
1

Quantum Generative 

Adversarial Networks 

IML Workshop

22/10/2020

Su Yeon Chang (EPFL, CERN)

Steven Herbert (CQC), Sofia Vallecorsa (CERN) , Elias Combarro (U. Oviedo, CERN), Federico Carminati (CERN)



2

MOTIVATION

Calorimeters information :

 Used to understand low distance processes occurring during the particle collision 

 Tremendous amount of time required by Monte Carlo based simulation 

→ Generative Adversarial Networks

Quantum Machine Learning :

 Compressed data representation in quantum states 

 qGAN model constructed by IBM 

→ limited in reproducing a probability distribution over discrete variables

Quantum Generative Adversarial Networks

Why Quantum Generative Adversarial Networks (GAN)? 

Explore different prototypes of quantum GAN to improve the model
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Generative Adversarial Networks (GAN)

Generative model with two neural networks 

Quantum Generative Adversarial Networks

 Generator : Generates a fake output from a random noisy input

 Discriminator : Classify fake and real data
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Application of GAN in HEP 

3DGAN 

Quantum Generative Adversarial Networks

 3D convolutional layers + Auxiliary regression task estimating the input particle energy

 Two-dimensional projection of 3D energy shower

Real (Geant4)

https://doi.org/10.1088%2F1742-6596%2F1085%2F2%2F022005

Generated (3DGAN)

https://doi.org/10.1088/1742-6596/1085/2/022005
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Quantum GAN

Practical qGAN model constructed by IBM 

Quantum Generative Adversarial Networks

 Hybrid model : Quantum Generator + Classical Discriminator

 Efficient in loading and learning a probability over discrete values 

→ 𝑝𝑔 𝜙 to approach 𝑝𝑟𝑒𝑎𝑙

𝐺𝜙 𝜓𝑖 = 𝑔 𝜙 = ෍

𝑖=0

𝑁−1

𝑝𝑔
𝑖 (𝜙) |𝑖⟩

https://dl.acm.org/doi/proceedings/10.5555/2969033

https://dl.acm.org/doi/proceedings/10.5555/2969033
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Application of qGAN in HEP

Quantum Generative Adversarial Networks

depthg = 3

 Initial state normally distributed 

over | ⟩0 ,…, | ⟩7
 Convergence in mean image & 

loss function

 2D image summed over longitudinal direction 

 Normalized & Binned into 32 = 8 pixels 

 Averaged over 20,000 samples 

depthg = 3 & Different initializations

 Relative entropy

𝐷𝐾𝐿(𝑝||𝑞) = ෍

𝑥∈𝑋

𝑝 𝑥 log(
𝑝 𝑥

𝑞 𝑥
)

 Quality of result depends on initial states 
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Limitation

IBM qGAN model

Quantum Generative Adversarial Networks

Need to find alternative ways to reproduce a “set” of images

 Limited in reproducing an average probability distribution over pixels

 Aim to reproduce a distribution over continuous variables

Dual-PQC GAN model (in collaboration with Cambridge Quantum Computing) 

Continuous Variable Quantum GAN
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Dual-PQC GAN model

 PQC1 – Reproduce the distribution over 2𝑛1 images of size 2𝑛

 PQC2 – Reproduce amplitudes over 2n pixels on one image 

𝟐𝒏𝟏 images of size 𝟐𝒏

Quantum Generative Adversarial Networks

Role of single generator shared by two parameterized quantum circuits (pqc)

𝑛2 = 2𝑛
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Application of Dual-PQC GAN in HEP

Quantum Generative Adversarial Networks

n = 2, n1 = 4, n2 = 4, depthg1 = 2, depthg2 = 16

n = 2, n1 = 4, n2 = 4, depthg1 = 2, depthg2 = 6  2D image summed over 

longitudinal direction 

 Binned into 4 pixels & 

normalized
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Convergence in individual images ? 

Quantum Generative Adversarial Networks

Image0 and Image2 suppressed 

in loss function

Image0 and Image2 have 

different shape from 

real images

All four images have the same 

shape with real images

→ Peak at x = 1 or x = 2

Real

n = 2, n1 = 4, n2 = 4, depthg1 = 2, depthg2 = 16

n = 2, n1 = 4, n2 = 4, depthg1 = 2, depthg2 = 6
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 Fundamental information-carrying units = Qumodes

 Combine CV gates →  CV Neural network

Continuous-Variable QC

Alternative perspective of quantum computing

Quantum Generative Adversarial Networks

𝜓 = exp −𝑖𝐻𝑡 0 = ∫ 𝑑𝑥 𝜓 𝑥 𝑥 𝑑𝑥 = ෍

𝑛=0

∞

𝑛 𝜓 |𝑛⟩

Squeezing Displacement KerrInterferometer https://doi.org/10.1038/ncomms13795

https://doi.org/10.1038/ncomms13795
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CV qGAN

Quantum GAN with a generator constructed by CVNN 

Quantum Generative Adversarial Networks

Hybrid model : Quantum Generator & Classical Discriminator

Fully Quantum model : Quantum Generator & Quantum Discriminator

 One qumode initialized by a noise 𝑧~𝑁(0,1) : 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑧 ⊗ 0 ⊗𝑁−1 = 𝐷0 𝑧 0 ⊗ 0 ⊗𝑁−1
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Application of CV qGAN in HEP

Fully quantum model

Quantum Generative Adversarial Networks

 depthg = 5, depthd = 3

→ No convergence in mean image

→ Around half of the generated images with negative energy

 2D image summed over 

longitudinal direction 

 Binned into 3 pixels 

 No normalization required

Real Images
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Application of CV qGAN in HEP

Hybrid Model

Quantum Generative Adversarial Networks

 depthg = 5

→ No convergence in mean image

→ Few generated samples with negative energy
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Application of CV qGAN in HEP

Hybrid Model 

Quantum Generative Adversarial Networks

 depthg = 3

 Different hyperparameters for the optimizer

→ Convergence in loss functions & mean image

Mode collapse
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Conclusion

Dual-PQC GAN & CV qGAN

Quantum Generative Adversarial Networks

 Two different prototypes of quantum GAN to reproduce  a set of images

Dual-PQC Approach

 Reproduce images which correspond to the average images of different classes in real data

 Limited to a fixed number of images

Introduce noise as input of PQC2

CV Approach 

 CV qGAN → Exhibits well-know failures in classical GAN

 Number of qumodes limited by computing resources 

Parallel processing & Regularization techniques
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QUESTIONS?

suyeon.chang97@gmail.com 

Quantum Generative Adversarial Networks
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Appendix A : qGAN in HEP (details)

Quantum Generative Adversarial Networks

Preparation of Initial State

1. Uniform : Equiprobable Superposition of | ⟩0 ,…, | ⟩𝑁 − 1
2. Normal : Normally distributed with empirical mean and std of training set

3. Random : Randomly distributed over | ⟩0 ,…, | ⟩𝑁 − 1

Classical Discriminator

 PyTorch Discriminator

 512 nodes + Leaky ReLU → 256 nodes + Leaky ReLU → single-node + sigmoid

 AMSGRAD optimizer for both generator and discriminator
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Appendix B : qGAN in HEP (Results)

Quantum Generative Adversarial Networks

RandomUniform



20

Appendix C : Why n
2

> n ? 

Quantum Generative Adversarial Networks

 Quantum Circuit consists of reversible gates → Unitary matrix

 Inputs = computational basis → 𝑀 𝑗 = jth column at 𝑀𝑃𝑄𝐶2

→ Cannot train PQC2 with n qubits if M(j) do not form an orthonormal basis

Case n2 = n

𝑀 𝑗 =

𝐼0𝑗

1

2𝑒𝑖𝜙0𝑗

⋮

𝐼2𝑛−1𝑗

1

2𝑒
𝑖𝜙2𝑛−1𝑗

, 𝜙𝑖𝑗 ∈ [0, 2𝜋[ where 𝐼𝑖𝑗 = Amplitude at pixel i for image j → Normalized

 First 2n columns of PQC2 is constructed as : 𝑀𝑃𝑄𝐶2(𝑖) = 𝑖 ⊗ 𝑀 𝑖 where 𝑖 ∈ { 0 , … , |2𝑛 − 1⟩},

→ ⟨𝑀𝑃𝑄𝐶2(𝑖) 𝑀𝑃𝑄𝐶2(𝑗)⟩ = ⟨𝑖|𝑗 𝑀 𝑖 𝑀 𝑗 = ቊ
1 𝑖𝑓 𝑖 = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

→ 22n – 2n columns can be chosen freely to construct a unitary matrix

Case n2 = 2n
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Appendix D : Qubit vs. CV 

Quantum Generative Adversarial Networks

CV Qubit

Fundamental Unit Qumodes  {|𝑥⟩}𝑥∈𝑅 , 𝜓 = ∫ 𝑑𝑥 𝜓 𝑥 𝑥 𝑑𝑥 Qubits |0/1⟩,  𝜓 = 𝛼 0 + 𝛽|1⟩

Relevant Operators Position ො𝑥 , Momentum Ƹ𝑝

Mode operators ො𝑎, ො𝑎𝑡
Pauli Operators 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧

Common Gates Displacement      𝐷𝑖 𝛼 = exp 𝛼 ො𝑎𝑖
𝑡 − 𝛼∗ ො𝑎𝑖

Rotation             𝑅𝑖 𝜙 = exp 𝑖𝜙 ො𝑛𝑖

Squeezing           𝑆𝑖 𝑧 = exp
1

2
(𝑧∗ ො𝑎𝑖

2 − 𝑧ො𝑎𝑖
𝑡2)

Beam Splitters    𝐵𝑆𝑖𝑗 𝜃, 𝜙 = exp 𝜃(𝑒𝑖𝜙 ො𝑎𝑖
𝑡 ො𝑎𝑗 − 𝑒−𝑖𝜙 ො𝑎𝑖 ො𝑎𝑗

𝑡)

Kerr                   𝐾𝑖 𝜅 = exp(𝑖𝜅𝑛𝑖
2)

Phase Shift, Rotation, Hadamard, 

Controlled-U gate 

Measurements Homodyne |𝑥𝜙⟩⟨𝑥𝜙|, ො𝑥𝜙 = cos(𝜙)ො𝑥 + sin 𝜙 Ƹ𝑝

Heterodyne           
1

𝜋
|𝛼⟩⟨𝛼|

Photon Counting   |𝑛⟩⟨𝑛|

Pauli Measurements

0/1 ⟨0/1|, ± ± , | ± 𝑖⟩⟨±𝑖|

https://doi.org/10.22331/q-2019-03-11-129

https://doi.org/10.22331/q-2019-03-11-129
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Appendix E : CVNN

Quantum Generative Adversarial Networks

 Fully connected layer : 𝒙 → 𝜙(𝑊𝒙 + 𝒃) 𝑊= Weight matrix, 𝒃 = bias, 𝜙 𝑥 = Activation function 

 Weight matrix W decomposed using singular value decomposition :

1. Multiplication by an orthogonal matrix 𝑂1 → Apply an interferometer 𝑈1

2. Multiplication by a diagonal matrix Σ → Apply a squeezing gate 𝑆 𝐫 |𝐱⟩ = 𝑒−
1

2
Σ𝑖𝑟𝑖|Σ𝐱⟩

3. Multiplication by another orthogonal matrix 𝑂2 → Apply an interferometer 𝑈2
4. Addition of bias 𝒃 → Apply a displacement gate 𝐷 𝜶 |𝐱⟩ = |𝐱 + 𝜶⟩

5. Non-linear function 𝜙(𝑥) → Apply a Kerr gate Φ|𝐱⟩ = |𝜙(𝐱)⟩

𝑊 = 𝑂2Σ𝑂1

https://doi.org/10.1038/ncomms13795 Squeezing Displacement Non-gaussianInterferometer

𝐿 𝒙 ∝ 𝜙 𝑊𝒙 + 𝒃

https://doi.org/10.1038/ncomms13795

