible stars

The Fornax dwarf galaxy

https://www.eso.org/public/images/eso1007a/

can be considered as a probe of the DM.

It is a good source for studying
dark matter kinematics.

* For example, understanding
the kinematics of DM is essential in the
indirect detection of DM.
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C. Rott, arXiv:0912.5183



Indirect Detection and
Dark Matter Distribution

DM SM

D

The signal flux is proportional to the squared dark matter density (J-factor)

B(AQ) o piyy

and it is important to know the dark matter density precisely for the high-quality analysis.

However, accessible information from dSph is limited since we are watching far away
stars from one direction.
ML may help systematically analyzing dSph with limited information.

As the first part of this project,
we introduce an inference model for DM distribution of dSph, using GAN.
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K|nemat|CS Of dSEh Spherically symmetric case

Kinematics of visible stars of dSph is parameterized by unary functions U,
so that NN analysis can be useful. A

Number density of the stars: ~ (7)
v(r) Vo, Vg

Variance of radial velocity VE(r) vy~ N(O,E(r))

Variance of tangential velocity v7(r) = E + @ .....

For the tangential velocity, we often use poMm(7)
the following anisotropy function instead of the velocity itself.
Vs + Ufb {1 radially biased

—oo tangentially biased

These parameter functions can be identified by analyzing the kinematics of the visible stars.

{(aj’ Y> %, Ur; Vo U¢)i|2 =1, ’N} How can we infer
Also, one good thing is that Position: density estimation the DM distribution
isti ' =\ from
the statlsthal r.nod.elln.g of . > p(?“) — V(’I“) o
the stellar distribution is factorizable. ese tfunctions:

p(7, %) = p(@F)p(F) Velocity: pa:ameter infere_r21ce
. = p(v|r) ~ N(0,v7(r))
We could fit those functions one-by-one. 4/13




Interaction between DM and stars:

Jeans Eguation Spherically symmetric case

These visible stars are assumed to be moving under v,
the gravitational potential of DM distribution.

We may use the equation of motion in order to identify the DM distribution. .
Jeans equation v(r), Vg, Vg
2 N -
dv?“_|_ 1@4_266“” U%:_d_q) _____
dr v dr r dr
poM(T)
Poisson equation for gravity
1 d ,do o G ("
— —1r"— =47nG ppm, — = — dr’ ') dmr'?
r2dr dr DM dr 1% J, pom ()

For spherically symmetric case, a closed form solution of the Jeans equation exists.

— 1 > dd ", 2Bani (1)

v2(r) = dr' z(r"\v(r')—, lo zr:/dr’ a
M= S . G s = [ ar e

After discretizing all the operations above,
the relation between the variance of radial velocity and the DM density becomes linear.

2(r) = 3 Alr ) oo (1)

This linear expression is convenient for embedding this to an NN architecture. 5/13




Line-of-sight observables sprerically symmetric case

However, we cannot access the full data so that the analysis is not straightforward.
We are observing far away stars from a single direction.

(I’, Y, z,Ur, Vg, ’U¢) — (33, Y, Ulos)
The full parameters can not be inferred directly from the data, -
los
Number density of stars: v(r) S EEEEELLEEE

Variance of radial velocity v2(r) Vlos

Velocity anisotropy Bani(T)
But we have to infer them from projected profiles

Number density of stars: U(T0s) U(T10s)

Variance of line-of-sight velocity K(T‘los) Vlos ~ N (0,02 (T10s))

Two degrees of freedom of the velocity are lost during the projection.
The velocity anisotropy is assumed to compensate the lost information.

cf. Analytical solution for the inversion exist (Abel transformation)
1 [ di drios See also Ullio and Valli, JCAP 07 (2016) 025,
v(r)=—— / . > > arXiv:1603.07721 for full closed form solution
T Jr Mos \/Tlos - T of the dark matter density for the symmetric case.
But if we use GAN, we do not need this inversion formula,
and this may help for dealing with more general cases. 6/13




Fitting strate

using GAN

By using GAN, we can directly fit the dark matter density from

i—{ (T10s) }

the sample dataset.

Step 1. Fitting
number density of stars

Trainable function

v (r)

Step 2. Fitting
dark matter density

Extra inputs for compensating
lost information from the projection

6ani (T)

Fixed functions v
>5ani(7°) V(T)

Trainable function

Generator

GAN 1

Training
dataset

Generator

Classifier

Training
GAN 2 dataset
Classifier

r{ (Tlos 9 Ulos) }
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Benchmark point

We consider the following benchmark point for the training sample.

Number density of stars: Plummer model

(r) 3 1
v(r) =

A (L4172 /ria))°/?
Dark matter density: NFW profile

N\ s\ @1~ B0/ py =4 %x 10" Mg /pc’?
mir=n(2) [+ ()] 20
" " (@, 8,7) = (1,3,1)
Velocity anisotropy: Osipkov-Meritt model (Remind that this function is an input for the fitting.)

2
Bani (1) =

Thalf = 1 kpc

.
r 4 r2

ro = 1kpc

Number of stars in the training sample: 10,000

We do not assume any particular set of number density profile and dark matter density
during the GAN training.

We will show the results only using the same anisotropy function for
the training sample and GAN training.
But they can be different in general, and studying an impact on that will be a future study.




Fit: number density of visible stars

Generator model: Normalizing flow from Gaussian distribution N(0,1) to the number density

_ (Sylvester flow is used.
V(r) NF(T) Inverse flow is calculated by Newton’s method)

Projection: the sampled dataset from NF is projected to line-of-sight observables

(r,0,0) — (T10s)

Classifier model: closed form solution of the CE minimization.
(Kernel density estimation is used.)

. p(rlos|y)
i) = LS ) = ) = 5 Kt 2

Additional regularizer: monotone condition on the number denS|ty.
The solution with increasing density is penalized.

dlogv \1°
Lreg,phy — /loglo r [RGLU (d log, T)]

(this regularizer is identical to rectified Gaussian prior on the derivative)

Goodness of fit: likelihood ratio, KS test, ...
(We are comparing two 1D probability densities of r,_ )
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Results
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Fit: dark matter density and
variance of velocity

Generator model: Two-level model with reparameterization layer and a generic function model

p(vmve,%\ ~ (N(0,v2(r)), N(0,v3(r)), N(0,v7(r)) for oy,
. / \ discretized solution of
= \/ ) X N(0,1) vp(r) = ZA(T’T )Pon(T) e Jeans equation

Projection: v2(r) = 2(1 — Bani(r))v2(r) Use anisotropy function.

the sampled dataset from normal distributions is projected to line-of-sight observables
(T7 97 ¢7 Ur, Vg, vqb) — (T1087 UIOS)

Classifier model: Two-level model with logistic regression on v, ?

10g1t O p(y|r1087 UIOS> — MLP]-(TIOS)UIQOS + MLPQ(TlOS) because vigs ~ N(O7 /01205 (T))

Additional regularizer: monotone condition on the dark matter density.
The solution with increasing density is penalized.

d1 ’

d logo T
(this regularizer is identical to rectified Gaussian prior on the derivative)

Goodness of fit: F distribution
(We are comparing variances of v __of training samples and generated samples.) 11 /13




Results
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Conclusion and Discussion

* We introduced an ML-based inference model for dark matter distribution of the
dwarf spheroidal galaxy.

» The event generator for dSph can be converted to the inference model by using
GAN.

* This method is not limited to analyzing dSph using a particular anisotropy
function.

 This method does not require explicit inversion formula from projected
distributions.

» The discussion on this talk is limited to a spherically symmetric case, but it is
easily extendable to more generic cases thanks to the flexibility of ML
architectures.

* If there are foreground stars, we may also use anomaly detection methods such
as ANODE
B. Nachman and D. Shih, Phys. Rev. D 101, 075042 (2020), arXiv:2001.04990
M. Buckley, L. Necib, D. Shih and J. Tamanas, work in progress, (link)
and so on.
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https://indico.desy.de/event/25341/contributions/56824/attachments/36785/46006/StreamFinding.pdf
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