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Motivation: beyond classification

There has been enormous progress in the past ~5 years in
improving jet classifiers with deep learning.

Now there is increasing interest in applications of deep learning
to other issues necessary for realistic applications, beyond raw
classification performance.

One important issue is the need for robust classifiers which
are stable against variations in an auxiliary feature.

e data vs. simulation validation
* data-driven background estimation

* reducing systematic uncertainties
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Typically use jet mass to define signal and control regions in
data, for validation and/or background estimation.



Motivation: beyond classification

If the background mass distribution is sculpted by a
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Would like a classifier that doesn’t “learn” the jet mass, i.e. is
statistically independent from it.

Challenging, because many of the input features to the classifier
are highly correlated with mass.



State of the art in mass decorrelation methods was studied by ATLAS for
boosted W-tagging in ATL-PHYS-PUB-2018-014

. Cut-based
Variable Type Reference
Cr, D> Energy correlation ratios [38]
1 N-subjettiness [41] or
ng Fox—Wolfram moment [42]
P Planar flow [43]
as Angularity [44] B D T
A Aplanarity [45]
Zeut, Vdio  Splitting scales [46, 47] or
KtDR k:-subjet AR [48]
Dense NN
Performance metrics: (D N N)

R50: |/[background efficiency (false positive rate) at
50% signal efficiency]

JSD5O0: Jensen-Shannon Divergence between bg mass
histogram (all) and bg mass histogram (passing sig=50%
cut)
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ATL-PHYS-PUB-2018-014

ATLAS Simulation Preliminary L R B 2
Tagged multijets: 1 =
Vs=13TeV, W jettagging e 10° o
Cuts at £° =50% bDT S
° " T 10275
Inclusive selection: 5 3
. . 1073 1LC
== Multijets W jets
107
-9 IIIIIIlIIIIIIIIIIIIIIII |||l|||||||||||||||||||
L.qj)' 1 Tagged multijets: Tagged multijets: 1
O LA
= 10
i
B 1072
©
w107

o
L

1 Tagged multijets: Tagged multijets:

— Zadaboost § 1 o uBoost

(=0.3)
uBoost

iy
" ZANN

50 100 150 200 250 300 50 100 150 200 250 300
Large-R jet mass [GeV] Large-R jet mass [GeV]

Andreas Segaard / University of Edinburgh 25



= 50%

rel
sig

Mass-decorrelation, 1 / JSD @ ¢

10

ATLAS Simulation Preliminary

No separation

Less sculpting —

's =13 TeV
W jet tagging
p. € [200, 500] GeV

Statistical limit
Q
"}\,=1O
0(:1 ®\ !
/ A=3
/ S
1 0=0.1"Q
.]I }\‘=1
O(=o.01\Q
o

Greater separation —

Maximal sculpting

I I I 1 T
MVA: Analytical:
ZNN ® Ty, .

DDT —

Z ANN O Ty _

¢ ZAdaboost ¢ D2 —
k-NN =

O ZuBoost O D2 ]

D, _
CSS
D5 _
| | | L1 L1

10

Background rejection, 1/ ¢ @ ¢

bkg

rel _
sig

10°
50%



= 50%

rel _
sig

rrelation, 1/JSD @ ¢

—h
)
o1

—
o
o

—h
o
w

Trade off between 05’8

ATLAS Simulation Preliminary

A=3

I S
tagger performance and ;%"

Mass a

1V

ecorrelation.

I'
& O A=
, _
°! .
!

0=0.01 Q
s

Greater separation —

| | | 1 | | | | | | T
\s =13 TeV MVA: Analytical:

- W jet tagging Z\n ° T, E
B DDT _
B p, € [200, 500] GeV ZANN O T3, ]
= ¢ ZAdaboost ¢ D2 —
E Statistical limit @) ZUBOOSt @) Dg_NN §
L ! D, _
B e
— I S =
= g2 o =
E 3 =10 _
| 3 Q o=1 C\)\ ! _

Maximal sculpting

10
Background rejection, 1/ ¢

rel @8

bkg

rel _
sig

10°
50%



ATLAS Simulation Preliminary
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Adversarial decorrelation
Louppe et al 1611.01046, Shimmin et al 1703.03507

Classifier Adversary

fe(X)
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Lclassification Ladversary

Ltagger — Lclassiﬁcation — )\Ladversary

|dea: train a second neural network (the “adversary”) that attempts
to predict the mass from the classifier output.

If classifier and mass are independent, adversary will fail.



Alternatives to adversaries

Adversaries are notoriously tricky to train — saddle point optimization

min max L (y(eclf)) — ALadv (y(eclf)v m; Hadv)

Ocit Oadv

Would be great if we could achieve the same performance but with a convex
regularizer term

min Lclf (y(eclf)) + )\Creg (y((gclf)a m)

eclf

First idea: can we just use Pearson correlation coefficient?

C11‘eg — R(ya m) X Z Yimny;

Problem: this only measures linear correlations



Pearson correlation
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Distance correlation (“DisCo”)

dCov*(X,Y) = (|X — X'||Y = Y'|)
FX = XY - Y
~2(X — X||[Y — Y|

(Szekely, Rizzo, Bakirov 2007; Szekely & Rizzo 2009)



Distance correlation (“DisCo”)

dCov*(X,Y) = (|X — X'||Y = Y'|)
FX = XY - Y
~2(X — X||[Y — Y|

(Szekely, Rizzo, Bakirov 2007; Szekely & Rizzo 2009)

e Zero iff X,Y are statistically independent; positive otherwise
® Tractable, can be estimated from finite samples

® Idea: Add DisCo to loss function during classifier training

L = Lclassifier (?77 gtrue) =+ A dcorritrue:() (T?L, g)

Gregor Kasieczka & DS, PRL 125 (2020),2001.05310



Distance correlation (“DisCo”)

Disco is sensitive to nonlinear correlations!



DisCo Decorrelation

Gregor Kasieczka & DS, PRL 125 (2020),2001.05310

Our recast of the ATLAS study
using Pythia8 + Delphes +
Fastjet plugins

Samples available on Zenodo
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DNN+distance correlation

e CNN
O CNN+planing
-== CNN+adversary

—— CNN+distance correlation

Comparable performance to
DNN-+adversary.

Much easier to train.
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https://zenodo.org/record/3606767

ABCD Method

Another place where statistically independent features are required is the widely
used “ABCD method” for data-driven background estimation

If f and g are statistically independent for
the background, then:

NB,ngC,bg

NA,bg —

ND,bg

Q—

Usually features f and g are simple kinematic
quantities chosen “by-hand”...




ABCDisCo

Kasieczka, Nachman, Schwartz & DS 2007.14400

Idea: could construction of f and/or g be automated using
NNs+DisCo?

Single ABCDisCo: decorrelate NN classifier against fixed feature (eg mass)
‘C[f(X)] — £classiﬁer[f(X)7 y] - A dCOI’I’iZO [f(X)a XO]

Double ABCDisCo: decorrelate two NN classifiers against each other

['[fy 9] — ['classiﬁer [f(X), y] + £classiﬁer [Q(X), y] —+ )\ dCOTI’iZO [f(X), g(X)]



Role of signal contamination

Key point (neglected in previous analyses?): can only estimate background in A using data
in B,C,D provided that the signal contamination in B,C,D is negligible relative to the signal
fraction in A.
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ATLAS paired dijet resonance search
1710.07171, 13 TeV, 36/fb [see also CMS version 1808.03 124]

S
p
t d Counting experiment in bins of
=TT Mo 1
S~o Mavg — §(mdijet 1 T Mdijet 2)
Ly d
D 312
S
Uses ABCD method for background 1 -
. . . A p— m .o —_— m .
estimation with features mass Mavg | dijet 1 dijet 2
‘ cos 0™ ‘ — angle of squark with

beamline in squark-
squark rest frame



Simple DNN with input features
AR pin, Mayg, COS 0%, Amass; 212, 234, AR12, ARgs, mia, mss, An, Ag, P12, PT1,34

ABCDisCo

Kasieczka, Nachman, Schwartz & DS 2007.14400
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Normalized Signal Contamination (r)

Can significantly reduce sighal contamination and boost
background rejection!



Conclusions

Decorrelating NNs against auxiliary features is a fascinating topic
with many important applications to the LHC and beyond.

Adding a simple regularizer term based on Distance Correlation
to the loss function achieves state-of-the-art performance for W-

tagging.

DisCo can also be used to effectively automate feature
construction for the ABCD method, simultaneously boosting
background rejection and reducing signal contamination.

Stay tuned, more applications to come!

® Applications to real-world issues such as Al bias and algorithmic fairness?



Thanks for your attention!
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Previous approaches

* Data “planing” [old idea, named and studied in 1709.10106, 1908.08959]

1
— Ao—
n;

Wi, C x; in bin j

- reweight training data to flatten mass distribution

- very simple and potentially powerful, but cannot guarantee full statistical
independence

* Designed decorrelated taggers - DDT [1603.00027]

2

m
DDT

PTH

- Removes most of the dependence of 721 on mass



Previous approaches

* Nonlinear subtraction via kNN regression
k-NN _ (16%)
DN = p, - D}

- Use kNN regression to remove dependence on mass and pT for a single
cut efficiency

e Convolved SubStructure - CSS [1710.06859]

1 do 1 do 1 do
N = —— ® Fess(x|a, Qp),
o dx o dxcss O dx

- Generalization of DDT
- Convolve variable with shape function

* uBoost [1305.7248]

- Modified BDT, adaptive boosting for classification performance and
uniformity at fixed selection efficiency



