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Jet flavour tagging:
identifying the quark flavour at the origin of the jet

Primary




* Classifiers were built on human-designed discriminating “high level”
features.
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* In recent years, classifiers are using the raw reconstructed tracks/
vertices in the jet - in addition to the high level features.

* This talk is about using machine learning for performing the
iIntermediate step of vertex reconstruction
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The Task - secondary vertex finding



. We want to learn a function from R™¥%» — [R>X1

Input

primary [ [
vertex ! [ N
[ .

secondary| I T
vertex - [

jet  track )

X
n (features features

e The function from R™% — Rl ig equivariant -

If we permeate the inputs the output undergoes a
similar permutation

Input

primary [ [
vertex ' [ TN
[

secondary| [
vertex - [ I

jet . track )
atures features

nx( fe




The model - a universal model for any task that takes as input a set, and learns a graph structure (edges, hyper edges)



The idea of the proof of universality of the model:

* Any continuous equivariant function G from set to k-edges can be approximated by an equivariant
polynomial P(X)

* This polynomial has a very specific structure because it is equivariant

. We can build our neural network model to match this structure of PX(X)

X = X1 @ X2 qa(X) XM @ X R qa(X)
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The model has the form w(f(¢(X)))

@ is an equivariant set to set function

[ is a broadcasting layer, it forms all the possible k-
tuples of nodes

yw is an MLP that operates on each edge/hyperedge to
produce the final output
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In the end we “manually” convert the edge
classification to a valid partition of the set

Edge — Partition

Classification
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Experiment

The Dataset
Baseline algorithms for comparison

Performance metrics - 3 perspectives

+ Results
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The Dataset

https://zenodo.org/record/4044628

DOl 10.5281/zenodo.4044628

A tt sample, but with the distributions of b/c/light jets
adjusted to have the same number of jets for each
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DELPHES

fast simulation

https://qgithub.com/delphes/delphes



https://zenodo.org/record/4044628

The Dataset

https://zenodo.org/record/4044628

Track perigee parameters
DOl 10.5281/zenodo.4044628

Jet 4-vector
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https://zenodo.org/record/4044628

Two baseline algorithms:

https://ieeexplore.ieee.org/document/5734880
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Adaptive Vertex Reconstruction (AVR)

RAVE - a detector-independent toolkit to
reconstruct vertices

Wolfgang Waltenberger, Instiute for High Energy Physics, Austrian Academy of Sciences, Vienna, Austria

Abstract—A  detector-independent toolkit for vertex recon-
n (of vertices) i

Neural network “track pair classifier”
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Answers the question - how

important is the “big picture” of the

other tracks in the jet in contrast to N X track
the pair of tracks in question. features

15



Evaluating the

performance
Three
perspectives:
Jet Vertex Vertex-pair
_ _ | e
ie’f'\ B VTt <\/_\_)(4/\,er2/>
1 [
Plakl I ; J:Z} (yhxL, o)
X
VLI A (vHx2 vy
! 16




Evaluating the

performance
J et Rand Index = True positives + true negatives
n-(mn-—1)/2
Adjusted Rand Index
True What if we were just randomly guessing?
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Evaluating the
performance

Jet
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Evaluating the
performance

Vertex

We can look at different kinds of edges and compute their
accuracy - what percentage of them were predicted correctly

Internal External
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Evaluating the
performance

Vertex
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Evaluating the
performance

Vertex-pair

We can look at different kinds of edges and compute their
accuracy - what percentage of them were predicted correctly

Internal Interpair External
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Evaluating the
performance

Vertex-pair
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Summary

* Neural networks are useful for secondary vertex finding

» Set2Graph model is universal

* S2G model outperforms traditional approach in a variety of performance metrics
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Future directions

Train the model on full simulation / apply on real data - how does it perform compared to existing algorithms?
How does it impact performance for downstream tasks?

Use neural networks to learn vertex fitting

The underlying question is, does using ML to do better reconstruction help downstream?
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Thank you for your attention!
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