Quantum Generative Adversarial Networks

IML Workshop

Su Yeon Chang (EPFL, CERN)
Steven Herbert (CQC), Sofia Vallecorsa (CERN), Elias Combarro (U. Oviedo, CERN), Federico Carminati (CERN)
22/10/2020
MOTIVATION

Why Quantum Generative Adversarial Networks (GAN)?

Calorimeters information:
- Used to understand low distance processes occurring during the particle collision
- Tremendous amount of time required by Monte Carlo based simulation
→ Generative Adversarial Networks

Quantum Machine Learning:
- Compressed data representation in quantum states
- qGAN model constructed by IBM
→ limited in reproducing a probability distribution over discrete variables

→ Explore different prototypes of quantum GAN to improve the model
Generative Adversarial Networks (GAN)

Generative model with two neural networks

- **Generator**: Generates a fake output from a random noisy input
- **Discriminator**: Classify fake and real data
Application of GAN in HEP

3DGAN

- 3D convolutional layers + Auxiliary regression task estimating the input particle energy
- Two-dimensional projection of 3D energy shower

Real (Geant4)

Generated (3DGAN)
Quantum GAN

Practical qGAN model constructed by IBM

- Hybrid model: **Quantum** Generator + **Classical** Discriminator
- Efficient in loading and learning a probability over discrete values
 \[p_g(\phi) \rightarrow p_{\text{real}} \]

\[
G_\phi |\psi_i\rangle = |g(\phi)\rangle = \sum_{i=0}^{N-1} \sqrt{p_g^i(\phi)} |i\rangle
\]
Application of qGAN in HEP

- \(\text{depth}_g = 3 \)
 - Initial state normally distributed over \(|0\rangle, \ldots, |7\rangle\)
 - Convergence in mean image & loss function

- \(\text{depth}_g = 3 \) & Different initializations
 - Relative entropy
 \[
 D_{KL}(p||q) = \sum_{x \in X} p(x) \log \left(\frac{p(x)}{q(x)} \right)
 \]
 - Quality of result depends on initial states

- 2D image summed over longitudinal direction
- Normalized & Binned into \(3^2 = 8\) pixels
- Averaged over 20,000 samples
Limitation

IBM qGAN model

- Limited in reproducing an average probability distribution over pixels
- Aim to reproduce a distribution over continuous variables

Need to find alternative ways to reproduce a “set” of images

- Dual-PQC GAN model (in collaboration with Cambridge Quantum Computing)
- Continuous Variable Quantum GAN
Dual-PQC GAN model

Role of single generator shared by two parameterized quantum circuits (pqc)

- **PQC1** – Reproduce the distribution over 2^{n_1} images of size 2^n
- **PQC2** – Reproduce amplitudes over 2^n pixels on one image

2^{n_1} images of size 2^n
Application of Dual-PQC GAN in HEP

- $n = 2$, $n_1 = 4$, $n_2 = 4$, $\text{depth}_{g1} = 2$, $\text{depth}_{g2} = 6$
 - 2D image summed over longitudinal direction
 - Binned into 4 pixels & normalized

- $n = 2$, $n_1 = 4$, $n_2 = 4$, $\text{depth}_{g1} = 2$, $\text{depth}_{q2} = 16$
Convergence in individual images?

Image0 and Image2 have different shape from real images

All four images have the same shape with real images
→ Peak at $x = 1$ or $x = 2$

$n = 2, n_1 = 4, n_2 = 4, \text{depth}_{g1} = 2, \text{depth}_{g2} = 6$

Image0 and Image2 suppressed in loss function

$n = 2, n_1 = 4, n_2 = 4, \text{depth}_{g1} = 2, \text{depth}_{g2} = 16$
Continuous-Variable QC

Alternative perspective of quantum computing

- Fundamental information-carrying units = *Qumodes*

\[
|\psi\rangle = \exp(-iHt) |0\rangle = \int dx \, \psi(x)|x\rangle dx = \sum_{n=0}^{\infty} \langle n|\psi|n\rangle
\]

- Combine CV gates → CV Neural network

![Diagram of a CV Neural network](https://doi.org/10.1038/ncomms13795)
CV qGAN

Quantum GAN with a generator constructed by CVNN

- One qumode initialized by a noise $z \sim N(0,1)$: $|\text{initial}\rangle = |z\rangle \otimes |0\rangle^{\otimes N-1} = D_0(z)|0\rangle \otimes |0\rangle^{\otimes N-1}$

Fully Quantum model: Quantum Generator & Quantum Discriminator

Hybrid model: Quantum Generator & Classical Discriminator
Application of CV qGAN in HEP

Fully quantum model

- depth\(_g\) = 5, depth\(_d\) = 3
 → No convergence in mean image
 → Around half of the generated images with negative energy

- 2D image summed over longitudinal direction
- Binned into 3 pixels
- No normalization required
Application of CV qGAN in HEP

Hybrid Model

- depth$_g$ = 5
 - No convergence in mean image
 - Few generated samples with negative energy
Application of CV qGAN in HEP

Hybrid Model

- $\text{depth}_g = 3$
- Different hyperparameters for the optimizer
 \rightarrow Convergence in loss functions & mean image

Mode collapse
Conclusion

Dual-PQC GAN & CV qGAN

- Two different prototypes of quantum GAN to reproduce a set of images

Dual-PQC Approach

- Reproduce images which correspond to the average images of different classes in real data
- Limited to a fixed number of images
- Introduce noise as input of PQC2

CV Approach

- CV qGAN → Exhibits well-know failures in classical GAN
- Number of qumodes limited by computing resources
- Parallel processing & Regularization techniques
QUESTIONS?

suyeon.chang97@gmail.com
Appendix A: qGAN in HEP (details)

Preparation of Initial State

1. **Uniform**: Equiprobable Superposition of $|0\rangle, \ldots, |N - 1\rangle$
2. **Normal**: Normally distributed with empirical mean and std of training set
3. **Random**: Randomly distributed over $|0\rangle, \ldots, |N - 1\rangle$

Classical Discriminator

- PyTorch Discriminator
- 512 nodes + Leaky ReLU → 256 nodes + Leaky ReLU → single-node + sigmoid
- AMSGRAD optimizer for both generator and discriminator
Appendix B: qGAN in HEP (Results)
Appendix C : Why $n_2 > n$?

$$M(j) = \left(\begin{array}{c} |I_{0j}\rangle \frac{1}{2} e^{i\phi_{0j}} \\ \vdots \\ |I_{2^n-1j}\rangle \frac{1}{2} e^{i\phi_{2^n-1j}} \end{array} \right), \quad \phi_{ij} \in [0, 2\pi[\quad \text{where } I_{ij} = \text{Amplitude at pixel } i \text{ for image } j \rightarrow \text{Normalized}$$

Case $n_2 = n$
- Quantum Circuit consists of reversible gates → **Unitary matrix**
- Inputs = computational basis → $M(j) = j^{th}$ column at M_{PQC_2}
 → Cannot train PQC2 with n qubits if $M(j)$ do not form an orthonormal basis

Case $n_2 = 2n$
- First 2^n columns of PQC2 is constructed as : $M_{PQC_2}(i) = |i\rangle \otimes |M(i)\rangle$ where $|i\rangle \in \{|0\}, ..., |2^n - 1\}\rangle$,
 → $\langle M_{PQC_2}(i) | M_{PQC_2}(j) \rangle = \langle i | j \rangle \langle M(i) | M(j) \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
 → $2^{2n} - 2^n$ columns can be chosen freely to construct a unitary matrix
Appendix D: Qubit vs. CV

<table>
<thead>
<tr>
<th>Fundamental Unit</th>
<th>CV</th>
<th>Qubit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qumodes</td>
<td>$</td>
<td>x\rangle_{x \in \mathbb{R}}, \quad</td>
</tr>
<tr>
<td>Relevant Operators</td>
<td>Position \hat{x}, Momentum \hat{p}, Mode operators \hat{a}, \hat{a}^t</td>
<td>Pauli Operators $\sigma_x, \sigma_y, \sigma_z$</td>
</tr>
<tr>
<td>Common Gates</td>
<td>Displacement $D_i(\alpha) = \exp(\alpha \hat{a}_i^t - \alpha^* \hat{a}_i)$</td>
<td>Phase Shift, Rotation, Hadamard, Controlled-U gate</td>
</tr>
<tr>
<td></td>
<td>Rotation $R_i(\phi) = \exp(i \phi \hat{n}_i)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Squeezing $S_i(z) = \exp\left(\frac{1}{2} (z^* \hat{a}_i^2 - z \hat{a}_i^t \hat{a}_i^t)\right)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beam Splitters $BS_{ij}(\theta, \phi) = \exp(\theta (e^{i\phi} \hat{a}_i^t \hat{a}_j - e^{-i\phi} \hat{a}_i \hat{a}_j^t))$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kerr $K_i(\kappa) = \exp(i \kappa \hat{n}_i^2)$</td>
<td></td>
</tr>
<tr>
<td>Measurements</td>
<td>Homodyne $</td>
<td>\phi\rangle \langle \phi</td>
</tr>
<tr>
<td></td>
<td>Heterodyne $\frac{1}{\pi}</td>
<td>\alpha\rangle \langle \alpha</td>
</tr>
<tr>
<td></td>
<td>Photon Counting $</td>
<td>n\rangle \langle n</td>
</tr>
</tbody>
</table>

https://doi.org/10.22331/q-2019-03-11-129
Appendix E: CVNN

- Fully connected layer: $x \rightarrow \phi(Wx + b)$
 $W =$ Weight matrix, $b =$ bias, $\phi(x) =$ Activation function
- Weight matrix W decomposed using singular value decomposition:
 $W = O_2 \Sigma O_1$

1. Multiplication by an orthogonal matrix O_1 → Apply an interferometer U_1
2. Multiplication by a diagonal matrix Σ → Apply a squeezing gate $S(r)|x\rangle = e^{-\frac{1}{2}r_i^T \Sigma r_i}|x\rangle$
3. Multiplication by another orthogonal matrix O_2 → Apply an interferometer U_2
4. Addition of bias b → Apply a displacement gate $D(\alpha)|x\rangle = |x + \alpha\rangle$
5. Non-linear function $\phi(x)$ → Apply a Kerr gate $\Phi|x\rangle = |\phi(x)\rangle$

https://doi.org/10.1038/ncomms13795

Quantum Generative Adversarial Networks