Object Condensation

one-stage grid-free multi-object reconstruction in
physics detectors, graph, and image data
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Reconstruction

1 muon
» |3 few jets

e \What we actually want: particle ID, momentum, position
e Standard chain has many redundancies

» Seeding (pattern recognition)

» Clustering (pattern recognition)

» Software compensation (pattern recognition)
>

>

Many specialised teams

Binds a lot of person power

Interdependencies not always clear

Often impossible to properly optimise whole chain

ID (pattern recognition)
PFlow (pattern recognition)

e Always the same patterns
e Segmentation/clustering is just a tool

e Seedless one-stage approach can save resources and is easier to maintain
» One objective function, fully differentiable, once setup requires O(1) physicists to retrain




@ N to K Problem for Reconstruction

1 muon
» |3 few jets

e Each event has a different number of particles

e Detector hits need to be clustered/linked to physics N
objects .

e DNNSs prefer fixed-size outputs %
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<) A look at computer vision

e \Well known from object detection in images

e Two main approaches:
» “Traditional’ anchor / bounding box based approaches [1-4], ...
» Anchor-free approaches, using each pixel [5,6, ...]

T. Lin et al, arXiv:1405.0

1] J. Redmond et al, arXiv:1506.02640

2] Y. Hu et al, arXiv:1803.11187 [5] N. Wang et al, arXiv:1904.01355
3] R. Girshick, arXiv:1504.08083 [6] X. Zhou et al, arXiv:1904.07850
4] T. Lin et al, arXiv:1708.02002
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<) Anchor point based methods

O Positive
@ Negative

T~ Ground
truth

bounding
////; \\\ DOX

Image boundary

e Anchor points (X x Y per image)

e Assign object score/bounding box to anchor point

e Can also carry other object properties, or IDs follow a different grid (e.g. YOLO)
e Object can be found multiple times

e Anchor points grow with with N*(dim), make implicit assumptions on object size
e A minimal regular grid is assumed
e Not really optimal for reconstruction based on high-dimensional detector signals

Figures: towardsdatascience.com



http://towardsdatascience.com

<) Key point methods

e |dentify key points of the object
e Predict object properties from key points

Problem: identify the key points
e Also predict ‘center-score’ + bounding box

e Select highest score in the area as key point
» Seed identification!
» Heavily relies on objects to have a center: problematic for a particle

e Remaining ambiguities still need to be resolved N. Wang et al, arXiv:1904.01355
X. Zhou et al, arXiv:1904.07850
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<) Non maximum suppression

e Start with highest score

e Downweight ‘close’ by objects
using loU (Soft NMS)

e Relies on bounding boxes

e Not easily adaptable to generic
particles in detectors

e Need something more generic,
applicable to N dimensions
and non-regular geometries
(point clouds)

N. Bodla et al, arXiv:1704.04503
Figures: towardsdatascience.com

Before non-max suppression

Non-Max
Suppression

After non-max suppression
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http://towardsdatascience.com
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Segmentation and Clustering

e Maximum number of objects per
image/point cloud:
number of pixels/vertices

e L earn to move pixels towards the object
center

e Map to Gaussian probability
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e Collect (from highest seeds score) around the
seeds

e ‘Only' performs segmentation

e Might be problematic if objects don’t have distinct

centre

o Seems to work for the neutrino reconstruction
chain — Kazuhiro’s IML talk
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D. Neven et al, arXiv:1906.11109

B. Zhang, P. Wonka, arXiv:1912.00145



https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf

<) Object condensation

e Aim
» Directly determine object properties (e.g. particle 4 momenta, ID) (graphs, images, ...)
» Aggregate all object properties in representative ‘condensation point’

@

» Resolve ambiguities without loU (boxes) concept ’

» Also perform a clustering/segmentation but: . @. : » .
» Detach input space (3D/4D/5D) from output space L Sl @ o
» Allow for fractional/ambiguous assignments @ ... o’
» Just a tool to resolve ambiguities (and for validation) . @. S d © °

® ¢
e Define truth: A

» Assign each vertex to one object (e.g. highest fraction)
» Assign all object properties to each assigned vertex ‘
(.
e Predict per vertex
» Object properties [
» Confidence B (linked to a “charge” q)
» Cluster coordinates x (dim(x) > 1)

2
q; = arctanh” 3; + Qmin
JK, arxiv:2020.03605




<) Condensate and predict

Vk(;lf) = ||z — ;1?a||2qak, and A

Vi(x) = max(0,1 — ||z — z4||)gak-

™~

_ _ Maximum charge
e Maximum [3/charge vertices are vertex for object k

center points *
e Encourage network to select one representative point per object k

~ ‘y, | P —

N x"2 dependence allows
1 , 1 « , detaching from input space,
L;‘B = I_ Z(l — 30!:) + SB T Z i B, Gradient does not vanish at large Ax
A 2 B unlike for a Gaussian mapping

e Also weight object property loss with 3

N
1 - 2
L,=—= L(t;,pi)(1 — n;) arctanh” j3;
g Z\: (1 — n;) arctanh® B; ;

e Condensation points will carry all object properties

e Very natural approach for dynamic graph NN NB: Removes saddle point for large N




<) Example on image data
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e Proof of principle using images with large overlaps

» Condensation, object ID
» Rather simple CNN
e Inference

» Start with highest B vertex, collect points in t4=0.9

» Get object properties
» Repeat until Bmin=0.1

JK, arxiv:2002.03605, EPJC
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<) Application to Particle Flow

e Simplified detector
» “Flat” in x,y: not curved

» ECal: 16 x 16 cells, each 22 x 22 mm?2 x 26 cm lead tungstate (CMS ECal)

» No magnetic field

» “Tracker”. 300um silicon 5.5 x 5.5 mm2 sensors, placed 5 cm in front of calorimeter
» Assign Gaussian smeared track momentum to highest energy hit

rel. resolution = ((p/100.)*(p/100.)*0.04 +0.01)

e Shoot electrons and photons (50/50)
» E=1-200 GeV
» X,y random between -14 and 14 cm

e 1-9* particles per event

» Discard particle if no sensor can be
found where it leaves the highest fraction

e Use GravNet

e Track information can be incorporated
very naturally (just another point in the cloud)

Geometry




@ GravNet for High Dimensional Inputs

e Non-sparse adjacency not feasible
e Operations in V x K (as e.g. in EdgeConv) are expensive, also for memory.

' 1! B
in torch_geometnc.
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e Custom CUDA kernels for fast inference/training
» (Almost) memory scaling with K nearest neighbours 20 - 80% overlap
o131 —— DGCNN
0.121 GravNet
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[1] S.Qasim, JK, et al, 1902.07987, EPJC (2019)

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GravNetConv
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@ Object Condensation PF

e Truth:

» Assign particle properties to vertex with highest fraction

e Select 200 highest energy deposits/tracks

e Use rather standard GravNet Input Vertices
» 10 neighbours, 4 space dimensions, 64 features to be exchanged
—> GE
e Predict: 6X 3 x Dense (64)

» OC Clustering space

» OC Confidence beta GravNet (128)

» Position (offset w.r.t. sensor position) | __| [ Dense S
» Energy = Momentum (correction factor w.r.t. sensor energy) B>
_ Concatenate
e Sample: 1.7M events, 1-9 particles per event
» Trained for 110 epochs, learning rate decrease after 20 epochs Dense (32)
Pred

e Set minimum OC clustering charge to 0.1
(less segmentation focus)

e \Very similar approach now also being applied to CMS HGCal reconstruction




Segmentation / Postprocessing

Hits OC cluster space
©
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e Start with highest 3 vertex, collect points in td=0.8

e Get object properties
e Repeat until Bmin=0.1




@ Particle Efficiency and Response

0.95

efficiency

0.9
0.85
0.8
0.75

0.7

!
||
b
I} ll
bl
|
[l
}

}H

:

|

—— Condensation

—— Baseline PF

0.65 Ff bl

1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I
6 8 10 12 14 16 18 20 22
particles per event

N -
SN

0.45

A.U.

0.35
0.3
0.25
0.2
0.15
0.1
0.05

0.4

......... 1-5 particles

""" 6-10 particles

— 11-15 particles

5 L bg 0-9|5|| 1 T T

m=]||||||||||||||||||||||||||||||||||||ajlll
of o
o -]
i Q.
)
>
)]
&)i_
©)
>

e Low fake rate, and fakes only at low energies

e Improved single particle resolution
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JK, arxiv:2002.03605, EPJC




<) “Jet” properties

e Generate jet-like sample

» Create particles (50/50 photons/electron) using exponentially falling energy spectrum
( exp(-In(300) * E/GeV)

» Randomly pick N particles, with N being Poisson distributed around an average of M
(M being drawn from a uniform distribution with M <= 15)

» Gives jets proxies between a few GeV up to about 300 GeV, with a poisson distributed number of
particles for fixed energy
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o Excellent extrapolation behaviour for significantly larger particle densities than seen in
the training!
» Both GravNet and OC are local




<) “Jet” momentum resolution
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e Standard PF does very well for 0 PU fraction (built-in energy conservation)

e \With higher PU fraction identification of individual particles way more important:
object condensation starts to be better, in particular at low momenta

JK, arxiv:2002.03605, EPJC




&) Summary

e Object condensation allows to predict properties of an unknown number of object
in image, point clouds, graphs, ... with a one-shot approach in detector data
» Removes redundancies and dependencies

e No significant overhead at inference time

e Particle flow application very promising compared to classic approaches, even in almost
ideal environment (most convenient for the classic approach)

e Excellent extrapolation beyond the training conditions for GravNet + object
condensation model

e Application to more realistic environments is ongoing (e.g. CMS HGCal)




