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MOTIVATION

Why Quantum Generative Adversarial Networks (GAN)?

Calorimeters information :

= Used to understand low distance processes occurring during the particle collision
* Tremendous amount of time required by Monte Carlo based simulation

— Generative Adversarial Networks

Quantum Machine Learning :

= Compressed data representation in quantum states

= gGAN model constructed by IBM

— limited in reproducing a probability distribution over discrete variables

‘ Explore different prototypes of quantum GAN to improve the model
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Generative Adversarial Networks (GAN)

Generative model with two neural networks

= Generator : Generates a fake output from a random noisy input
= Discriminator : Classify fake and real data

Real Data

Random
Input Fake Data
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https://doi.org/10.1088%2F1742-6596%2F1085%2F2%2F022005

Application of GAN in HEP

3DGAN

= 3D convolutional layers + Auxiliary regression task estimating the input particle energy
= Two-dimensional projection of 3D energy shower
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https://doi.org/10.1088/1742-6596/1085/2/022005

https://dl.acm.org/doi/proceedings/10.5555/2969033

Quantum GAN

Practical gGAN model constructed by IBM

= Hybrid model : Quantum Generator + Classical Discriminator
= Efficient in loading and learning a probability over discrete values
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https://dl.acm.org/doi/proceedings/10.5555/2969033
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= |nitial state normally distributed

over |0),..., |7)

= Convergence in mean image &

loss function

| v' 2D image summed over longitudinal direction :

Application of qGAN in HEP ¥ Normalized & Binned nto 3 = 8 pixels |
|
|

. v Averaged over 20,000 samples

-7::- depth, = 3 & Different initializations

= Relative entropy

Dk (pllq) =
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p(x)log(——= E §

= Quality of result depends on initial states
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Limitation
IBM qGAN model

= Limited in reproducing an average probability distribution over pixels

= Aim to reproduce a distribution over continuous variables

‘ Need to find alternative ways to reproduce a “set” of images

-:::- Dual-PQC GAN model (in collaboration with Cambridge Quantum Computing)

?.:..5 Continuous Variable Quantum GAN
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Dual-PQC GAN model

Role of single generator shared by two parameterized quantum circuits (pgc)
= PQCL1 — Reproduce the distribution over 2™t images of size 2"

= PQC2 — Reproduce amplitudes over 2" pixels on one image

=) 21 images of size 2™

Real Data
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Convergence in individual images ?

Image0 and Image2 have | £%n =2 n =4 n,=4, depthy, = 2, depth,, = 6

different shape from
real images
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Continuous-Variable QC

Alternative perspective of guantum computing

= Fundamental information-carrying units = Qumodes

) = exp(~iHE) [0) = [ dx p()lx)dx = > (nlp)in)
n=0

= Combine CV gates — CV Neural network

S(z1) D(ay) P (1)
S(z2) D(as) P (¢2)
Uy (81, 1, 91) Uz(02, P2, p2)
S(23) D(as) — ®(e3)
S(z4) D(oy) P(4)
] \ J \
| | | |

Interferometer Squeezing
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Displacement Kerr
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https://doi.org/10.1038/ncomms13795

CV qGAN

Quantum GAN with a generator constructed by CVNN
= One qumode initialized by a noise z~N(0,1) : |initial) = |z) ® |0)®V~1 = D,(2)]0) ® |0)®N-1

No Measurement

0y®N —— — Discard

[z~ N(0, 1)),

sigmoid
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Fully Quantum model : Quantum Generator & Quantum Discriminator

s ™ |X)

0y = 1
Quantum (x) Classical /
Generator z) Discriminator
|2 ~ N(0,1)), —— —

Hybrid model : Quantum Generator & Classical Discriminator
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Application of CV qGAN m HEP

Fully qguantum model

= depth, =5, depthy =3
— NoO convergence in mean image
— Around half of the generated images with negative energy

v' 2D image summed over

longitudinal direction

Binned into 3 pixels Simulation

No normalization required Target
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Application of CV qGAN in HEP
Hybrid Model L —

= depthy=5
— NoO convergence in mean image
— Few generated samples with negative energy
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Application of CV qGAN in HEP

Hybrid Model e
= depth, =3 -l —D
= Different hyperparameters for the optimizer 5 ' T| ’ m o
— Convergence in loss functions & mean image S WWWW““M%%MJWJMH*
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Conclusion
Dual-PQC GAN & CV gGAN

= Two different prototypes of quantum GAN to reproduce a set of images

Dual-POC Approach
= Reproduce images which correspond to the average images of different classes in real data

= Limited to a fixed number of images
‘ Introduce noise as input of PQC2

CV Approach

= CV gqGAN — Exhibits well-know failures in classical GAN
= Number of gumodes limited by computing resources
‘ Parallel processing & Regularization techniques
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QUESTIONS"

suyeon.chang97@gmail.com
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Appendix A : qGAN in HEP (details)

.}Preparation of Initial State

1. Uniform : Equiprobable Superposition of |0),..., |[N — 1)

2. Normal : Normally distributed with empirical mean and std of training set
3. Random : Randomly distributed over |0),..., [N — 1)

‘{.}Classical Discriminator
v' PyTorch Discriminator

v' 512 nodes + Leaky ReLU — 256 nodes + Leaky ReLU — single-node + sigmoid
v AMSGRAD optimizer for both generator and discriminator
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Appendix B : qGAN

in HEP (Results)
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Appendix C: Whyn, > n ?

1
[Io;[2ePs
M() = : , ¢ij €[0,2n[ where I;; = Amplitude at pixel i for image j — Normalized

1 .
oy [

l:..
S Casen,=n
'.

= Quantum Circuit consists of reversible gates — Unitary matrix

= |nputs = computational basis — M(j) = j*" column at Mpqc,

— Cannot train PQC2 with n qubits if M(j) do not form an orthonormal basis
=%,
%,& Casen,=2n

= First 2" columns of PQC2 is constructed as : Mpqc, (i) = i) ® [M(i)) where [i) € {|0), ..., [2"" — 1)},

— (Mpoc, ()| Mpoc,(N) = (liNMDIM()) = {1 ifi=j

0 otherwise
— 22" — 2" columns can be chosen freely to construct a unitary matrix
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Appendix D : Qubit vs. CV

CV Qubit

Fundamental Unit Qumodes {|x)},er, |¥) = [ dx p(x)|x)dx Qubits |0/1), |Y) = «|0) + B|1)
Relevant Operators Position X , Momentum p Pauli Operators oy, 0, 0,

Mode operators @, at

Common Gates Displacement  D;(a) = exp(adl — a*d;) Phase Shift, Rotation, Hadamard,
_ Controlled-U gate
Rotation R;(¢) = exp(ipn;)
- 1 a2 ~t2
Squeezing Si(z) = exp (5 (z*a; — za; ))

Beam Splitters  BS;;(6, ¢) = exp(6(e'®aja; — e '?a;af))

Kerr Ki(x) = exp(ixn?)
Measurements Homodyne lxp x|, Xp = cos(¢p)X + sin(¢p)p Pauli Measurements
Heterodyne %|a)(a| [0/IK0/1], [£X£], | £ iN(£i]

Photon Counting |n)(n|

https://doi.org/10.22331/9-2019-03-11-129
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Appendix E : CVNN

S(z1)

U1(01, D1, 01)

Uz(02, D2, p2)

D(ay) — ®(¢1)
D(az) — ®(¢2)
D(as) = ®(¢3)
D(ay) — ®(¢4)

)

\

)

|
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= Fully connected layer : x - ¢(Wx + b)

=  Weight matrix W decomposed using singular value decomposition :

Interferometer Squeezing

\

\

|

|

Displacement Non-gaussian

W= Weight matrix, b = bias, ¢(x) = Activation function

W — 02201

Multiplication by an orthogonal matrix 0; — Apply an interferometer U,

1
Multiplication by a diagonal matrix £ — Apply a squeezing gate S(r)|x) = e z>"i|Zx)

Addition of bias b — Apply a displacement gate D(a)|x) =

X + a)

1
2
3. Multiplication by another orthogonal matrix 0, — Apply an interferometer U,
4
5

Non-linear function ¢(x) — Apply a Kerr gate ®|x) =

#openas EPFL QL
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