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A real collision event reconstruction

SUATLAS
A EXPERIMENT
http://atlas.ch

Run: 280464
Event: 478442529
2015-09-27 22:09:07 CEST

An accurate global event reconstruction
(determining the 4.-momenta

of all the stable objects, combining the information
from all sub-detector components ) is crucial for

understanding the underlying dynamics.

1 mE _+ * Match of track and cluster
* " * Use track measurement only
5 + * Maitch of track and cluster
. ...It ® ‘ ° °
i T ) chargedpion ooy depestidusto In general a PFlow algorithm tries to use all
n * Use track measurement and remaining cluster . .
eneray . e e sub-detector information (track momenta,
calorimeter cell energies etc) to reconstruct
M h of ° °
3. gt . Cluster energy 0o small and identify the energy four-momenta of
' ﬂ-:t « Look for other associated clusters and . . . .
subtract expected deposit due to charged pion mdnvndual partlcles.
» Use track measurement only
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D1fference between PFlow n ATLAS & CMS
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CMS combines the track & calorimeter information
into unified PFlow object and forms PFlow jets.

ATLAS used calojets by default until now.

For CMS, the gain from using PFlow is large.
- CMS used PFlow from Run-1

ATLAS benefits less from PFlow :
- better HCAL resolution
- smaller magnetic field

- longitudinal segmentation of calorimeter
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Jet reconstruction and performance using

[ ] [
M O tl » atl On particle flow with the ATLAS Detector (1703.10485)

Particle-flow algorithm is a generic event o _
Example of existing ATLAS algorithm as of now :

reconstruction technique. Its performance

strongly depends on detector design IS Y RN

Energyflow algorithm : et Nl

Cluster the cells into calorimeter IdPas o
topoclusters and subtract the (statistically) = ‘[t A A (AN
expected energy deposit by charged tracks @ (b) © @

Lo N

matched to the topocluster. TR TR TR

The task : predict fraction of NNITEMB2  NTTEMBZ N EMB2

neutral energy per cell of the topocluster = N ) S N ) S N

....................
.......

......
..........................

The Cha“enge . Differenf calorimefer |ayers Y L “EMB3 e “EMB3 YL "'/EMB3
have different resolutions.

Our proposal :
Implement a deep learning based method

to extract the fraction of neutral energy for This work is inspired from ATLAS PFlow technique.

each cell in each layer of the ECAL and ATLAS PFlow has smaller gain compared to CMS.
HCAL calorimeter layers.
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Calorimeter with GEANT

The impact of the PFlow highly depends on the
granularity of the designed calorimeter.

HCAL Layer 3
Granularity: 8 X 8
Depth 2.84

HCAL Layer 1
Granularity: 16 X 16 T+ T T 7

The momentum direction of
7', z* are randomly varied ==

EM Layer 2

Granularity: 32 X 32

Depth 16X,

[H\\\\H\\\H\\\}H}}}H
eIy =
Y 4 I
y
X 5
> 9 HCAL Layer 2
ﬂ.i T ; Granularity: 16 X 16
- Depth 4.1
%50 cm
0
T ( — ]/}’) EM Layer 3
195 om Granularity: 32 X 32
Depth 6X,,
EM Layer 1
Granularity: 64 X 64
Particles are thrown  Depth 3X,
randomly from a
corner of 20 cm X 20 cm . . .
square. We make sure that there is a significant energy overlap per cell.
7
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Detector parameters & noise

Detector | Absorber Scintillator Subdetector (Legth)
ECAL Lead Liquid Argon | ECAL1 ( 3Xy)
ECAL2 (16 Xy )
1.2 4.5 ECAL3 ( 6Xp)
HCAL Iron Plastic organic | HCAL1 ( 1.5 Ajp¢ )
HCAL2 (4.1 Ajnt )
4.7 1.0 HCAL3 ( 1.8 Aipy )

Xo=3.9 cm

Aint = 17 .4 cm

Noise is added at per cell level
(used current ~ ATLAS values which includes PU)

Particles are generated in four different
energy ranges [2-5], [5-10], [10-15] & [15-20] GeV.

In these energy regimes tracker has better resolution

Detector Layer | Res. (HG) | Res. (LG) | Noise [MeV] (cf) compared to calorimeters.
ECALI 64 x 64 32 x 32 13 (4)
01 2_' ;;e L L L L i ! | o i
ECAL2 32 x 32 8 x 8 34 (16) - i ]
ECAL3 32 x 32 8 x 8 17 (16) 0.1 . =
HCALLI 16 x 16 8 x8 14 (4) L x = . -
0.08— - * Calorimeter |
HCAL2 16 x 16 8 x 8 8 (4) S - « - oo ]
HCALS3 8 x 8 8 x 8 14 (1) 2 0.06[ e om I
L X X % x « ]
0.04— - X ¥ % x x —
The LG detector configuration is used for 0.02 - .- E
superresolution studies - - -
(see Francesco’s talk for details) % ~"750 100 150 200 250 300 350 400
P; (GeV)atn=0
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What does an event look like ?

Energy distribution in

Calorimeter layers
Beam direction (E € [15,20] GeV)

HCAL-2
HCAL-3
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Event display for topocluster
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Introducing track image

Forming the track :
o(Pr)

Pr
Keep the direction of Pi+ fixed (no magnetic field)

=5x10"*x pp [GeV]

smear the truth Pi+ momenta :

Track image
Truth Pi+

" oy
..
L]
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Machine learning task

We want to regress the neutral energy per cell

Input : Output :
6 channel image 6 channel image
(Signal + Noise) (neutral energy frac)

Layerl — 64 X 64 Layerl — 64 X 64
Layer2 —> 32 X 32 ) — Layer2 —> 32 X 32
Layer3 — 32 X 32 Layer3 — 32 X 32
Layer4 —> 16 X 16 Layer4 — 16 X 16
Layer5 —> 16 X 16 Layer5 — 16 X 16

Layeré — 8 X 8 | . o Layer6 —>8X38
+ Lovens = 7= 2 B = £
Track Layer fot— ¢

E.:Energyofacell, £, 6 = Z E.
A simple L2 loss function doesn’t serve the

C . :
purpose, we need to put extra weights on highest ; + target neutral energy fraction

seed cells inside a topocluster f4: predicted neutral energy fraction

A weight factor of \/Z_Z won’t work either .
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The neural network architecture (pPFlow)

Track image

predictions
( )
e “
UpConv DownConv
| ECAL1 ECAL1 | |
Vi g |
— CEER
" UpConv | Uniform Unif DownConv|
niform
| ECAL2 —— layer | —»| ECAL2
—_ — | layer - J
. 7x64x64 6x64x64 _
| ||
: — (learnable) — ! T
UpConv DownConv /
HCALS HCAL3

6 input (learable) (learnable) 6 output
calorimeter calorimeter
layers layers

I"\

DownCoan '3
—

block

N XN
/)
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The architecture (cPFlow + Res-UNet)

Image from : arXiv 1806.05182

skip connection (concatenation)

x3

skip connection (concatenation)

Input Image

3 32 32 1
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The graph network

Calorimeter showers have natural representation of a point cloud.

S_ 1 ® ® ?__‘j Py %
Image from 1705.02355 e \ “',o—.o &
o < y
« o
© 9 09 S
S 7 _e oo
. o >
v | *%Q 0 o0 ..
e oo & « °
o - o . ...'. l\:—p
° g > oy &8¢
e o€ ‘..,.. % @
3 - : :

Each point in the point-cloud has 4 features (x, y, z, E).
Based on the Euclidean distance among the points, one
can form a K-nearest-neighbor graph
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The graph netWOrk https://arxiv.org/pdt/1801.07829 .pdf

CORME MaX;c y ;) @x(le —x) + @ (x)

(e’)frl = mean;c 4 ; @e(ejl — eil) + CI)e(el.l)

Learned “coordinates”

(71)9 E])

-
S
—
(X5, E5) =
8-
(X3, E3) =
=
i re
-
Forms a K-NN graph N
and performs
the message passing
— M L1
(xy,Ey) (ZN,EN )
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The deepset network

f(X) = 0(;/ I X — A mean(x) 1 ), x=(x,E)

Learned “features”

(71)9 E])
(YQ: E2)

(Yga E3)

(Xy» Ey) (ZZZ\‘T4 ; Eﬁl

Sanmay Ganguly (WIS) IML October 2020



Outline

M Motivation & Baseline energy flow
M Detector Simulation

M The ML Architecture

2 Implementation of PFlow

] Comparative Performance

]Summary

Sanmay Ganguly (WIS) IML October 2020

19



The Parametrized ParticleFlow (pPFlow)

1. Group together the cells from their energy —-> topoclustering.
First identify the seed cells (g >5) and merge with it neighboring cells with L

o

Needed to remove the noise and cluster together cells fired by a common source

(pi+, piO)

2.Parametrize the expected energy given the momentum of the track (measured
from the inner tracker, the layer of the “first” nuclear interaction).

3. The expected energy is subtracted from the topocluster and the remaining energy

is considered as neutral energy

Example of the parametrization in the first
calorimeter layer

Particle Flow predictions 5

15 T T T T T o

! o4

10} 1 B =,

()

=

5k --—= = 102 3

u )
s + | ]
-5} - 1 | ::‘
10 e
—10¢} 7 107 &=
<

—_— | ! L | ! L 'gb<
-15 =10 -5 0 5 10 15 P

cells

=

Subtract expected energy in circle
within the topocluster, The leftovers
enerqy is considered as the neutral
component

This method is used as a baseline
for comparison
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An event display (2-5 GeV)
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The trained network efficiently suppress the noise contribution
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Comparison of training

oo, Gaus, u= 1.01, o = 0.05 oo, Gaus, u= 1.00, o = 0.04
D-Gaus D-Gaus
17501 H mean = 1.01, std = 0.07 17501 Hll mean = 1.00, std = 0.05
ConvNet_100tol1l25 UNet_100tol25
7 Al =950.4 A2 = 120.739 7 Al =89.9 A2 = 1205.636
M1= 1.02, 0, = 0.04 H2= 0.96, o, = 0.08 M1= 0.97, M2= 1.00, 0o, = -0.04
-I(g 1250 1 ﬂ 1250 1
c c
] Q
> 1000+ ' N > 1000+
i i
ConvNet | Conv
500 4 500 1 l}Net
0 v ‘, ) v r 0 v v
Predicted/Measured Predlcted/Measured
| Gaus, u= 1.00, o = 0.04 | Gaus, u= 1.00, o = 0.04
D-Gaus D-Gaus
1750 ] HEl mean = 1.00, std = 0.04 1750 HEl mean = 1.00, std = 0.04
i DeepSet_100tol25 Graph_100tol125
%7 Al =1301.5 A2 = 92.604 =1 A1 =1338.7 A2 = 0.000
M1= 1.00, o; = 0. M2= 1.07, 0, = 0.03 M1= 1.00, o; = 0.04 - M2= 1.51, o, = 0.04
}g 1250 B 1250 1
c c
] ]
> 1000+ > 1000
i) i
DeepSets Graph
Predicted/Measured Predicted/Measured
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Energy response comparison

At low energy the GNN has 4X better resolution than traditional pPFlow

2-5 GeV

5-10 GeV

10-15 GeV

15-20 GeV

6000

5000 A

4000 -

3000 A

Events

2000 A

1000 A

- =+ UNet, u=-3.65, 0 = 7.88
- DeepSet, u=0.21,0=7.74
==+ Graph, u=-0.14,0=7.41
----- ConvNet, u=-2.27, 0 = 8.64
= pPflow, u= 19.85, o0 = 25.90

LA |

- ==+ UNet, u=-1.48, o0 = 5.07
- DeepSet, u=-0.01, 0 = 4.70

1 ==+ Graph, u=-0.60, 0 = 4.44

----- ConvNet, u=-0.36, 0 = 5.48

| = pPflow, u=12.00, 0 = 16.72

===+ UNet, u= 0.06, o0 = 3.85
- DeepSet, u= -0.08, o0 = 3.63
==+ Graph, u=-0.08, o0 = 3.53
----- ConvNet, u= 1.18, 0 = 4.34
m— pPflow, u= 7.07, c = 11.01

===+ UNet, u=-0.36, o = 3.40
- DeepSet, u= 0.02, o = 3.07

71 === Graph, u=-0.01, o = 2.96

..... ConvNet, u= -0.04, o0 = 3.32

| = pPflow, u=4.62, o0 = 8.89

-50 0 50
Energy rel. residuals [%]

E
Relative Residual = <

=50 0 50

Energy rel. residuals [%]

=50 0 50

Energy rel. residuals [%]

predicted Eneutral >

Eneutral

_50 0 50
Energy rel. residuals [%]
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Energy response comparison

With the current model, we observe a small bias + a Non-Gaussian tail
For image based methods.

2-5 GeV

5-10 GeV

10-15 GeV

15-20 GeV

6000

5000 A

4000 A

3000 A

Events

2000 -

1000 A

===+ UNet, u=-3.65, o = 7.88
- DeepSet, u=0.21,0=7.74
==+ Graph, u=-0.14, c = 7.41
----- ConvNet, u=-2.27, o0 = 8.64
= pPflow, u= 19.85, o0 = 25.90

By -

===+ UNet, u=-1.48, 0 = 5.07
= DeepSet, u=-0.01, 0 = 4.70

1 ===+ Graph, u=-0.60, 0 =4.44

----- ConvNet, u=-0.36, 0 = 5.48

| == pPflow, y=12.00, 0 = 16.72

I

===+ UNet, u= 0.06, o = 3.85
- DeepSet, u=-0.08, 0 = 3.63

71 ==+ Graph, u=-0.08, 0 = 3.53

----- ConvNet, u=1.18, 0 = 4.34

| == pPflow, y=7.07, 0 = 11.01

===+ UNet, u=-0.36, 0 = 3.40
- DeepSet, u= 0.02, o = 3.07

71 === Graph, u=-0.01, 0 = 2.96

----- ConvNet, u= -0.04, 0 = 3.32
= pPflow, u= 4.62, c = 8.89

~50 0 50
Energy rel. residuals [%]

=50 0 50

Energy rel. residuals [%]

=50 0 50

Energy rel. residuals [%]

_50 0 50
Energy rel. residuals [%]

™ The current NN trained on full images, the performance is evaluated only within topocluster.
Hence an underestimate of the mean residual within topoclusters.

M The soft cells are treated as per noise & hence the NN predicts zero energy for those cells.
Compensates by over-predicting the hard cells, leading to the Non-Gaussian tail.

M The bias in the pPFlow originates from systematically lower energy & size of the topocluster of

single 7t samples.
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Cell level performance

— — —
o N I
\

Predicted neutral E.o [GeV]
vt
Y. -

0 2 4 6 8 10
Target neutral E.¢ [GeV]

12

14

3000
= Bin pred, u=-1.72, 0 = 5.48
25001 —— Full range, y= 0.55, 0 = 6.41
L 6
w0 n*/n° Energy : 2-5 GeV
20001
%]
c
@ 15007
105 9
L
1000
0

L2}
[0
O
IS —20 -20 0 20 40
103 T Energy rel residuals [%]
Q 3000
& —— Bin pred, u=-0.22, 0 = 3.22
> y500] — Fullrange, u=-0.31, 0 = 3.26
102 n*/m° Energy : 10-15 GeV
20001
v
=
@ 15001
101 o
10001
500
10°
0

-40 =20 O 20 40
Energy rel residuals [%]

3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

= Bin pred, u=-1.30, o0 = 3.69
- Full range, u=-0.50, o0 = 3.66

n*/n® Energy : 5-10 GeV

-40 =20 O 20 40
Energy rel residuals [%]

= Bin pred, u= 0.07, 0 = 2.90
= Full range, u=-1.00, o = 2.67

n*/n° Energy : 15-20 GeV

J

-40 =20 O 20 40
Energy rel residuals [%]

Per cell energy regression over the entire energy range
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Direction response comparison

The distance computed in number of cells between the barycenter of the predicted

and truth neutral energy in the ECAL?2 layer.

2-5 GeV 5-10 GeV 10-15 GeV 15-20 GeV
4000 - UNet, RMS = 0.24 UNet, RMS = 0.14 UNet, RMS = 0.09 UNet, RMS = 0.08
DeepSet, RMS = 0.27 DeepSet, RMS = 0.16 DeepSet, RMS = 0.09 DeepSet, RMS = 0.08
3500 A -2 Graph, RMS = 0.27 = -2 Graph, RMS = 0.16 w.—2 Graph, RMS = 0.09 .- Graph, RMS = 0.08
+ -2 ConvNet, RMS = 0.27 +.—a ConvNet, RMS = 0.15 v - ConvNet, RMS = 0.09 w—a ConvNet, RMS = 0.08
3000 + ==3 pPflow, RMS = 1.10 ==3 pPflow, RMS = 1.14 =<3 pPflow, RMS = 1.22 =<3 pPflow, RMS = 1.18
Y 2500 A 1
c i
o r
S 2000 A Iﬂ I
L

1500 -

1000 A

500 -

-!‘It:—“h-‘--‘-‘--—-u—u ‘l‘:"‘-—""—‘—_—| --------- | II'L—"-“---—----h------"_
0

1 2 3 0 1 2 3 0 1 2 3
Distance(reco-truth)

Distance(reco-truth) Distance(reco-truth)

Distance(reco-truth)

The pPFlow algorithm has much better (upto 6 X) spatial

resolution than traditional PFlow
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Stability of different networks
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Graph networks have best stability and resolution followed by deepsets.
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Summary

[MWe have demonstrated that a suitable ConvNet, Graph, Deepset architecture gives
estimation of the energyfraction for the generalized case :
Input —> Variable Resolution + Noise + Track, Output — Real resolution.

[ The algorithm actually succeeds in yielding a complete image of neutral energy
profile of the layers.

M The trained NN is able to learn and predict the noise pattern.
A network trained on topoclusters has better performance on the topoclusters.

M These ML based algorithms are shown to improve the energy and direction
estimation over existing PFlow algorithm, in case of overlapping
charged and neutral pions.
3 to 5 times resolution improvement obtained at low energy regime.

M The next target is to extend the work to jets and eventually implement in real
experimental analysis.

M The ML algorithm at its current form is applicable to ATLAS as it is based on topoclusters.

Will perform further studies in complex environment before implementation.

Sanmay Ganguly (WIS) IML October 2020
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And what’s next 1n this direction ?

Our detector design allows us to build a low granularity calorimeter by merging
the cells but keeping the high-resolution truth information.

This can be used to establish super-resolution techniques for calorimetry :

Stay tuned for the next talk by Francesco Di-Bello

THANK YOU !

Sanmay Ganguly (WIS) IML October 2020

31



