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Reconstruction 
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•What we actually want: particle ID, momentum, position 
•Standard chain has many redundancies 
‣ Seeding (pattern recognition) 
‣ Clustering (pattern recognition) 
‣ Software compensation (pattern recognition) 
‣ ID (pattern recognition) 
‣ PFlow  (pattern recognition) 

•Always the same patterns 
•Segmentation/clustering is just a tool 
•Seedless one-stage approach can save resources and is easier to maintain 
‣ One objective function, fully differentiable, once setup requires O(1) physicists to retrain

• Many specialised teams 
• Binds a lot of person power 
• Interdependencies not always clear 
• Often impossible to properly optimise whole chain

1 muon 
3 few jets 

….
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N to K Problem for Reconstruction
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•Each event has a different number of particles 

•Detector hits need to be clustered/linked to physics 
objects 

•DNNs prefer fixed-size outputs

1 muon 
3 few jets 

….
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A look at computer vision
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•Well known from object detection in images 
• Two main approaches: 
‣ “Traditional’ anchor / bounding box based approaches  [1-4], … 
‣ Anchor-free approaches, using each pixel [5,6, …]

T. Lin et al, arXiv:1405.0312

[1] J. Redmond et al, arXiv:1506.02640 
[2] Y. Hu et al, arXiv:1803.11187 
[3] R. Girshick, arXiv:1504.08083 
[4] T. Lin et al, arXiv:1708.02002

[5] N. Wang et al, arXiv:1904.01355 
[6] X. Zhou et al, arXiv:1904.07850 
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Anchor point based methods
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•Anchor points (X x Y per image) 
•Assign object score/bounding box to anchor point 
•Can also carry other object properties, or IDs follow a different grid (e.g. YOLO) 
•Object can be found multiple times 

•Anchor points grow with with N^(dim), make implicit assumptions on object size 
•A minimal regular grid is assumed 
•Not really optimal for reconstruction based on high-dimensional detector signals

Figures: towardsdatascience.com

http://towardsdatascience.com
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Key point methods
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• Identify key points of the object 
•Predict object properties from key points 

Problem: identify the key points 
•Also predict ‘center-score’ + bounding box 
•Select highest score in the area as key point 
‣ Seed identification! 
‣ Heavily relies on objects to have a center: problematic for a particle 

•Remaining ambiguities still need to be resolved N. Wang et al, arXiv:1904.01355 
X. Zhou et al, arXiv:1904.07850 
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Non maximum suppression

7

•Start with highest score 

•Downweight ‘close’ by objects 
using IoU (Soft NMS) 

•Relies on bounding boxes 

•Not easily adaptable to generic 
particles in detectors 

•Need something more generic, 
applicable to N dimensions 
and non-regular geometries 
(point clouds)

N. Bodla et al, arXiv:1704.04503 
Figures: towardsdatascience.com

http://towardsdatascience.com
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Segmentation and Clustering
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• Maximum number of objects per  
image/point cloud:  
number of pixels/vertices 

• Learn to move pixels towards the object 
center 

• Map to Gaussian probability 

• Assign seed score 

• Collect (from highest seeds score) around the 
seeds 

• ‘Only' performs segmentation 
• Might be problematic if objects don’t have distinct 

centre 
• Seems to work for the neutrino reconstruction 

chain → Kazuhiro’s IML talk D. Neven et al, arXiv:1906.11109 
B. Zhang, P. Wonka, arXiv:1912.00145

https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf
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Object condensation
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•Aim 
‣ Directly determine object properties (e.g. particle 4 momenta, ID) (graphs, images, …) 
‣ Aggregate all object properties in representative 'condensation point’ 
‣ Resolve ambiguities without IoU (boxes) concept 
‣ Also perform a clustering/segmentation but: 
‣ Detach input space (3D/4D/5D) from output space  
‣ Allow for fractional/ambiguous assignments 
‣ Just a tool to resolve ambiguities (and for validation) 

•Define truth: 
‣ Assign each vertex to one object (e.g. highest fraction) 
‣ Assign all object properties to each assigned vertex 

•Predict per vertex 
‣ Object properties 
‣ Confidence β (linked to a “charge” q) 
‣ Cluster coordinates x (dim(x) > 1)

JK, arxiv:2020.03605
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Condensate and predict
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•Maximum β/charge vertices are 
center points * 
•Encourage network to select one representative point per object k 

•Also weight object property loss with β 

•Condensation points will carry all object properties 
•Very natural approach for dynamic graph NN

Maximum charge  
vertex for object k

*NB: Removes saddle point for large N

x^2 dependence allows  
detaching from input space, 

Gradient does not vanish at large ∆x 
unlike for a Gaussian mapping
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Example on image data
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•Proof of principle using images with large overlaps 
‣ Condensation, object ID 
‣ Rather simple CNN 

• Inference 
‣ Start with highest β vertex, collect points in td≅0.9 
‣ Get object properties 

‣ Repeat until βmin≅0.1
JK, arxiv:2002.03605, EPJC

Cluster coordinates
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Application to Particle Flow
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•Simplified detector 
‣ “Flat” in x,y: not curved 
‣ ECal:  16 x 16 cells, each 22 x 22 mm2 x 26 cm lead tungstate (CMS ECal) 
‣ No magnetic field 
‣ “Tracker”: 300µm silicon 5.5 x 5.5 mm2 sensors, placed 5 cm in front of calorimeter 
‣ Assign Gaussian smeared track momentum to highest energy hit 

rel. resolution = ((p/100.)*(p/100.)*0.04 +0.01) 

•Shoot electrons and photons (50/50) 
‣ E = 1 - 200 GeV 
‣ x,y random between -14 and 14 cm 

• 1-9* particles per event 
‣ Discard particle if no sensor can be  

found where it leaves the highest fraction 

•Use GravNet  

• Track information can be incorporated 
very naturally (just another point in the cloud)

Geometry
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GravNet for High Dimensional Inputs
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•Non-sparse adjacency not feasible 
•Operations in V x K (as e.g. in EdgeConv) are expensive, also for memory. 

•Custom CUDA kernels for fast inference/training 
‣ (Almost) memory scaling with K nearest neighbours

s1

s2

FIN

FLR

S

}
}{

(a) (b) (c)
di2

di1

dj2
dj1

(e)(d)

vk

v1

v2

v3

v4

f2
i

f3
i

f4
i

d1k

d2k

d3k

d4k

f1
i

fj
i

  ifjk = fj ×V(djk)
~i

Max( fjk)~i
j

Σ fjk
~i

j
fk =  ~i {

…

FOUT}
FIN{
FLR{’

FLR{’’

~

~

20 - 80% overlap

OOM

[1] S.Qasim, JK, et al, 1902.07987, EPJC (2019) 
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GravNetConv

in torch_geometric!



Jan Kieseler

Object Condensation PF
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• Truth: 
‣ Assign particle properties to vertex with highest fraction 

•Select 200 highest energy deposits/tracks 

•Use rather standard GravNet 
‣ 10 neighbours, 4 space dimensions, 64 features to be exchanged 

•Predict: 
‣ OC Clustering space 
‣ OC Confidence beta 
‣ Position (offset w.r.t. sensor position) 
‣ Energy = Momentum (correction factor w.r.t. sensor energy) 

•Sample: 1.7M events, 1-9 particles per event 
‣ Trained for 110 epochs, learning rate decrease after 20 epochs 

•Set minimum OC clustering charge to 0.1  
(less segmentation focus) 

•Very similar approach now also being applied to CMS HGCal reconstruction

GravNet (128)

GE

3 x Dense (64)

Dense (32)

Pred

Input Ver<ces

6x

Dense (32)

Concatenate
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Segmentation / Postprocessing
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•Start with highest β vertex, collect points in td≅0.8 
•Get object properties 
•Repeat until βmin≅0.1

OC cluster spaceHits
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Particle Efficiency and Response
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• Low fake rate, and fakes only at low energies 
• Improved single particle resolution
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“Jet” properties
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•Generate jet-like sample 
‣ Create particles (50/50 photons/electron) using exponentially falling energy spectrum 

( exp(-ln(300) * E/GeV) 
‣ Randomly pick N particles, with N being Poisson distributed around an average of M  

(M being drawn from a uniform distribution with M <= 15) 
‣ Gives jets proxies between a few GeV up to about 300 GeV, with a poisson distributed number of 

particles for fixed energy 

•Excellent extrapolation behaviour for significantly larger particle densities than seen in 
the training! 
‣ Both GravNet and OC are local
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“Jet” momentum resolution
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•Standard PF does very well for 0 PU fraction (built-in energy conservation) 
•With higher PU fraction identification of individual particles way more important: 

object condensation starts to be better, in particular at low momenta
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Summary
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•Object condensation allows to predict properties of an unknown number of object 
in image, point clouds, graphs, … with a one-shot approach in detector data 
‣ Removes redundancies and dependencies  

•No significant overhead at inference time 

•Particle flow application very promising compared to classic approaches, even in almost 
ideal environment (most convenient for the classic approach) 

•Excellent extrapolation beyond the training conditions for GravNet + object 
condensation model 

•Application to more realistic environments is ongoing (e.g. CMS HGCal)


