Selective background MC simulation with graph neural networks at Belle II

<u>Nikolai Hartmann¹</u>, James Kahn², Yannick Bross¹, Kilian Lieret¹, Andreas Maximilian Lindner¹, Thomas Kuhr¹

> ¹Ludwig-Maximilians-Universität München (LMU), Germany ²Karlsruher Institut für Technologie (KIT), Germany

4th IML Machine Learning Workshop, October 23, 2020

The idea

- Event generation takes much less computing time than detector simulation
- Many events discarded (e.g. by skim)
 - \rightarrow try to predict which events will be discarded, already after event generation

The MC particle record is a graph (tree)

Node attributes: PDG ID, 4-vector components, Vertex positions, Decay times

What could we gain?

Hadronic B^0 reconstruction (Full event interpretation skim, 5% retention rate)

Assuming $t_{\rm Simulation+Reconstruction} = 1000 \times t_{\rm Event\,generation}$ and $t_{\rm apply\,NN} = 10 \times t_{\rm Event\,generation}$

Bias due to false negatives

Mitigation via distance correlation loss

Master thesis Yannick Bross

$$L_{\rm tot} = {\rm BCE}(y_{\rm True}, y_{\rm pred}) + \frac{\lambda}{\lambda} \cdot {\rm dCorr}(x_{\rm decorr}, y_{\rm pred})$$

Same performance (speedup) for all lines!

(Distance correlation: see Wikipedia and arXiv:2001.05310)

How to move on from here?

2 possible Directions:

Bias mitigation + reweighting

- Run Simulation + Reconstruction only for pass events
- Train with bias mitigation
- Do a final "residual reweighting"

"Traditional style" filtering

- Simulate a fraction of discarded events as well
- Use NN output as sampling probability (weight with inverse probability)
- Adjust loss function to account for that

Metric in both cases: Stat. uncertainty on weighted events (for same computing time)

Backup

Simple update rule (Graph convolution, Kipf & Welling)

arXiv:1609.02907

Dataset and training

- FEI hadronic B0 skim on mixed samples (Y(4S \rightarrow B0B0bar))
- \approx 1M training events (roughly balanced)
- Particle lists cropped at/padded to 100
 - → actually works quite well with much less (40 used before)
 - ightarrow mostly crops particles at final stages of decay
- Train with batch size 1024
- Binary cross entropy loss
- Stop after no improvement on validation set (20% of training data, wait 10 epochs)

Effect on other variables

Studies by Yannick

- Bias mitigation is effective for the variable it was trained on

 → lower bias for same speedup factor
- mitigation of one quantity can make bias for others worse