#### Hit-reco: ProtoDUNE denoising with DL models

Marco Rossi<sup>1,2</sup>

<sup>1</sup>University of Milan

<sup>2</sup>CERN openlab

4<sup>th</sup> IML Machine Learning Workshop October 21<sup>st</sup> 2020







#### DUNE - Deep Underground Neutrino Experiment DUNE (from 2026) → Neutrino oscillations



#### protoDUNE (from 2017) $\longrightarrow$ Test and validate technologies





Marco Rossi (CERN openlab, University of Milan)

Hit-reco

IML 2020

### LArTPC - Liquid Argon Time Projecting Chamber

- Big box filled with liquid Ar
- Electronics shapes electron induced current
- Plot Raw Digits as images (ADC counts on Time vs Wire)



# Goals of the study



Replace protoDUNE reconstruction with deep learning

- Hit-reco : region of interest (ROI) selection and denoising (DN) of raw data
- Assess capabilities of Graph Neural Networks

Marco Rossi (CERN openlab, University of Milan)

#### Raw Digits - an example

- Collection Plane view: 480 wire channels
- Detector outputs digitized form of the current: ADC counts
- ▶ Time window: 6000 detector timeticks  $@2 \text{ MHz} \rightarrow 3 \text{ ms}$

#### 2D view

1D view



Marco Rossi (CERN openlab, University of Milan)

#### Dataset

- 10 simulated beam spill events with duntepc v08\_24\_00
- Model inputs are collection plane 2D views: arrays (960 × 6000)
- Current version focuses on collection plane only
- Planes are cropped in (32 × 32) images to fit memory
- Train set size 24k crops



#### Proposed Model

Graph Convolutional Neural Network layer

- $\checkmark$  Non local graph
- ✓ KNN graph
- ✓ Long distance correlations
- $\checkmark k = 8$ 
  - ! Complexity  $\mathcal{O}(n^2)$



Recentive fiel

AGGE

(feature space) Hece Non-local graph

Reference: arXiv:1907.08448

 ✓ Convolutional filter

✓ Short distance correlations

#### Marco Rossi (CERN openlab, University of Milan)

# Model Overview - ROI

Region of interest finding (ROI)

Train a classifier:

 $\begin{array}{rrrr} 1 & \longrightarrow & \text{pixel w charge} \\ 0 & \longrightarrow & \text{pixel w/o charge} \end{array}$ 



#### What is signal?

Above Electronic Noise Charge at protoDUNE-SP:  $\sim 3.5 ADC$ in collection plane [Reference, slide 18]



Technical features:

- Inputs are crops (32 × 32)
- \$\mathcal{O}(10^5)\$ trainable
  parameters
- Binary Cross Entropy loss function
- Adam Optimizer

#### Model Overview - DN

Reference: arXiv:1907.08448





9/16

## Benchmark - ROI

Benchmark ROI model against traditional hit finding method

Larsoft product: recob::Hit

- 2D deconvolution
- Finds ROIs

Total pixels in test set: O(34M)Balancing hits/non-hits: 1.9% Figures of merit: • sensitivity:  $\frac{TP}{TP+FN}$ • false positive rate:  $\frac{FP}{TN+FP}$ 

Marco Rossi (CERN openlab, University of Milan)



### Benchmark - ROI

Scores histogram

# The more separated the curve, the better

#### Receiving Operating Characteristic curve

#### Area under curve parameter



Tails are around three orders of magnitude lower than peaks. AUC parameter is really close to unity.

Marco Rossi (CERN openlab, University of Milan)

#### Results - ROI

Overall good agreement

NNs vs DUNE baseline tool:

- higher sensitivity
  - ! higher FPR

Some tweak needed to clean around tracks



### Benchmark - DN

Benchmark DN model against traditional denoising method

Larsoft product: recob:::Wire

- Takes ROI regions (deconvolution)
- Fits peaks with Gaussians



Results - DN

Deconvolution preserves areas, not amplitudes !

- Integrate ADC values over time
- Adjust the normalization
- Compute
  E[|Target Output|]

CNN slightly better GCNN on integrated ADC





Actually over the waveforms amplitudes (2D plane view): GCNN performs better on pSNR

Hit-reco

IML 2020

### Summary

- Denoising and region of interest selection models for protoDUNE simulation events
- Benchmark CNN and Graph Networks against DUNE Baseline algorithms
- NNs succeded in outperforming traditional tools

Future work:

- Enlarge training and test datasets
- Use latest simulation software (dunetpc) version
- Hyperparameter tuning to improve performances

# Thanks!

## Backup - Training Strategy

- 1. Train ROI for 100 epochs
- 2. Save best weights configuration
- 3. Load weights in ROI block for DN
- 4. Train DN for 50 epochs
- 5. Save best weights configuration

Marco Rossi (CERN openlab, University of Milan)



### Backup - Label Cut Impact

- Cut on the labels has an impact on ROI performaces
- Sensitivity increases with the threshold
- Higher cut values mean only big peaks





Marco Rossi (CERN openlab, University of Milan)



### Backup - Label Cut Impact, Mismatched Points

Increasing t values:

- FNs lower
- FPs increase
- ✓ FP clusters around tracks
  - ! How to make tracks sharper?



Marco Rossi (CERN openlab, University of Milan)

Hit-reco

IML 2020

#### Backup - Filter out bad baseline denoised channels

- ✓ NNs good profiling
  - ! Baseline may fail (zero integrated ADC)
- Good ratios overall





- Remove channels with no integrated charge from baseline
- Algorithms show comparable results
  - ! Baseline has large uncertainty