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Abstract

The separation of b-quark initiated jets from those coming from lighter quark
is a fundamental tool for the ATLAS physics program at the CERN Large Hadr
most powerful b-tagging algorithms combine information from low-level tagg
reconstructed track and vertex information, into machine learning classifiers.
modern deep learning techniques is explored using simulated events, and cor
achievable from more traditional classifiers such as boosted decision trees.
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Abstract

We provide a bridge between generative modeling in the Machine Learning
simulated physical processes in high energy particle physics by applying a r
Adversarial Network (GAN) architecture to the production of jet images—2
of energy depositions from particles interacting with a calorimeter. We pro)
architecture, the Location-Aware Generative Adversarial Network, that lear
realistic radiation patterns from simulated high energy particle collisions. 1
of GAN-generated images faithfully span over many orders of magnitude a1
desired low-dimensional physical properties (i.e., jet mass, n-subjettiness, ¢
on limitations, and provide a novel empirical validation of image quality an
produced simulations of the natural world. This work provides a base for fu

of GANS for use in faster simulation in high energy particle physics.

This is a preview of subscription content, log_in to check acce
Notes
1. Full simulation can take up to @(min/event).
2. While the azimuthal angle ¢ is a real angle, pseudorapidity # is only ap;
to the polar angle 6. However, the radiation pattern is nearly symmetric
these standard coordinates are used to describe the jet constituent loca

3. For more details about this rotation, which slightly differs from Ref. [2¢

4. Bicubic spline interpolation in the rotation process causes a large numt

interpolated between their original value and zero, the most likely inter
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CaLoGAN: Simulating 3D high energy patrticle showers ir
electromagnetic calorimeters with generative adversaria

Michela Paganini, Luke de Oliveira, and Benjamin Nachman
Phys. Rev. D 97, 014021 — Published 30 January 2018
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ABSTRACT

The precise modeling of subatomic particle interactions and propagation through matt
for the advancement of nuclear and particle physics searches and precision measuren
computationally expensive step in the simulation pipeline of a typical experiment at the
Collider (LHC) is the detailed modeling of the full complexity of physics processes that
motion and evolution of particle showers inside calorimeters. We introduce CALOGAN,
simulation technique based on generative adversarial networks (GANs). We apply thes
networks to the modeling of electromagnetic showers in a longitudinally segmented c:
achieve speedup factors comparable to or better than existing full simulation techniqu
100x—1000x) and even faster on GPU (up to ~ 10° x). There are still challenges for ac
precision across the entire phase space, but our solution can reproduce a variety of ge
shape properties of photons, positrons, and charged pions. This represents a significa
stone toward a full neural network-based detector simulation that could save significal
time and enable many analyses now and in the future.
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Accelerating Science with Generative Adversarial Netwo
Application to 3D Particle Showers in Multilayer Calorime
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ABSTRACT

Physicists at the Large Hadron Collider (LHC) rely on detailed simulations of particle co
expectations of what experimental data may look like under different theoretical model
assumptions. Petabytes of simulated data are needed to develop analysis technigues,
expensive to generate using existing algorithms and computing resources. The modelit
and the precise description of particle cascades as they interact with the material in the
are the most computationally demanding steps in the simulation pipeline. We therefore
deep neural network-based generative model to enable high-fidelity, fast, electromagne
simulation. There are still challenges for achieving precision across the entire phase sp
current solution can reproduce a variety of particle shower properties while achieving s
of up to 100000 x. This opens the door to a new era of fast simulation that could save ¢
computing time and disk space, while extending the reach of physics searches and pre
measurements at the LHC and beyond.
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Agenda 1. Introduction to pruning
2. Pruning for applied research

3. Pruning for fundamental research
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Network capacity and over-parametrization

Models continue to grow
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Canziani et al., 2016
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Language Models are Few-Shot Learners

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher

Berner, Sam McCandlish, Alec Radford, llya Sutskever, Dario Amodei

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of
text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires
task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally
perform a new language task from only a few examples or from simple instructions - something which current NLP
systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-
shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.
Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous
non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any
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GShard: Scaling Giant Models with Conditional Computation and
Automatic Sharding

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, Zhifeng Chen

Neural network scaling has been critical for improving the model quality in many real-world machine learning
applications with vast amounts of training data and compute. Although this trend of scaling is affirmed to be a sure-fire
approach for better model quality, there are challenges on the path such as the computation cost, ease of programming,
and efficient implementation on parallel devices. GShard is a module composed of a set of lightweight annotation APIs
and an extension to the XLA compiler. It provides an elegant way to express a wide range of parallel computation patterns
with minimal changes to the existing model code. GShard enabled us to scale up multilingual neural machine translation
Transformer model with Sparsely-Gated Mixture-of-Experts beyond 600 billion parameters using automatic sharding. We
demonstrate that such a giant model can efficiently be trained on 2048 TPU v3 accelerators in 4 days to achieve far
superior quality for translation from 100 languages to English compared to the prior art.
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Pruning Large Models

Common Train Small
Practice Model

Stop Training
When Converged

Lightly
Compress

Train Large

Optimal Model

Stop Training
Early

Heavily
Compress

"Model optimization’ is extremely common in practice

Best to start out with very large models and prune

In transformers, can prune away many of the heads
(structured pruning) or many parameters globally
(unstructured pruning) or even entire layers with
minimal performance penalty

Can combine pruning and quantization for best results

Michela Paganini
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Train Large, Then Compress: Rethinking Model Size

for Efficient Training and Inference of Transformers

Are Sixteen Heads Readlly Better than One?

Reducing Transformer Depth on Demand with

Structured Dropout

~ RoBERTa Pruning
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Introduction to Pruning

Relevance to HEP

- Trigger and real-time applications

- Low latency, high throughput, low power
- Custom hardware deployment

- Hardware-software co-design

- Memory savings

See Monday's hls4ml tutorial!
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Efficient NN design: compression

104 hIs4ml Reuse factor = 1, Kintex Ultrascale

3.0 {4 == Full model

— punedmodel Uy parallelized
25- (max DSP use)

compression
Number of DSPs availabl

.......

- k=t o
= - =

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision

70% compression ~ 70% fewer DSPs

before pruning after pruning

pruning _ _
synapses

pruning
neurons

® DSPs (used for multiplication) are often
limiting resource

- maximum use when fully parallelized

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision

19" October 2020 hls4ml tutorial - 4*» IML Workshop




Model compression

Efficient model design

O Teacher Model
(large neural network)

elem_mult

sigmoid

elem_mult

sigmoid

12

y

2 bit

Hand-design or automated Distillation Quantization Tensor Decomposition Pruning
design (AutoML)
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Pruning

"removing superfluous structure”

/

how to identify?

what kind of structure?

Before pruning After pruning

11




Tree Pruning

CLASSIFICATION
AND
R EGRESSION
TREES

BEREN ® 0
Breiman Tl

Friedman
(4] "’T
® ® %)
ElE R ® ¢
Olshen 18
T

i Stone
= [ e t——

Facebook company

Al Memo No. 930 December, 1986

Simplifying Decision Trees

J. R. Quinlan’

Abstract: Many systems have been developed for constructing decision trees from collec-
tions of examples. Although the decision trees generated by these methods are accurate
and efficient, they often suffer the disadvantage of excessive complexity that can render
them incomprehensible to experts. It is questionable whether opaque structures of this
kind can be described as knowledge, no matter how well they function. This paper dis-
cusses techniques for simplifying decision trees without compromising their accuracy. Four
methods are described, illustrated, and compared on a test-bed of decision trees from a
variety of domains.

B e ———————

Michela Paganini

Machine Learning, 4, 227-243 (1989)
© 1989 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

An Empirical Comparison of Pruning Methods
for Decision Tree Induction

JOHN MINGERS BSRCD@CUWARWICK.AC.UK
School of Industrial and Business Studies, University of Warwick, Coventry CV4 7AL, England

Editor: Jaime Carbonell

Abstract. This paper compares five methods for pruning decision trees, developed from sets of examples. When
used with uncertain rather than deterministic data, decision-tree induction involves three main stages—creating
a complete tree able to classify all the training examples, pruning this tree to give statistical reliability, and pro-
cessing the pruned tree to improve understandability. This paper concerns the second stage—pruning. It presents
empirical comparisons of the five methods across several domains. The results show that three methods—critical
value, error complexity and reduced error—perform well, while the other two may cause problems. They also
show that there is no significant interaction between the creation and pruning methods.
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Neural Network Pruning Optzmal Brazn Damage IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 1. NO. 2. JUNE 1990

- [etters

Yann Le Cun, John S. Denker and Sara A. Solla A Simple Procedure for Pruning Back-Propagation
AT&T Bell Laboratories, Holmdel, N. J. 07733 Trained Neural Networks

Neural Net Pruning — Why and How

EHUD D. KARNIN

Authors J. Sietsma and R.J.F. Dow
' A B STRA CT Abstract—One possible method of obtaining a neural network of an

appropriate size for a particular problem is to start with a larger net,

cals R - . P . then prune it to the desired size. Training and retraining the net under
g;tfr";l: Melb:::niaboutoq We have used mformatlon-theoretnc ideas to derive a class of prac- all possible subsets of the set of synapses will result in a prohibitively

P.0. Box 50, tical and nearly optimal schemes for adapting the size of a neural long learning process; hence some methods that avoid this exhaustive

Ascot Vale 3032 . . . search have been proposed. Here we estimate the sensitivity of the global
Australia DCtWOl‘k. By removing unimp ortant welghts from a network, Sev- error (cost) function to the inclusion/exclusion of each synapse in the
eral improvements can be expected; better genera]izatlon , fewer artificial neural network. We do it by introducing ‘‘shadow arrays’’

. B o . . that keep track of the incremental changes to the synaptic weights dur-

t'ra"nng examp leS requ"eda a’nd mp roved sp eed Of learmng a'nd/ or ing (a single pass of ) back-propagating learning. The synapses are then

classification. The basic idea 1s to use second-derivative informa- ordered by decreasing sensitivity numbers so that the network can be

. . o o efficiently pruned by discarding the last items of the sorted list. Unlike

tion to make a tradeoﬂ' between network complmt‘y and tra'lnlng previous approaches this simple procedure does not require a modifi-

set error. EXperiments confirm the usefulness of the methods on a cation of the cost function, does not interfere with the learning process,

and demands a negligible computational overhead.

real-world application.

Abstract | SKELETONIZATION: ) —
A continuing question in neural net research is the size of network needed ' A TECHNIQUE FOR TRIMMING THE FAT
to solve a pa.rticu?a.r problem. If training is started with too small a network FROM A NETWORK VIA RELEVANCE ASSESSMENT

for the problem no learning can occur. The researcher must then go through
a slow process of deciding that no learning is taking place, increasing the
size of the network and training again. If a network that is larger than Michael C. Mozer
required is used then processing is slowed, particularly on a conventional Paul Smolensky
von Neumann computer. This paper discusses an approach to this problem
based on learning with a net which is larger than the minimum size network
required to solve the problem and then pruning the solution network. The

Department of Computer Science &
Institute of Cognitive Science

result is a small, efficient network that performs as well or better than the Un;versu);)o;(gz)lgr&fioo
original. This does not give a complete answer to the question since the Boulcer, C H8
size of the initial network is still largely based on guesswork but it gives a

very useful partial answer and sheds some light on the workings of a neural ABSTRACT

network in the process.

This paper proposes a means of using the knowledge in a network to
determine the functionality or relevance of individual units, both for
the purpose of understanding the network’s behavior and improving its
performance. The basic idea is to iteratively train the network to a cer-
tain performance criterion, compute a measure of relevance that identi-
fies which input or hidden units are most critical to performance, and
automatically trim the least relevant units. This skeletonization tech-
nique can be used to simplify networks by eliminating units that con-
vey redundant information; to improve learning performance by first
learning with spare hidden units and then trimming the unnecessary
ones away, thereby constraining generalization; and to understand the
behavior of networks in terms of minimal "rules."

Facebook company Michela Paganini 13
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The state of pruning

Pruning should remove unnecessary redundancy and unused capacity

Can be executed before, during, and after training
Pruning methods differ across many dimensions:

» based on weight magnitude, activations, gradients,
Hessian, interpretability measures, credit assignment,
random, etc.

» Layer-wise vs global, unstructured vs structured, etc.

» Rule-based, bayesian, differentiable, soft approaches,
etc.

» One-shot vs iterative pruning

» Followed by: finetuning, reinitialization, rewinding

Facebook company Michela Paganini
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"finetuning”
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"rewinding"”
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Structured vs unstructured pruning

Algorithm 1: Structured Pruning

Input: Tensor w € R4 > Xdr; axis i € {0,..., R}; criterion
C : - — R; pruning fraction p € [0, 1]
Result: Masked tensor @ € R4 % ~*dr
p = Ju,....dr; // Initialize mask to ones tensor parameters in a convolutional layer
K = p=d;; // Number of entries in azis i to prune
criteria = []
for j < d; do w € [RCut X Cin X ksy X ks,
| criteria.append(—C(w.. ;.. 1))
end
for g in arg_top_k(criteria, K) do
| wp.q.1 =0 // Slice along the i*" axis
end
w=wep
return w

e L o=
HE. R SRR 1]

Structured: remove entire channels

Facebook company Michela Paganini
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Structured vs unstructured pruning

Algorithm

1: Structured Pruning

Input: Tensor w € R4 *dr; axis i € {0,..., R}; criterion
C : - — R; pruning fraction p € [0, 1]

Result: Masked tensor w € R4 *dr

= Jd, . . .dp: // Initialize mask to ones tensor
K = p=d;; // Number of entries in azis i to prune

criteria
for _’) < d,‘

= []
do

| criteria.append(—C(wr.. . .1))

end

for g in arg_top_k(criteria, K) do

| K
end

w=wep
return w

| =0 // Slice along the i*" azis

=" B

Facebook

— L

company

B
o EHREIE 2]

Structured: remove entire channels

Michela Paganini

parameters in a convolutional layer

W E RCOU'[ X Cin X kSO X kSl

Algorithm 2: Unstructured Pruning

Input: Tensor w € R % *da: criterion C' : - — R; pruning fraction
p € [0,1]
Result: Masked tensor @ € R4 % *dr
= Jd,....dg; C
K =p=x[]..pdi; // Number of entries to prune
criteria = []
for j < ][;cpdi do
| criteria.append(—C(w;))

end
for g in arg-top-k(criteria, K) do
| Hg=0
end
w=w®p
return w
H n
= - ™ ' m il
[
m I1 B =:| .I
" -
]
] 1 l. & .I 1
H N ]
.= ! Dll -IIIII- ‘.Ill-

e ] . LA B "=

Unstructured: remove individual connections
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Pruning

Pruning criteria

e i Wi = Wr O L. >

Facebook company

large init  small init magnitude

* . movement random
large final small final 1increase

large final small final large init  small init

lw | —|wy]| |w;| —|wi|  min(awsl, wil) —maz(efws), lwil) [we| — |wi| |ws — ws 0

1™ g A B A &) A L) A
o & U O & &

Figure 2: Mask criteria studied in this section, starting with large_final that was used in [5]. Names
we use to refer to the various methods are given along with the formula that projects each (w;, wy)
pair to a score. Weights with the largest scores (colored regions) are kept, and weights with the

smallest scores (gray regions) are pruned. The x axis in each small figure 1s w; and the y axis 1s wy.

In two methods, « 1s adjusted as needed to align percentiles between w; and w . When masks are
created, ties are broken randomly, so a score of 0 for every weight results in random masks.

Zhou et al., 2019

Michela Paganini

21



02 Pruning for applied
reseqarchn

Facebook company Michela Paganini



Pruning for applied research

Relevance to the outside world
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Pruning for applied research

Advantages

Faster inference and/or training (depending on
compression method and hardware type)

Reduction in storage requirements
In-memory computation

Private on-device computation (mobile, AR/VR,
loT)

Power savings

Reduced heat dissipation in wearable devices
Address some environmental concerns

Lower barrier to entry in the field

Way to test neuron importance assumptions

Facebook company Michela Paganini
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Pruning for applied research

Advantages

Faster inference and/or training (depending on
compression method and hardware type)

Reduction in storage requirements
In-memory computation

Private on-device computation (mobile, AR/VR,
loT)

Power savings

Reduced heat dissipation in wearable devices
Address some environmental concerns

Lower barrier to entry in the field

Way to test neuron importance assumptions

Facebook company Michela Paganini

Disadvantages

Fewer or no pre-trained versions available

Poor quantification of impact of compression
beyond overall accuracy (see fairness, bias,
safety, robustness, etc.)

Potentially no speed-up gains without custom
hardware

Hard to select compression method without
exact knowledge of target hardware
architecture

Task dependence

24



Pruning for applied research

Delivering on Inference-time
and Training-time Speed Ups

- Hard to exploit unstructured sparsity
- Best results for sparsity + qguantization
- Active field of research!
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| | | | | | |

-———f———— —_— = —_— = —_— = —_— = —_— = —_— =
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(b) Unstructured sparse matrix
by global pruning

(c) Block sparse matrix by pruning 2x2 (d) Bank-balanced sparse matrix by
blocks according to block average. local pruning inside each 1x4 bank
Facebook company Michela Paganini

25



02.5 PyTorch Pruning

torch.nn.utils.prune

Streamlining Tensor and Network Pruning in Py Torch, Paganini and Forde,

Facebook company Michela Paganini
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https://arxiv.org/abs/2004.13770
https://arxiv.org/abs/2004.13770

torch.nn.utils.prune

Different tensor pruning technigues enabled
under a unified framework

BasePruningMethod

PruningContainer

CLASS torch.nn.utils.prune.BasePruningMethod

Abstract base class for creation of new pruning techniques.

CLASSMETHOD apply(module, name, *args, **kwargs)

apply_mask(module)

ABSTRACT compute_mask(t, default_mask)

prune (t, default_mask=None)

remove (module)

New pruning technique?

Just subclass BasePruningMethod and
implement compute mask!

Facebook company Michela Paganini

1
N

I 1

SOUR(

SOURC

CE]

SOURCE]

SOUR(

SOURCE]

[SOURCE]

CE]

CE]

CLASS torch.nn.utils.prune.PruningContainexr (*args)

Container holding a sequence of pruning methods for iterative pruning. Keeps track of the order in which pruning
methods are applied and handles combining successive pruning calls.

Identity

CLASS torch.nn.utils.prune.Identity [SOURCE]

Utility pruning method that does not prune any units but generates the pruning parametrization with a mask of ones.

RandomUnstructured

CLASS torxch.nn.utils.prune.RandomUnstructured(amount)

Prune (currently unpruned) units in a tensor at random.

LTUnstructured

CLASS torxch.nn.utils.prune.LlUnstructured(amount)

Prune (currently unpruned) units in a tensor by zeroing out the ones with the lowest L1-norm.

RandomStructured

CLASS torxch.nn.utils.prune.RandomStructured(amount, dim=-1)

Prune entire (currently unpruned) channels in a tensor at random.

LnStructured

CLASS torxch.nn.utils.prune.LnStxuctured(amount, n, dim=-1)
Prune entire (currently unpruned) channels in a tensor based on their Ln-norm.

CustomFromMask

CLASS toxch.nn.utils.prune.CustomFromMask (mask)



https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#CustomFromMask
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#PruningContainer
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#Identity
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#RandomUnstructured
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#L1Unstructured
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#RandomStructured
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#LnStructured
https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#BasePruningMethod

torch.nn.utils.prune

Fetches the mask and the original, unpruned tensor to compute the pruned tensor
during the forward pass — op is accounted for in the backward pass, too

A
: After Prunin
BasePruningMethod g
Parameter ‘ I Mask ‘
CLASS torch.nn.utils.prune.BasePruningMethod [SOURCE] Before Pruning
Abstract base class for creation of new pruning techniques. Parameter
g
CLASSMETHOD apply (module, name, *args, **kwargs) [SOURCE] l
apply_mask(module) [SOURCE] | |
nput Tensor In
put Tensor
ABSTRACT compute_mask(t, default_mask) [SOURCE] L\\\“ /J
< &
prune (t, default_mask=None) [SOURCE] . : 7
forward() /
Sforward() | ()
[SOURCE]

remove (module)

\ 4
l Output ‘
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https://pytorch.org/docs/master/_modules/torch/nn/utils/prune.html#BasePruningMethod

PruningContainer

----- PruningContainer () S T S N S S S S S S S SSSSsssssssses
[ SomePruningMethod () AnotherPruningMethod () FinalPruningMethod () ]
) J

compute mask(t) compute mask(t[slice]) compute mask(t[slice][slice])

{cumulative mask} {cumulative mask} {cumulative mask}

Michela Paganini




For example, in prune.LlUnstructured:

torch.nn.utils.prune

implements the logic that defines which portions of the tensors will be zeroed out
while accounting for previously pruned entries

BasePruningMethod tensor "remove lowest
magnitude
weights”
CLASS torxch.nn.utils.prune.BasePruningMethod [SOURCE]
Abstract base class for creation of new pruning techniques. »
CLASSMETHOD apply(module, name, *args, **kwargs) [SOURCE] .
apply_mask(module) [SOURCE]
ABSTRACT compute_mask(t, default_mask) [SOURCE]
prune (t, default_mask=None) [SOURCE] _ _ _ _ _
(through a prune.PruningContainer) it handles the case in which the tensor had
previously been pruned by computing the valid entries in the tensor that can still
remove (module) [SOURCE] be pruned and then applying the new pruning technique exclusively on those
entries

tensor

mask

defines the interface — concrete subclasses must implement the logic ‘remove lowest
magnitude
remaining
_ weights”
previous mask

Michela Paganini
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torch.nn.utils.prune

Easy to use Easy to extend

model = LeNet() supports 3 PRUNING_TYPEs:
‘global’, 'structured’,
and 'unstructured' (to

prune. ln_structured( determine how to combine

mOdUle:mC.)de1 .convl, class FooBarPruningMethod (prune.BasePruningMethod) : masks if pruning is applied

name="weight", """Prune every other entry in a tensor iteratively)

amount=0.5, N

n=2, : :

AT PRUNING_TYPE = 'unstructured
)

def compute_mask( , t, default_mask): instructions on how to
_ _ mask = default_mask.clone() compute the mask for the

Ilterative pruning made easy mask.view(-1)[::2] = 0 given tensor according to
prune.PruningContainer handles the combination of successive masks for you return mask the logic of your pruning

technique

for _ in range(10):
def foobar_ unstructured(module, name):
prune.ll_unstructured(module=model.fcl, name="bias'", amount=2) FooBarPruningMethod.apply (module, name)
return module

Global pruning made easy

parameters_to_prune = (
(model.convl, "weight"),
(model.conv2, "weight"),
(model.fcl, "weight"),

)

prune.global_unstructured(
parameters_to_prune,
pruning_method=prune.LlUnstructured,
amount=0.2,

)
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torch.nn.utils.prune

torch.nn.utils.prune is designed to actona
torch.nn.Module

BasePruningMethod
CLASS torch.nn.utils.prune.BasePruningMethod [SOURCE]

Abstract base class for creation of new pruning techniques. provides an interface for acting directly on a tensor

‘ CLASSMETHOD apply (module, name, *args, **kwargs) ESOURCE]

apply_mask(module) [SOURCE]
I ABSTRACT compute_mask (%, default_mask) [SOURCE] tensor torch.randn([3 : 51
p = torch.nn.utils.prune.LnStructured(amount=1, dim=1, n=2)
[SOURCE] masked_tensor - p.prune(tensor)

prune (t, default_mask=None)

remove (module) [SOURCE]

Michela Paganini
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torch.nn.utils.prune

=

FACEBOOK Al
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03 Pruning for
fundamental research
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Pruning for fundamental research

Network capacity and over-parametrization

under-parameterized A

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

Risk

e ——

- Training risk:
™~ - - . _interpolation threshold

— -———( _—
Capacity of H

Belkin et al., 2018
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Pruning for fundamental research

Network capacity and over-parametrization

Capacity or complexity are hard to measure:

- number of parameters?

- complexity of function?

- rank?

- horm?

- a function of the architecture and the optimization algorithm?

Michela Paganini



Pruning for fundamental research

Related Work

Opening the black box of Deep Neural Networks

via Information

Ravid Schwartz-Ziv

Edmond and Lilly Safra Center for Brain Sciences
The Hebrew University of Jerusalem

Jerusalem, 91904, Israel

Naftali Tishby”
School of Engineering and Computer Science
and Edmond and Lilly Safra Center for Brain Sciences

The Hebrew University of Jerusalem
Jerusalem, 91904, Israel

RAVID.ZIV@MAIL.HUJI.AC.IL

TISHBY @CS.HUJI.AC.IL

On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization

Sanjeev Arora'? Nadav Cohen? Elad Hazan'’

Facebook company Michela Paganini

EMPIRICAL ANALYSIS OF THE HESSIAN OF OVER-
PARAMETRIZED NEURAL NETWORKS

Levent Sagun', Utku Evci?, V. Ugur Giiney®, Yann Dauphin®, Léon Bottou*

! Institut de Physique Théorique, Université Paris Saclay, CEA
2 Computer Science Department, NYU

3 Data Engineer at Facebook, New York

4 Facebook AI Research, New York

MEASURING THE INTRINSIC DIMENSION
OF OBJECTIVE LANDSCAPES

Chunyuan Li * Heerad Farkhoor, Rosanne Liu, and Jason Yosinski
Duke University Uber AI Labs
cl319@duke.edu {heerad, rosanne, yosinski}@uber.com

GRADIENT DESCENT HAPPENS IN A TINY SUBSPACE

Guy Gur-Ari*

School of Natural Sciences
Institute for Advanced Study
Princeton, NJ 08540, USA

guyg@ias.edu

Daniel A. Roberts™ Ethan Dyer
Facebook Al Research Johns Hopkins University

New York, NY 10003, USA Balti , MD 21218, USA
o Y . —and a lot more!
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03 The lottery ticket
hypothesis (LTH)

Frankle & Carbin, MIT [arXiv:1803.03635]
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What does it say? Frankle & Carbin, 2018 [arXiv:1803.03635]

- Contrary to prior belief, there exists a subset of small,
sparse networks that can be successfully trained from
scratch despite their low number of parameters

Before pruning After pruning

accuracy = do accuracy ~ do

Facebook company Michela Paganini
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What does it say? Frankle & Carbin, 2018 [arXiv:1803.03635]

- Lucky sub-networks can be found with iterative magnitude-
based pruning with weight rewinding to initialization

Algorithm 1 Iterative Magnitude Pruning (IMP) with rewinding to iteration £.

Randomly initialize a neural network f(z; m ® Wj) with initial trivial pruning mask m = 1'"Vo/.

: Train the network for k iterations, producing network f(z;m © Wy). k =0 in original formulation
: Train the network for 7" — k further iterations, producing network f(xz;m © Wy).

Prune the remaining entries with the lowest magnitudes from Wy. That is, let m[i] = 0 if Wy [z] is pruned.

[f satisfied, the resulting network is f(x;m © Wrp).

Otherwise, reset W to W) and repeat steps 3-5 iteratively, gradually removing more of the network.

NN B W -
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What does it say? Frankle & Carbin, 2018 [arXiv:1803.03635]

- Lucky sub-networks can be found with iterative magnitude-
based pruning with weight rewinding to initialization

Algorithm 1 Iterative Magnitude Pruning (IMP) with rewinding to iteration £.

I: Randomly initialize a neural network f(z; m ® W) with initial trivial pruning mask m = 1/"Vo!,

2: Train the network for k£ iterations, producing network f(x;m © Wy). k = 0 in original formulation

3: Train the network for 7" — k further iterations, producing network f(xz;:m © Wy).

4: Prune the remaining entries with the lowest magnitudes from Wr. That is, let m|[i| = 0 if W [i] is pruned.

5: If satisfied, the resulting network is f(xz;m © Wr).

6: Otherwise, reset W to Wy and repeat steps 3-5 iteratively, gradually removing more of the network.

0.98 - ---}--- continued training —— resetting
T:;
Z
g 0.96
2 See also:
=
& 0.94 - - Comparing Rewinding and Fine-tuning in Neural
= Network Pruning, Renda et al. arXiv:2003.02389
Q
cs ‘l ] - [ ] ] " " ]
3 0.92 - - On Iterative Neural Network Pruning, Reinitialization,
Q . 1 . P » = n
< ' and the Similarity of Masks, Paganini and Forde

arXiv:2001.05050
090 | | | | I | |

| I I
100 51.3 263 13.5 7.0 3.6 1.9 1.0 0.5 0.3
Percent of Weights Remaining
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04 Digging deeper into
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Questions

Facebook company

Michela Paganini

Do lottery tickets require
magnitude based pruning?

How similar are lottery
tickets from different
pruning techniques?

How similar are lottery
tickets from different
datasets and optimizers?

Do lottery tickets transfer?

How do unpruned weights
evolve?

What patterns emerge in
the structure of unpruned
pathways?

Can we combine lottery
tickets to speed up their
discovery?

Can we find lottery tickets at

Initialization?

43



On Iterative Neural Network Pruning, Reinitialization, and the Similarity of Masks, Paganini and Forde arXiv:2001.05050

Can all pruning techniques find winning tickets?

ON ITERATIVE NEURAL NETWORK PRUNING, REINI-
TIALIZATION, AND THE SIMILARITY OF MASKS

Michela Paganini Jessica Forde *

Facebook Al Research Brown University

michela@fb.com jessica.fordelbrown.edu
ABSTRACT

We examine how recently documented, fundamental phenomena in deep learn-
ing models subject to pruning are affected by changes in the pruning procedure.
Specifically, we analyze differences in the connectivity structure and learning
dynamics of pruned models found through a set of common iterative pruning
techniques, to address questions of uniqueness of trainable, high-sparsity sub-
networks, and their dependence on the chosen pruning method. In convolutional
layers, we document the emergence of structure induced by magnitude-based un-
structured pruning in conjunction with weight rewinding that resembles the effects
of structured pruning. We also show empirical evidence that weight stability can
be automatically achieved through apposite pruning techniques.
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On Iterative Neural Network Pruning, Reinitialization, and the Similarity of Masks, Paganini and Forde arXiv:2001.05050

Can all pruning techniques find winning tickets?
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On Iterative Neural Network Pruning, Reinitialization, and the Similarity of Masks, Paganini and Forde arXiv:2001.05050

Can all pruning techniques find winning tickets?

Do different pruning techniques agree on what subnetwork is a winning

ticket?
Not exactly. Measure difference in terms of Jaccard distance: d;(M;, M) =1
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On Iterative Neural Network Pruning, Reinitialization, and the Similarity of Masks, Paganini and Forde arXiv:2001.05050

Observations

* |lottery ticket-style weight rewinding, coupled with unstructured pruning, gives rise to connectivity
patterns similar to structured pruning (~feature selection). Not true for finetuning.

LeNet conv1l weights

o . B = -

structured pruning + rewinding

Michela Paganini
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On Iterative Neural Network Pruning, Reinitialization, and the Similarity of Masks, Paganini and Forde arXiv:2001.05050

Observations

* |lottery ticket-style weight rewinding, coupled with unstructured pruning, gives rise to connectivity
patterns similar to structured pruning (~feature selection). Not true for finetuning.

LeNet conv1l weights

i -

Frah W e IS

structured pruning + rewinding

unstructured pruning + rewinding

| - [
oo L
[
1L b
m - -. |
|| |

1 11

AlexNet convZ2 weights

unstructured pruning + finetuning

VGG11 convZ weights

unstructured pruning + rewinding
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unstructured pruning + rewinding
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One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers, Morcos, Yu, Paganini, Tian arXiv:1906.02773

Do lottery tickets found on a task transfer to another task?
How similar are they?

One ticket to win them all: generalizing lottery ticket
initializations across datasets and optimizers

Ari S. Morcos”* Haonan Yu
Facebook Al Research Facebook Al Research
arimorcos@fb.com haonanu@gmail .com
Michela Paganini Yuandong Tian
Facebook Al Research Facebook Al Research
michela@fb.com yuandong@fb.com
Abstract
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One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers, Morcos, Yu, Paganini, Tian arXiv:1906.02773

Do lottery tickets found on a task transfer to another task?
How similar are they?

tl;dr Winning ticket initializations contain generic inductive biases which
generalize to related, but distinct datasets and across optimizers

CIFAR-10
> S
1. "within the natural images domain, winning ticket = 908
initializations generalized across a variety of O §
" (©
datasets o 0.6
| o 2  Ticket source
2. Complexity of dataset (number of examples, number o S%4 — CIFAR-10
of classes, ...) correlates positively with transferability Z o CIFAR-100
< ©0-2 __ ImageNet
3. "winning ticket initializations generalize across 5 N e Random
optimizers" 2, 9,9, 9, 0@0@0 2, 9, 09 09 09 0, Q4 9
6 Ty 20 %5 3 %5 0, 85 9 % % % %

Fraction of weights pruned
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Bespoke vs. Prét-a-Porter Lottery Tickets: Exploiting Mask Similarity for Trainable Sub-Network Finding, Paganini and Forde arXiv:2007.04091

Do lottery tickets found on a task transfer to another task?
How similar are they?

Bespoke vs. Prét-a-Porter Lottery Tickets: Exploiting
Mask Similarity for Trainable Sub-Network Finding

Michela Paganini Jessica Zosa Forde
Facebook AI Research Brown University
michela®fb.com Facebook AI Research

jessica_forde@brown.edu

Abstract

The observation of sparse trainable sub-networks within over-parametrized net-
works — also known as Lottery Tickets (LTs) — has prompted inquiries around their
trainability, scaling, uniqueness, and generalization properties. Across 28 combi-
nations of image classification tasks and architectures, we discover differences in
the connectivity structure of LTs found through different iterative pruning tech-
niques, thus disproving their uniqueness and connecting emergent mask structure
to the choice of pruning. In addition, we propose a consensus-based method for
generating refined lottery tickets. This lottery ticket denoising procedure, based on
the principle that parameters that always go unpruned across different tasks more
reliably identify important sub-networks, is capable of selecting a meaningful por-
tion of the architecture in an embarrassingly parallel way, while quickly discarding
extra parameters without the need for further pruning iterations. We successfully
train these sub-networks to performance comparable to that of ordinary lottery
tickets.
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Bespoke vs. Prét-a-Porter Lottery Tickets: Exploiting Mask Similarity for Trainable Sub-Network Finding, Paganini and Forde arXiv:2007.04091

Do lottery tickets found on a task transfer to another task?
How similar are they?

Not identical. Measure difference in terms of Jaccard distance: dJ(Ml,Mz) 1
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Figure 5: Pairwise total Jaccard distance between the bespoke masks obtained through global
unstructured pruning on LeNet, over a set of tasks. As the networks grow progressively sparser, the
distance between masks grows as their intersection shrinks.
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Bespoke vs. Prét-a-Porter Lottery Tickets: Exploiting Mask Similarity for Trainable Sub-Network Finding, Paganini and Forde arXiv:2007.04091

Facebook company
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Bespoke vs. Prét-a-Porter Lottery Tickets: Exploiting Mask Similarity for Trainable Sub-Network Finding, Paganini and Forde arXiv:2007.04091

The intersection of lottery tickets is a lottery ticket
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Figure 1: Consensus-based lottery ticket identification from bespoke lottery tickets sourced on
different tasks. Thick lines 1dentify unpruned connections; thin lines, pruned ones.
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Bespoke vs. Prét-a-Porter Lottery Tickets: Exploiting Mask Similarity for Trainable Sub-Network Finding, Paganini and Forde arXiv:2007.04091

The intersection of lottery tickets is a lottery ticket

Algorithm 1: Prét-a-porter (consensus) lottery ticket finding algorithm
Data: Set of datasets S on which to source ticket, a network with weights @, pruning iterations 7°,

epochs for iteration E.
Result: A consensus mask M
M - I 6] .
for dataset S € S do
93 =0 °
fort < 1toT do
fore «+ 1to E do
| Otrained = TrainEpoch(fs) ;
end

opruned — Prune(etrained) 5
0s = Reinit(fpruned) ;

end
M = M N GetMask(fs) ;

end
return M ;

Facebook company Michela Paganini
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Bespoke vs. Prét-a-Porter Lottery Tickets: Exploiting Mask Similarity for Trainable Sub-Network Finding, Paganini and Forde arXiv:2007.04091

The intersection of lottery tickets is a lottery ticket

vggll resnetl8

1.0 1.0-

Algorithm 1: Prét-a-porter (consensus) lottery ticket finding algorithm
Data: Set of datasets S on which to source ticket, a network with weights @, pruning iterations 7,

epochs for iteration F. 0.8
Result: A consensus mask M '
M=1 0]
for dataset S € S do _

0 g = 0 : 0.6

fort < 1to T do
fore «+— 1to E do

| Otrained = TrainEpoch(fs) ;
end

opruned — Prune(etrained) >
Og = Reinit(epmned) ;

0.4/

end 0.2

M = M N GetMask(fs) ;

end
return M ;

0.0°
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unstructured
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Bespoke vs. Prét-a-Porter Lottery Tickets: Exploiting Mask Similarity for Trainable Sub-Network Finding, Paganini and Forde arXiv:2007.04091

Intersection lottery ticket at initialization
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Intersection (or "pret-a-porter") lottery tickets contain weights that are
not as extremely far from 0 at initialization as traditional (or "bespoke")
lottery tickets
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Early phases of training are messy but crucial

Papers from Frankle et al.

Resnet-18
£ T
Relevant concepts: ;_3 0.900
- Learning rate warm up =
5 0.875 4
- Late resetting g
5 0.850 o
- Phased of neural network training <
S 0825
- Mode connectivity of SGD solutions R . | | | . —
100 644 417 271 178 118 80 55
Percent of Weights Remaining
—%— rewind to () %+ random reinit $ rewind to 5(0 ! random reinit
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The large learning rate phase of deep learning: the catapult mechanism, Lewkowycz et al. arXiv:2003.02218

New insight into initial learning rate choice

Facebook company

Curvature

initial
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Weight correlation
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Test accuracy
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05 What's next?
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The future of Al
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Future directions

. Pruning @ init (SNIP, GRASP, SynFlow, and work in progress)

. Interpretability (circuits, Captum, ...)

.- Connections with theory (over-parametrization, adaptive Ir,

hessian spectrum, ...) o 0079
O e O O
O \ O O
- Connections with other empirical work S D M
(intrinsic dimensions, random projections, ...) NS V! "
O O O
O O
- Delivering on shared, widespread computational benefits of ©
sparsity coupled with accessible hardware solutions
\

- Responsible Al, sustainability, auditing engineering decisions

- Applications to science, AR/VR, privacy, and more!
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Thanks!

mickypaganini@berkeley.edu

WonderMicky
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PruningContainer

----- PruningContainer () S T S N S S S S S S S SSSSsssssssses
[ SomePruningMethod () AnotherPruningMethod () FinalPruningMethod () ]
) J

compute mask(t) compute mask(t[slice]) compute mask(t[slice][slice])

{cumulative mask} {cumulative mask} {cumulative mask}




Network capacity and over-parametrization

test error = train error + generalization error

— T

can be reduced to O if no degeneracy will it always grow as network size increases?

" under-fitting . over-fitting

- Test risk

"risk" = expected loss

~

- ‘Training risk
sweet spot_ + —

Ta -
Capacity of H

Wikipedia "Overfitting" Belkin et al., 2018
not the full story...
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Network capacity and over-parametrization

Optimizers like SGD converge to:
- global min, if the function is convex
- stationary point, if the function is hon-convex non-smooth

- good solutions, in practice

Advantages of over-parametrization:

- Many high quality local minima

. Loss landscape can be designed (via {loss, architecture, regularization} pick) so that the
optimizer finds good solutions

» Global minimizer close to init « weights have to move less < easier optimization

- Ability to learn information that generalizes

Implicit regularization helps with generalization

Michela Paganini



Teacher-student framework to understand deep RelLLU nets

Nodes in over-parametrized student networks compete to explain teacher's nodes

|
|
1
¥
|

my & &

(Over-parameterized) Student Network

Teacher Network
(Fixed parameters)

(Learnable Parameters)
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"why does over-parametrization matter and why is weight magnitude a good proxy for
Importance?"

Intuition;

Diagrams show activation regions of different nodes J, i.e. regions of input space for which the node is firing:

E = {x:f(x) >0}

(b) 4 / (¢ O teacher

/‘Eljg/ EJ4 E]2
Ejs Ej3 Ej4 StUdent
\ Ejo Eje
Before pruning Lottery ticket-style rewinding Random reinitialization

Found that:
1. over-parametrization = more student nodes = higher probability of alignment

2. higher magnitude teacher weights attract more student weights and are aligned with faster

3. alignment between student and teacher happens in early layers first
4. student nodes that don't converge to teacher converge to O

See full paper for formal derivation of recursive layer-by-layer optimization via top-down modulation
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Test Error (%)

Linear Mode Connectivity and the Lottery Ticket Hypothesis, Frankle et al. arXiv:1912.05671

Early phases of training are messy but crucial

Inception-v3 (30.0%) - IMP

LeNet (3.5%) - IMP ResNet-20 (16.8%) - IMP VGG-16(1.5%) - IMP ResNet-50 (30.0%) - IMP
100 4 100 - 100 4 ’
80 . 80 _ 80 - 3
60 5 60 5 5 60 L‘u;
= (€3] - 40 ﬁ
40 1+ 7z 40 4 7 7 40
£ & Z
20 1 - f — ~ ~ 20 20 -
0 1) ) 1} 1 1} A
() L —————————————————— 0 4 : : : : . () =t : ‘ ' . . 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Interpolation
Interpolation Interpolation Interpolation : :
w— k=) — k= X
— K =) s k= 500 . k= () — k= 500 — k=) — K= 500 — K =) — k=3 — k=2 w— k=10
. k= 50 —— k= IK s k= 100 — k= 1K . K = 50 —— k= 1K w— K =] w— K — k=4 — k=12
— k= 250 — k= 2K — k= 250 — k= 2K — k= 250 — k= 2K — k=2 — K =6 — K =6
Frankle et al., 2020
Warmup, late resetting, iterative magnitude-based pruning, and more can be justified in terms of linear
mode connectivity between different SGD solutions obtained with different seeds
64
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The Early Phase of Neural Network Training, Frankle et al. arXiv:2002.10365

Early phases of training are messy but crucial

Gradient magnitudes are very large Gradients converge to roughly constant magnitude
/ Rapid motion in weight space // Weight magnitudes increase linearly

//0 Large sign changes (3% in first 10 it)

Gradient magnitudes remain
/0 Performance increase decelerates, but is still rapid roughly constant
Rewinding begins to become highly effective

Gradient magnitudes reach a minimum Weight magnitude increase slows
before stabilizing 10% higher /

. , L , Performance slowly asymptotes
Motion in weight space slows, but is still rapid

_ . Benefit of rewinding saturates
Performance increases rapidly,

reaching over 50% eval accuracy

Training iterations

Eval Accuracy Gradient Magnitude Resnet-20 (CIFAR-10)
0.32 92
0.30
D 0.8 — S
> /-—/ 0.28 S 90 -
§‘ 0.6 - '% 0.26 §' 28 4- —— Rewind to 0
5 / = 0.24 5 ~——— Rewind to 100
3 0 .22 2o | — Rew
fﬁ 0.4 § : < 86 - Rewind to 250
= / 0.20 1 E —— Rewind to 500
D 09 0.18 - “ g44 —— Rewind to 1000
-/ 0.16 —— Rewind to 2000
82 +— ; i ; ;
0 1000 2000 3000 4000 0 1000~ 2000 3000 4000 1000 640 410 262 168 107 69 44
Training Iteration Training Iteration Percent of Weights Remaining
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Network capacity and over-parametrization

What's the right picture?

Classical Regime:

Bias-Variance Tradeoff
AL

Modern Regime:

Larger Model is Better
A

©
U

O
-

Test / Train Error
¥
~

O
w

O
-
-

Critical

f Regime -

Interpolation
Threshold

S — —

O
o

20 30 40 50 60
ResNetl8 width parameter

Nakkiran et al., 2019
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10
,\ - = N=40 RelLU features
8F | “ — N=4000 RelLU features
6 Foy
Iy
4 I
|
2 I
0
-2
-4
_6 1 [ | 1 1 ] | 1

Figure 3: Plot of two univariate functions fitted to 10 data points using Random ReLU features
é(x; (v1,v2)) := max(viz + v2,0). The data points are shown in red circles. The fitted function
with N = 40 Random ReLU features is the blue dashed line; the coefficient vector’s norm (scaled

by V/N) is ~ 695. The fitted function with N = 4000 Random ReLU features is the black solid
line; the coefficient vector’s norm is ~ 159.

Belkin et al., 2018



Prune Responsibly, Paganini
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What really happens to a network when we prune it?
How do even tiny performance losses affect individual examples?

Not all classes are identically
affected by pruning

\
\
ot
‘WZ
|
\
17

gmnist class:

Fraction of Pruned Weights
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identically affected by pruning
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