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The idea
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® Event generation takes much less computing time than detector simulation

® Many events discarded (e.g. by skim)

— try to predict which events will be discarded, already after event generation
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The MC particle record is a graph (tree)

O

Node attributes: PDG ID, 4-vector components, Vertex positions, Decay times
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What could we gain?

Hadronic BY reconstruction (Full event interpretation skim, 5% retention rate)

Assuming tSimulation+Reconstruction - 1000 X tEvent generation
and tapply NN — 10 x tEvent generation
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arb. units

Bias due to false negatives
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Mitigation via distance correlation loss

Master thesis Yannick Bross

Ltot = BCE(yTrum ypred) + A dcorr(xdecorr, ypred)
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Same performance (speedup) for all lines!

(Distance correlation: see Wikipedia and arXiv:2001.05310)
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https://en.wikipedia.org/wiki/Distance_correlation
https://arxiv.org/abs/2001.05310

How to move on from here?

2 possible Directions:

Bias mitigation 4+ reweighting
® Run Simulation + Reconstruction only for pass events
® Train with bias mitigation

® Do a final “residual reweighting”

“Traditional style” filtering
® Simulate a fraction of discarded events as well

® Use NN output as sampling probability (weight with inverse probability)
® Adjust loss function to account for that

Metric in both cases: Stat. uncertainty on weighted events (for same computing time)
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Backup



Simple update rule (Graph convolution, Kipf & Welling)

arXiv:1609.02907
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New node features
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https://arxiv.org/abs/1609.02907

Dataset and training

FEI hadronic BO skim on mixed samples (Y(4S — BOBObar))
~ 1M training events (roughly balanced)

Particle lists cropped at/padded to 100
— actually works quite well with much less (40 used before)
— mostly crops particles at final stages of decay

Train with batch size 1024
Binary cross entropy loss

Stop after no improvement on validation set (20% of training data, wait 10 epochs)
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Effect on other variables
Studies by Yannick
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T — Original (NN pred > 0.90
—— DisCo VECHS (NN pred > 0.93)

@ — Disco R2 (NN pred > 031}

—— DisCa 5 vars (NN predl > 0.91)
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® Bias mitigation is effective for the variable
— lower bias for same speedup factor

Ratio N(True PositvalN(Truz)

it was trained on

® mitigation of one quantity can make bias for others worse
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