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The idea
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• Event generation takes much less computing time than detector simulation

• Many events discarded (e.g. by skim)
→ try to predict which events will be discarded, already after event generation
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The MC particle record is a graph (tree)
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Node attributes: PDG ID, 4-vector components, Vertex positions, Decay times
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Particle Features

Concatenate

Embedding

PDG ids

Fully connected (3 layers, shared)

Graph Convolution (3 layers)

Global average pooling

Adjacency matrix (normalized)

Fully connected (3 layers)

1D Output

per-particle
transformation

event-level
feature extraction

4 / 9



What could we gain?

Hadronic B0 reconstruction (Full event interpretation skim, 5% retention rate)

Assuming tSimulation+Reconstruction = 1000× tEvent generation

and tapply NN = 10× tEvent generation
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Bias due to false negatives
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Mitigation via distance correlation loss
Master thesis Yannick Bross

original

with Distance Correlation loss

Same performance (speedup) for all lines!

(Distance correlation: see Wikipedia and arXiv:2001.05310)
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https://en.wikipedia.org/wiki/Distance_correlation
https://arxiv.org/abs/2001.05310


How to move on from here?

2 possible Directions:

Bias mitigation + reweighting

• Run Simulation + Reconstruction only for pass events

• Train with bias mitigation

• Do a final “residual reweighting”

“Traditional style” filtering

• Simulate a fraction of discarded events as well

• Use NN output as sampling probability (weight with inverse probability)

• Adjust loss function to account for that

Metric in both cases: Stat. uncertainty on weighted events (for same computing time)
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Backup
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Simple update rule (Graph convolution, Kipf & Welling)
arXiv:1609.02907
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https://arxiv.org/abs/1609.02907


Dataset and training

• FEI hadronic B0 skim on mixed samples (Y(4S → B0B0bar))

• ≈ 1M training events (roughly balanced)

• Particle lists cropped at/padded to 100
→ actually works quite well with much less (40 used before)
→ mostly crops particles at final stages of decay

• Train with batch size 1024

• Binary cross entropy loss

• Stop after no improvement on validation set (20% of training data, wait 10 epochs)
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Effect on other variables
Studies by Yannick

• Bias mitigation is effective for the variable it was trained on
→ lower bias for same speedup factor

• mitigation of one quantity can make bias for others worse
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