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Jet [3avour tagging: !
identifying the quark 3avour at the origin of the jet




" Classibers were built on human-designed discriminating Ohigh levelO
features.

Raw inputs
(tracks)

OHigh levelO
features




In recent years, classiPers are using the raw reconstructed tracks/
vertices in the jet - in addition to the high level features.!

" This talk is about using machine learning for performing the
Intermediate step of vertex reconstruction

Raw inputs
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The Task- secondary vertex bnding



" \We want to learn a function from ! MW % g | n"n"1
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" The function from ! ™ % # 1| """ 1is equivariant -!
If we permeate the inputs the output undergoes a
similar permutation
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The model - a universal model for any task that takes as input a set, and learns a graph structure (edges, hyper edges)



The idea of the proof of universality of the model:

Any continuous equivariant function G from set to k-edges can be approximated by an equivariant
polynomial P¥(X)

This polynomial has a very specibc structure because it is equivariant

We can build our neural network model to match this structure of Pk(X)
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The model has the form ! (" (#(X)))

# is an equivariant set to set function

" is a broadcasting layer, it forms all the possible k-
tuples of nodes

' |s an MLP that operates on each edge/hyperedge to
produce the Pnal output
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In the end we OmanuallyO convert the edge
classibcation to a valid partition of the set

Edge — Partition

Classification
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Experiment

The Dataset
Baseline algorithms for comparison

Performance metrics - 3 perspectives

+ Results
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The Dataset

https://zenodo.org/record/4044628

DOl 10.5281/zenodo.4044628

A tksample, but with the distributions of b/c/light jets
adjusted to have the same number of jets for each
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DELPHES

fast simulation

http://home.thep.lu.se/Pythia/  https://github.com/delphes/delphes



https://zenodo.org/record/4044628

The Dataset

https://zenodo.org/record/4044628

Track perigee parameters

DOl 10.5281/zenodo.4044628
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https://zenodo.org/record/4044628

Two baseline algorithms:

https://ieeexplore.ieee.org/document/5734880

CTIONS ON NUCLEAR SCIENCE

Adaptive Vertex Reconstruction (AVR)

RAVE - a detector-independent toolkit to
reconstruct vertices

Wolfgang Waltenberger, Instiute for High Energy Physics, Austrian Academy of Sciences, Vienna, Austria

via the Lagrangian formalism. Finally,
simple flavor-tagger. Main design goals

Neural network Otrack pair classiperO
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Answers the question - how

important is the Obig pictureO of the

other tracks in the jet in contrast to N, p % track
the pair of tracks in question. features
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Evaluating the
performance

Three
perspectives:

Vertex

Vertex-pair
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Evaluating the

performance
\J et Rand Index = True positives + true negatives
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Adjusted Rand Index
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Evaluating the
performance
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Evaluating the
performance

Vertex

We can look at di#erent kinds of edges and compute their
accuracy - what percentage of them were predicted correctly

Internal External
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Evaluating the
performance

Vertex

Primary vertices
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Evaluating the
performance

Vertex-pair

We can look at di#erent kinds of edges and compute their
accuracy - what percentage of them were predicted correctly

Internal Interpair External
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Evaluating the
performance

Vertex-pair
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OmathO paper

OphysicsO paper
https://arxiv.org/abs/2002.08772

https://arxiv.org/abs/2008.02831
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Summary

" Neural networks are useful for secondary vertex bnding

" Set2Graph model is universal

" S2G model outperforms traditional approach in a variety of performance metrics
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Future directions

Train the model on full simulation / apply on real data - how does it perform compared to existing algorithms?!
How does it impact performance for downstream tasks?!

Use neural networks to learn vertex btting

The underlying question is, does using ML to do better reconstruction help downstream?
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Thank you for your attention!
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