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Motivation: beyond classification

There has been enormous progress in the past ~5 years in 
improving jet classifiers with deep learning. 

Now there is increasing interest in applications of deep learning 
to other issues necessary for realistic applications, beyond raw 
classification performance.

One important issue is the need for robust classifiers which 
are stable against variations in an auxiliary feature.

• data vs. simulation validation

• data-driven background estimation

• reducing systematic uncertainties

Generally need an auxiliary discriminating feature (eg mass) to 



Example: boosted hadronic W tagging

Typically use jet mass to define signal and control regions in 
data, for validation and/or background estimation.

Motivation: beyond classification
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as

dCov2(X,Y ) = h|X �X 0||Y � Y 0|i
+ h|X �X 0|ih|Y � Y 0|i
� 2h|X �X 0||Y � Y 00|i

(3)

where | · | refers to the Euclidean vector norm3 and
(X,Y ), (X 0, Y 0), (X 00, Y 00) are iid from the joint distri-
bution of (X,Y ) (X 00 is not used in (3)). Using this al-
ternative form of dCov2 it is straightforward to compute
a sampling estimate of dCov2 from a dataset of (xi, yi).4

Finally, we normalize the distance covariance by the
individual distance variances to obtain distance correla-
tion:

dCorr2(X,Y ) =
dCov2(X,Y )

dCov(X,X)dCov(Y, Y )
(4)

The distance correlation is bounded between 0 and 1.
Normalizing ensures equally strong decorrelation inde-
pendent of the overall scale.

We will add dCorr2 as a regularizer term to the usual
classifier loss function in the following.5 In detail:

L = Lclassifier(~y, ~ytrue) + � dCorr2ytrue=0(~m, ~y) (5)

where � is a single hyperparameter that controls the
tradeo↵ between classifier performance and decorrela-
tion, ~y is the output of the NN on a single minibatch, and
~ytrue and ~m are the true labels and masses respectively.6

The subscript ytrue = 0 indicates that the distance cor-
relation is only calculated for the subset of the minibatch
that is background; this is the appropriate mode for W -
tagging. Of course, for other applications it may be more
appropriate to apply the decorrelation to all events, or
even to signal events only.

Samples
As discussed in the Introduction, we will focus in this
paper on W tagging, for which there is a detailed study
of existing decorrelation methods by the ATLAS collab-
oration [41]. (See the Supplemental Material for a brief
demonstration of DisCo decorrelation for top tagging.)
By recasting the ATLAS study as closely as possible,
we will be able to validate our methods and rigorously

3
In fact there is a family of distance covariance measures param-

eterized by 0 < ↵ < 2 where one uses |X � X0|↵ instead of

|X � X0|. These relax the requirement of strict equivariance

under rescalings. In this paper we will focus on ↵ = 1 but in

principle this would be another hyperparameter to explore.
4
In the following we will be reweighting by pT . So we actually

need a weighted form of distance correlation. That follows easily

from the sample definition (3).
5
In principle another hyperparameter is the exact power of dCorr

that one adds to the loss function. We have not explored this in

much detail.
6
Our implementation of DisCo is available at

https://github.com/gkasieczka/DisCo.

FIG. 1: Invariant mass distribution for the inclusive W and
QCD samples.

demonstrate that our method of distance correlation is
state-of-the-art.
Following the ATLAS study, we generate the SM pro-

cesses pp ! WW and pp ! jj in Pythia 8.219 [51] atp
s = 13 TeV with a generator level cut of pT >250 GeV

on the initial particles. We use Delphes 3.4.1 with the
default detector card for detector simulation [52]. We
also use the built-in functionality of Delphes to simu-
late pileup with hNPU i = 24 as per the ATLAS study
[41].
Jets are reconstructed using FastJet 3.0.1 [53] and

the anti-kT algorithm [54] with R = 1 distance parame-
ter. Jets are required to have |⌘| < 2 and to be within
�R < 0.75 or the original parton. The daughters of
the W are also required to be within �R < 0.75 of the
original W . Finally jets are trimmed [55] with param-
eters Rsub = 0.2 and fcut = 5%. For the final sam-
ple, jets are required to have m 2 [50, 300] GeV and
pT 2 [300, 400] GeV; the mass distributions for signal
and background are shown in fig. 1. Apart from the very
last requirement on pT , these are all following the AT-
LAS study. Here we choose to focus on a more narrow
range in pT for simplicity.
From this sample of jets, we compute the complete

list of high-level kinematic variables shown in table 1 of
the ATLAS study, see [41] for more details and original
references. These form the inputs for all the methods in
the ATLAS study. We will also use them as inputs for
the DNN plus distance correlation.
Since we will also study the decorrelation of CNN clas-

sifiers (see below), we will also form jet images in the
same way as [56]. We form images with �⌘ = �� = 2
and 40 ⇥ 40 pixel resolution. For simplicity we stick to
grayscale images (with pixel intensity equal to pT ) for
this study. Fig. 2 shows the average of 100,000 W and
QCD jet images.
For all methods we reweight the training samples so

that the pT distributions of signal and background are
flat, following the ATLAS study. We use 50 evenly-
spaced pT bins between 300 and 400 GeV. For evaluation

SR CRCR
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Would like a classifier that doesn’t “learn” the jet mass, i.e. is 
statistically independent from it.

Challenging, because many of the input features to the classifier 
are highly correlated with mass.

If the background mass distribution is sculpted by a 
cut on the classifier, it cannot be used for sidebanding.

Motivation: beyond classification



State of the art in mass decorrelation methods was studied by ATLAS for 
boosted W-tagging in ATL-PHYS-PUB-2018-014

Variable Type Reference

C2, D2 Energy correlation ratios [38]
⌧21 N-subjettiness [41]

R
FW
2 Fox–Wolfram moment [42]
P Planar flow [43]
a3 Angularity [44]
A Aplanarity [45]

Zcut,
p

d12 Splitting scales [46, 47]
KtDR kt -subjet �R [48]

Table 1: Substructure variables used for the neural network- and BDT-based MVA jet classifiers. Feature selection
based on Ref. [8].

training is performed with the A��� [51] optimiser and the training batch size is fixed at 8192, found to
balance high computational throughput and memory requirements. The classifier is optimised according to
the classification loss Lclf for 50 epochs using 3-fold stratified cross-validation. The optimisation identifies
a network with three hidden layers, each with 64 nodes with rectified linear unit (ReLU) activation, and a
single output node with sigmoid activation as leading to the best classification power.

Mass-decorrelation and robustness with respect to the jet pT of the adversarially trained classifier is
achieved by having the adversary parametrise mixture density network [52], constructing a posterior
probability density function (p.d.f.) in the jet mass m, conditional on the auxiliary input log pT, using
a Gaussian mixture model (GMM). This weighted jet mass distribution plays the role of the adversary
prior.

In contrast with the stand-alone classifier optimisation, the adversary cannot be meaningfully optimised
separately, according to the second term in Equation (10). Therefore, to tune the adversarially trained
neural network tagger according to expected performance, the optimisation is performed by maximising
the metric 1/"rel

bkg + �/JSD computed at "rel
sig = 50% for a fixed value of �, chosen to be � = 10 since this

value is found to yield robust results for mass-decorrelation, as discussed in Section 7.3. Throughout the
optimisation, a classifier pre-trained with the chosen stand-alone classifier hyperparameters is used.

The adversarial optimisation is performed for 200 epochs, following 10 epochs of adversary-only pre-
training, using 3-fold stratified cross-validation. An adversary with a single hidden layer comprising 64
nodes with ReLU activation, parametrising a GMM posterior p.d.f. with 20 components is found to have
su�cient capacity to perform the decorrelation. The combined adversarial neural network architecture is
shown in Figure 4.

6.5 Adaptive boosting for uniform e�ciency

When used for jet classification, boosted decision tree (BDT) algorithms like AdaBoost (from “adaptive
boosting”) [53] are also found to yield selection e�ciencies which are non-uniform with respect to the
jet mass. The uBoost method [18] seeks to mitigate this non-uniformity by updating training weights,
i.e. performing the adaptive boosting, based on both classification error and the uniformity of the classi-
fication with respect to the jet mass at a fixed selection e�ciency. Jets with masses in regions where the
selection e�ciency is lower than the target e�ciency are boosted to have larger training weights; and vice

12

Performance metrics:

R50: 1/[background efficiency (false positive rate) at 
50% signal efficiency]

JSD50: Jensen-Shannon Divergence between bg mass 
histogram (all) and bg mass histogram (passing sig=50% 
cut) 

Cut-based
or

BDT 

or 

Dense NN 
(DNN)
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the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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the physics task at hand than full mass-decorrelation.

7.3 Combined metric
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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Trade off between 
tagger performance and 

mass decorrelation.



the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
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measures classification power and the y-axis measures mass-decorrelation, with larger values along each
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For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.
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Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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Adversarial decorrelation
Louppe et al 1611.01046, Shimmin et al 1703.03507

be optimized like any other.
The classifier network in this experiment consisted

of eleven input features, three fully-connected hid-
den layers each with 300 nodes having hyperbolic
tangent activation functions, and a single logistic
output node with the binomial cross-entropy clas-
sification objective. The adversarial network con-
sisted of a single input, 50 nodes with hyperbolic
tangent activation functions, and a softmax output
layer with 10 classes corresponding to binned val-
ues of the jet invariant mass (each bin representing
one decile of the background), and the multi-class
cross-entropy classification objective.

Because the adversary is challenged with adapt-
ing to an ever-changing input as the classifier is
trained, and also because its task is relatively easy,
two strategies were used to train the adversary faster
than the classifier. First, the adversary was given
a head start at the beginning of training with 100
updates while the classifier was fixed. Second, the
adversary was trained with a larger learning rate of
1.0 compared to 10�3 for the tagger objective.

The data set used for experiments was divided into
training (80%), validation (10%, used for hyperpa-
rameter tuning), and testing (10%) subsets. Each
classifier input feature was log-scaled if the empirical
skew estimate was greater than 1.0, then standard-
ized to zero mean and unit variance. Model param-
eters were initialized from a scaled normal distribu-
tion [27].

Training was performed using stochastic gradient
descent, applied to mini-batches of 100 examples
from each class. During training, the event weights
were scaled so that the average weight for each class
was 1.0. However, in the adversarial loss function
Ladversary, the signal events were given zero weight,
rendering them invisible to the adversary.

Updates were made using a training momentum
term of 0.5; the learning rate decayed by a factor of
10�5 after each update. Training was stopped after
100 epochs, where an epoch was defined as a single
pass through the background samples (⇡ 400k train-
ing events). Models were implemented inKeras [28]
and Theano [29], and hyperparameters were opti-
mized on a cluster of Nvidia Titan Black processors.

IV. PERFORMANCE

We compare the discrimination power of five can-
didate classifiers: the NN trained without an ad-
versary, the adversarially-trained NN, the unmodi-
fied ⌧21, and the two DDT-modified variables ⌧ 021,
and ⌧ 0021. The performance can be characterized by

... ...X
fc(X)

fa(fc(X))

Lclassification Ladversary

Classifier Adversary

FIG. 3. Architecture of the neural networks in the ad-
versarial training strategy. The classifying network dis-
tinguishes signal from background using the eleven vari-
ables (X) described in the text. The adversarial network
attempts to predict the invariant mass using only the
output of the classifier, fc(X); note that the adversary
has multiple binary classification outputs, correspond-
ing to bins in jet invariant mass, rather than a single
regression output.

measuring the signal e�ciency and background re-
jection of various thresholds on these discriminators
(Fig. 4).

The variable ⌧ 021, which is modified to reduce cor-
relation with the mass, results in a modest decrease
in its classification power relative to the unmodified
⌧21 at mZ0 = 100 GeV, though note that these ef-
fects are mass-dependent for both ⌧ 021 and ⌧ 0021. Sim-
ilarly, the adversarial network does not match the
discrimination power of the traditional classification
network, due to the additional constraint imposed in
its optimization. However, both NNs are clearly able
to take advantage of the combined power of the sub-
structure variables, and o↵er a large improvement
in background rejection for similar signal e�ciencies
compared to classification based on ⌧21 alone.

The focus of this study, however, is to look be-
yond the pure discriminatory power of these tools
and study their e↵ect on the jet mass spectrum. In
Fig. 5, it can be seen that the adversarial network
output for background events has a profile which
is largely independent of jet mass, while the clas-
sifying network is strongly dependent on jet mass.
Similarly, ⌧ 021 and ⌧ 0021 have a lessened dependence
on jet mass, compared to ⌧21. Figure 6 shows the
e↵ect on the jet mass distribution of successively
stricter requirements on these variables. Note that
the adversarial network’s dependence on jet mass is
diminished, but not eliminated, as can be seen in
the contour plot of Fig. 5. This is a reflection of the
trade-o↵ inherent in balancing classification power
with jet mass dependence.

In Fig. 5, we also show the profile of the neural net-
work output versus jet mass, for various thresholds

4

Idea: train a second neural network (the “adversary”) that attempts 
to predict the mass from the classifier output. 

If classifier and mass are independent, adversary will fail. 

cay. Jets are trimmed by reclustering into kT sub-
jets, with Rtrim = 0.2, and dropping subjets with
less than 3% of the original jet pT.

As the angular separation of the quarks may be
quite small in the case of a high-pT Z 0, we recon-
struct a single large-radius jet with distance param-
eter R = 1.0. To reflect the thresholds imposed by
the ATLAS trigger, we require p�T > 150 GeV and

pjetT > 150 GeV. In the case of multiple large-R jets,
the one with greatest pT is selected.

For the large-radius jets, we calculate various jet
substructure variables such as the N -subjettiness ra-
tio ⌧21 [7, 25], and the Energy Correlation Func-
tions [8, 26]. Recent studies have shown that deep
neural networks applied to lower-level calorimeter
information can match the performance of several
of these higher-level variables in combination [11],
but these higher-level variables capture most of the
discriminative information and are theoretically well
understood.

Distributions of the various kinematic quantities
for jets selected in signal and background processes
are shown in Fig. 2. The neural networks described
below use eleven variables:

• Jet pseudo-rapidity, azimuthal angle, trans-
verse momentum, and invariant mass;

• Jet energy correlation variables, C2 andD2 [8];

• Jet N-subjettiness (⌧21) [7]; and

• Photon energy, pseudo-rapidity, azimuthal an-
gle, transverse momentum.

For comparison with Ref. [9], we additionally ap-
ply the DDT procedure to produce a modified vari-
able, ⌧ 021, which has reduced correlation with jet
mass. However, no simple linear relationship was
seen between the profile of ⌧21 and the jet mass, and
a linear correction does not remove the dependence;
this may be due to the application of jet trimming,
which di↵ers from the treatment in Ref. [9]. To pro-
vide a fair comparison, we extend the DDT-style ap-
proach to use a second-order correction, producing
a variable ⌧ 0021, which demonstrates reasonable inde-
penence from the jet mass (Fig. 5).

III. NEURAL NETWORKS

The strategy outlined in Ref. [16] describes how
to train a classifier which is uncorrelated with a nui-
sance parameter. Here, we apply this strategy to
the closely-related problem of decorrelating the clas-
sifier with respect to the jet invariant mass, as the
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FIG. 2. Distributions of jet variables in simulated Z0+�
signal events, with mZ0 = 100 GeV, as well as �+jet
background events. From top left to bottom right are
shown the jet pseudorapidity, transverse momentum, en-
ergy correlation variables C2 and D2 [8], jet invariant
mass, and N-subjettiness(⌧21) [7]. There are five addi-
tional input variables described in the text (not shown).

nuisance parameter is not well defined; further dis-
cussion of this issue is found below in Sec. V. In
Sec. VII, we extend this strategy to a problem re-
quiring a parameterized solution.

Two neural networks — a jet classifier and an ad-
versary — constitute two distinct segments of the
feedforward architecture shown in Fig. 3. The loss
of the tagger is defined as

Ltagger = Lclassification � �Ladversary,

where � is a positive constant, and Lclassification and
Ladversary are the standard classification-error loss
functions for each segment. The two neural net-
works are trained concurrently; the tagger’s objec-
tive is to minimize Ltagger, while adversary mini-
mizes only Ladversary. The hyperparameter � repre-
sents a tradeo↵ between the two objective terms; we
found that a value of � = 100 was a good tradeo↵
for our task, but in general this hyperparameter can

3



Alternatives to adversaries

Adversaries are notoriously tricky to train — saddle point optimization

Would be great if we could achieve the same performance but with a convex 
regularizer term

First idea: can we just use Pearson correlation coefficient?

Problem: this only measures linear correlations

min
✓clf

max
✓adv

Lclf(y(✓clf))� �Ladv(y(✓clf),m; ✓adv)
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Pearson correlation

y and m can be highly correlated yet R=0



Distance correlation (“DisCo”)
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where | · | refers to the Euclidean vector norm3 and
(X,Y ), (X 0

, Y
0), (X 00

, Y
00) are iid from the joint distri-

bution of (X,Y ) (X 00 is not used in (3)). Using this al-
ternative form of dCov2 it is straightforward to compute
a sampling estimate of dCov2 from a dataset of (xi, yi).4

Finally, we normalize the distance covariance by the
individual distance variances to obtain distance correla-
tion:

dCorr2(X,Y ) =
dCov2(X,Y )

dCov(X,X)dCov(Y, Y )
(4)

The distance correlation is bounded between 0 and 1.
Normalizing ensures equally strong decorrelation inde-
pendent of the overall scale.

We will add dCorr2 as a regularizer term to the usual
classifier loss function in the following.5 In detail:

L = Lclassifier(~y, ~ytrue) + � dCorr2ytrue=0(~m, ~y) (5)

where � is a single hyperparameter that controls the
tradeo↵ between classifier performance and decorrela-
tion, ~y is the output of the NN on a single minibatch, and
~ytrue and ~m are the true labels and masses respectively.6

The subscript ytrue = 0 indicates that the distance cor-
relation is only calculated for the subset of the minibatch
that is background; this is the appropriate mode for W -
tagging. Of course, for other applications it may be more
appropriate to apply the decorrelation to all events, or
even to signal events only.

Samples
As discussed in the Introduction, we will focus in this
paper on W tagging, for which there is a detailed study
of existing decorrelation methods by the ATLAS collabo-
ration [41]. (See the Appendix for a brief demonstration
of DisCo decorrelation for top tagging.) By recasting the
ATLAS study as closely as possible, we will be able to

3
In fact there is a family of distance covariance measures param-

eterized by 0 < ↵ < 2 where one uses |X � X0|↵ instead of

|X � X0|. These relax the requirement of strict equivariance

under rescalings. In this paper we will focus on ↵ = 1 but in

principle this would be another hyperparameter to explore.
4
In the following we will be reweighting by pT . So we actually

need a weighted form of distance correlation. That follows easily

from the sample definition (3).
5
In principle another hyperparameter is the exact power of dCorr

that one adds to the loss function. We have not explored this in

much detail.
6
Our implementation of DisCo is available at

https://github.com/gkasieczka/DisCo.

FIG. 1: Invariant mass distribution for the inclusive W and
QCD samples.

validate our methods and rigorously demonstrate that
our method of distance correlation is state-of-the-art.
Following the ATLAS study, we generate the SM pro-

cesses pp ! WW and pp ! jj in Pythia 8.219 [51] atp
s = 13 TeV with a generator level cut of pT >250 GeV

on the initial particles. We use Delphes 3.4.1 with the
default detector card for detector simulation [52]. We
also use the built-in functionality of Delphes to simu-
late pileup with hNPU i = 24 as per the ATLAS study
[41].
Jets are reconstructed using FastJet 3.0.1 [53] and

the anti-kT algorithm [54] with R = 1 distance parame-
ter. Jets are required to have |⌘| < 2 and to be within
�R < 0.75 or the original parton. The daughters of
the W are also required to be within �R < 0.75 of the
original W . Finally jets are trimmed [55] with param-
eters Rsub = 0.2 and fcut = 5%. For the final sam-
ple, jets are required to have m 2 [50, 300] GeV and
pT 2 [300, 400] GeV; the mass distributions for signal
and background are shown in fig. 1. Apart from the very
last requirement on pT , these are all following the AT-
LAS study. Here we choose to focus on a more narrow
range in pT for simplicity.
From this sample of jets, we compute the complete

list of high-level kinematic variables shown in table 1 of
the ATLAS study, see [41] for more details and original
references. These form the inputs for all the methods in
the ATLAS study. We will also use them as inputs for
the DNN plus distance correlation.
Since we will also study the decorrelation of CNN clas-

sifiers (see below), we will also form jet images in the
same way as [56]. We form images with �⌘ = �� = 2
and 40 ⇥ 40 pixel resolution. For simplicity we stick to
grayscale images (with pixel intensity equal to pT ) for
this study. Fig. 2 shows the average of 100,000 W and
QCD jet images.
For all methods we reweight the training samples so

that the pT distributions of signal and background are
flat, following the ATLAS study. We use 50 evenly-
spaced pT bins between 300 and 400 GeV. For evaluation



Distance correlation (“DisCo”)

• Zero iff X, Y are statistically independent; positive otherwise

• Tractable, can be estimated from finite samples

• Idea: Add DisCo to loss function during classifier training
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Finally, we normalize the distance covariance by the
individual distance variances to obtain distance correla-
tion:

dCorr2(X,Y ) =
dCov2(X,Y )

dCov(X,X)dCov(Y, Y )
(4)

The distance correlation is bounded between 0 and 1.
Normalizing ensures equally strong decorrelation inde-
pendent of the overall scale.

We will add dCorr2 as a regularizer term to the usual
classifier loss function in the following.5 In detail:

L = Lclassifier(~y, ~ytrue) + � dCorr2ytrue=0(~m, ~y) (5)

where � is a single hyperparameter that controls the
tradeo↵ between classifier performance and decorrela-
tion, ~y is the output of the NN on a single minibatch, and
~ytrue and ~m are the true labels and masses respectively.6

The subscript ytrue = 0 indicates that the distance cor-
relation is only calculated for the subset of the minibatch
that is background; this is the appropriate mode for W -
tagging. Of course, for other applications it may be more
appropriate to apply the decorrelation to all events, or
even to signal events only.

Samples
As discussed in the Introduction, we will focus in this
paper on W tagging, for which there is a detailed study
of existing decorrelation methods by the ATLAS collab-
oration [41]. (See the Supplemental Material for a brief
demonstration of DisCo decorrelation for top tagging.)
By recasting the ATLAS study as closely as possible,
we will be able to validate our methods and rigorously
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demonstrate that our method of distance correlation is
state-of-the-art.
Following the ATLAS study, we generate the SM pro-

cesses pp ! WW and pp ! jj in Pythia 8.219 [51] atp
s = 13 TeV with a generator level cut of pT >250 GeV

on the initial particles. We use Delphes 3.4.1 with the
default detector card for detector simulation [52]. We
also use the built-in functionality of Delphes to simu-
late pileup with hNPU i = 24 as per the ATLAS study
[41].
Jets are reconstructed using FastJet 3.0.1 [53] and

the anti-kT algorithm [54] with R = 1 distance parame-
ter. Jets are required to have |⌘| < 2 and to be within
�R < 0.75 or the original parton. The daughters of
the W are also required to be within �R < 0.75 of the
original W . Finally jets are trimmed [55] with param-
eters Rsub = 0.2 and fcut = 5%. For the final sam-
ple, jets are required to have m 2 [50, 300] GeV and
pT 2 [300, 400] GeV; the mass distributions for signal
and background are shown in fig. 1. Apart from the very
last requirement on pT , these are all following the AT-
LAS study. Here we choose to focus on a more narrow
range in pT for simplicity.
From this sample of jets, we compute the complete

list of high-level kinematic variables shown in table 1 of
the ATLAS study, see [41] for more details and original
references. These form the inputs for all the methods in
the ATLAS study. We will also use them as inputs for
the DNN plus distance correlation.
Since we will also study the decorrelation of CNN clas-

sifiers (see below), we will also form jet images in the
same way as [56]. We form images with �⌘ = �� = 2
and 40 ⇥ 40 pixel resolution. For simplicity we stick to
grayscale images (with pixel intensity equal to pT ) for
this study. Fig. 2 shows the average of 100,000 W and
QCD jet images.
For all methods we reweight the training samples so

that the pT distributions of signal and background are
flat, following the ATLAS study. We use 50 evenly-
spaced pT bins between 300 and 400 GeV. For evaluation
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a sampling estimate of dCov2 from a dataset of (xi, yi).4

Finally, we normalize the distance covariance by the
individual distance variances to obtain distance correla-
tion:

dCorr2(X,Y ) =
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The distance correlation is bounded between 0 and 1.
Normalizing ensures equally strong decorrelation inde-
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classifier loss function in the following.5 In detail:

L = Lclassifier(~y, ~ytrue) + � dCorr2ytrue=0(~m, ~y) (5)

where � is a single hyperparameter that controls the
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tion, ~y is the output of the NN on a single minibatch, and
~ytrue and ~m are the true labels and masses respectively.6

The subscript ytrue = 0 indicates that the distance cor-
relation is only calculated for the subset of the minibatch
that is background; this is the appropriate mode for W -
tagging. Of course, for other applications it may be more
appropriate to apply the decorrelation to all events, or
even to signal events only.
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As discussed in the Introduction, we will focus in this
paper on W tagging, for which there is a detailed study
of existing decorrelation methods by the ATLAS collabo-
ration [41]. (See the Appendix for a brief demonstration
of DisCo decorrelation for top tagging.) By recasting the
ATLAS study as closely as possible, we will be able to
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validate our methods and rigorously demonstrate that
our method of distance correlation is state-of-the-art.
Following the ATLAS study, we generate the SM pro-

cesses pp ! WW and pp ! jj in Pythia 8.219 [51] atp
s = 13 TeV with a generator level cut of pT >250 GeV

on the initial particles. We use Delphes 3.4.1 with the
default detector card for detector simulation [52]. We
also use the built-in functionality of Delphes to simu-
late pileup with hNPU i = 24 as per the ATLAS study
[41].
Jets are reconstructed using FastJet 3.0.1 [53] and

the anti-kT algorithm [54] with R = 1 distance parame-
ter. Jets are required to have |⌘| < 2 and to be within
�R < 0.75 or the original parton. The daughters of
the W are also required to be within �R < 0.75 of the
original W . Finally jets are trimmed [55] with param-
eters Rsub = 0.2 and fcut = 5%. For the final sam-
ple, jets are required to have m 2 [50, 300] GeV and
pT 2 [300, 400] GeV; the mass distributions for signal
and background are shown in fig. 1. Apart from the very
last requirement on pT , these are all following the AT-
LAS study. Here we choose to focus on a more narrow
range in pT for simplicity.
From this sample of jets, we compute the complete

list of high-level kinematic variables shown in table 1 of
the ATLAS study, see [41] for more details and original
references. These form the inputs for all the methods in
the ATLAS study. We will also use them as inputs for
the DNN plus distance correlation.
Since we will also study the decorrelation of CNN clas-

sifiers (see below), we will also form jet images in the
same way as [56]. We form images with �⌘ = �� = 2
and 40 ⇥ 40 pixel resolution. For simplicity we stick to
grayscale images (with pixel intensity equal to pT ) for
this study. Fig. 2 shows the average of 100,000 W and
QCD jet images.
For all methods we reweight the training samples so

that the pT distributions of signal and background are
flat, following the ATLAS study. We use 50 evenly-
spaced pT bins between 300 and 400 GeV. For evaluation



Distance correlation (“DisCo”)

Disco is sensitive to nonlinear correlations!
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Comparable performance to 
DNN+adversary.

Much easier to train.

Our recast of the ATLAS study 
using Pythia8 + Delphes + 
FastJet plugins

Samples available on Zenodo

https://zenodo.org/record/3606767


ABCD Method

Another place where statistically independent features are required is the widely 
used “ABCD method” for data-driven background estimation 
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Figure 1. The ABCD method is used to estimate the background in region A as NA =
NBNC

ND
. It requires the signal to be relatively localized in region A and the observables to

be independent on background. The shaded planes (left) or lines (right) denote thresholds

which isolate the signal in region A.

small uncertainties — either because the e↵ect itself is small, or because the correction

is robust. But such corrections, together with the fact that simple kinematic features

are typically not optimal discriminants of signal versus background, generally limit

the e↵ectiveness of the ABCD method and the sensitivity of the analysis in question.

(See [8], however, for a proposal for extending the ABCD method using higher-order

information when the features are not independent.)

In this paper, we will explore the systematic application of deep learning to the

ABCD method. Deep learning has already demonstrated impressive success in finding

observables that are e↵ective at discrimination [9–63] and that are uncorrelated with

other observables [64–79]. Building on previous success, we will aim to use deep learn-

ing to automate the selection of features used in the ABCD method, simultaneously

optimizing their discrimination power while ensuring their independence.

The main tool we will use in automating the ABCD method will be a recently pro-

posed method for training decorrelated deep neural networks [71]. This method uses

a well-known statistical measure of non-linear dependence known as Distance Correla-

tion (DisCo) [80–83]. DisCo is a function of two random variables (or samples thereof)

and is zero if and only if the variables are statistically independent, otherwise it is

positive. Therefore it can be added as a regularization term in the loss function of a

neural network to encourage the neural network output to be decorrelated against any

other feature. In [71] it was shown that DisCo decorrelation achieves state-of-the-art

decorrelation performance while being easier and more stable to train than approaches

– 3 –

SignalBackground

If f and g are statistically independent for 
the background, then:

NA,bg =
NB,bgNC,bg

ND,bg
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Usually features f and g are simple kinematic 
quantities chosen “by-hand”...



Idea: could construction of f and/or g be automated using 
NNs+DisCo?

Single ABCDisCo: decorrelate NN classifier against fixed feature (eg mass)

Double ABCDisCo: decorrelate two NN classifiers against each other

ABCDisCo
Kasieczka, Nachman, Schwartz & DS 2007.14400

One can imagine two versions of this idea, both of them new:

1. The second classifier is a simple, existing high-level variable (e.g. mass). In this

case the problem is basically identical to the one that has been solved in the

literature on decorrelation. We then just have to apply these approaches to the

the ABCD method.

2. The second classifier is also a neural network. In this case we need to train

two neural networks simultaneously while keeping them decorrelated from one

another. This requires us to go beyond the usual literature on decorrelation

against a fixed feature.

Regardless of whether g(X) is fixed or learned, decorrelation can be achieved by

any of the numerous methods that have been proposed [64–79]. In this paper we will use

the Distance Correlation (DisCo) method [71]. DisCo decorrelation proceeds through a

positive-definite regularization term that penalizes statistical dependence. It achieves

state-of-the-art performance while being significantly easier to train than adversarial

decorrelation methods which rely on saddle-point extremization.

For the Single DisCo ABCD method, we take the loss function to be the same as

in [71]:

L[f(X)] = Lclassifier[f(X), y] + � dCorr2y=0[f(X), X0], (3.1)

where X are the features used for classification, y 2 {0, 1} are the labels, X0 is the

feature that one wants to be decorrelated from f(X) (X0 could be part of X), and

Lclassifier is the classifier loss such as the commonly used binary cross entropy. The

subscript y = 0 in the second term of Eq. (3.1) ensures that the decorrelation is only

applied to the background (class 0). Furthermore, � � 0 is a hyperparameter that

determines the decorrelation strength. The function dCorr2[f, g] is the squared distance

correlation defined in [80–83] (see App. A). It has the property that 0  dCorr[f, g]  1

and dCorr[f, g] = 0 if and only if f and g are independent. For Single DisCo, g(X) =

X0.

In practice, f is parameterized as a neural network and Eq. (3.1) is minimized

using gradient-based methods. The distance correlation is computed for batches of

data used to stochastically estimate the gradient. In the limit of small numbers of

events, the naive distance covariance computed by replacing expectation values with

sample averages is a biased estimator of the true distance correlation. Analogously to

the case of sample variance (in which a factor of 1
N�1 instead of 1

N — where N denotes

the minibatch-size — is inserted to remove bias), there is an analytic low-N correction

to the distance covariance that is unbiased [81, 83]. Numerical results suggest that this

– 9 –

correction is useful when N is low, but for su�ciently large training datasets with large

enough batches, the correlation has little impact on the results.

For the Double Disco ABCD method, we use the loss function

L[f, g] = Lclassifier[f(X), y] + Lclassifier[g(X), y] + � dCorr2y=0[f(X), g(X)], (3.2)

where now f and g are two neural networks that are trained simultaneously. When � =

0, the loss will be minimized when f = g is the optimal classifier (up to degeneracies).

When � ! 1, f and g will be forced to be independent even if one or both of them

does not classify well at all. In practice, if � is taken too large, the DisCo term will tend

to overwhelm the training and poor classification performance will result. Thus there

should be an optimal � at some finite value which we can be determined by scanning

over �.

4 Applications

This section explores the e�cacy of Single and Double DisCo in some applications of

the ABCD method.

4.1 Simple Example: Three-Dimensional Gaussian Random Variables

We begin with a simple example to build some intuition and validate our methods.

Consider a three-dimensional space (X0, X1, X2), where the signal and background are

both multivariate Gaussian distributions. We choose the means ~µ and a covariance

matrix ⌃ for background and signal as

~µb = (0, 0, 0), ⌃b = �
2
b

0

@
1 ⇢b 0

⇢b 1 0

0 0 1

1

A , �b = 1.5, ⇢b = �0.8 , (4.1)

and

~µs = (2.5, 2.5, 2), ⌃s = �
2
s

0

@
1 0 0

0 1 0

0 0 1

1

A , �s = 1.5 . (4.2)

So for the background, all three features are centered at the origin and features X0

and X1 are correlated with each other but independent of X2. For the signal, all three

features are independent but are centered away from the origin. The first feature X0

will play the role of the known feature for Single DisCo in Sec. 3.

All of the neural networks presented in this section use three hidden layers with

128 nodes per layer. The rectified linear unit (ReLU) activation function is used for

– 10 –

3

• Brief review of decorrelation Tools

• Recasting ATLAS

• Enter Distance Correlation (DisCo)

• Results

Overview

3

•Brief review of decorrelation Tools

•Recasting ATLAS

•Enter Distance Correlation (DisCo)

•Results

Overview



Role of signal contamination

Key point (neglected in previous analyses?): can only estimate background in A using data 
in B,C,D provided that the signal contamination in B,C,D is negligible relative to the signal 
fraction in A.
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✓
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Need: 

otherwise p-values are biased

Figure 2. The p-value (CLS+B) for the ABCD method as a function of �A (NA), the signal

fraction in region A (the number of background events in region A) for the left (right) plot.

It is assumed that there is no uncertainty from regions C and D.

of 0.03. Adding an uncertainty of 5% increases this to 0.16 and an uncertainty of

10% further increases the p-value to 0.29. So while this would result in a conservative

p-value, it means that potential discoveries would be masked.

3 Automating the ABCD Method

Having described the requirements for the ABCDmethod (two strong classifiers that are

independent for background), we now turn to the main idea of the paper: automating

the ABCD method with machine learning.

Typically, when the ABCD method is used in experimental analyses, the two fea-

tures are chosen by hand, based on physical intuition. Usually the features are simple

quantities, such as mass, HT , pT , or missing ET . In the remainder of the paper, we

will investigate the benefits of allowing the ABCD features to be more complicated

functions of the inputs. These functions will be obtained by training neural networks

with suitable loss functions that ensure the ABCD objectives. We will see that machine

learning has the potential to greatly improve the performance of the ABCD method.

The basic idea is that we want to train a classifier f(X) where X are the input

features (either low level inputs such as four vectors or images, or high level inputs such

as pT , mass, etc.) that is forced to be decorrelated against another classifier g(X). This

will achieve the first ABCD requirement of independent features. If the two classifiers

are both good discriminants, this will satisfy the second ABCD requirement.
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ATLAS paired dijet resonance search
1710.07171, 13 TeV, 36/fb [see also CMS version 1808.03124]

t̃

t̃
p

p

�00
312

d

s

�00
312

d

s
(a) t̃t̃⇤ ! (d̄ s̄)(ds)

t̃

t̃
p

p

�00
323

s

b

�00
323

s

b
(b) t̃t̃⇤ ! (b̄s̄)(bs)

Figure 1: Diagrams depicting the direct pair-production of top squarks through strong interactions, with decays into
a d- and an s-quark (left) or into a b- and an s-quark (right) through the �00 R-parity-violating couplings, indicated
by the blue dots.

Constraints on top squarks decaying through �00 couplings were first set by the ALEPH experiment at
LEP [41], excluding at 95% confidence level (CL) masses below 80 GeV. The CDF experiment at the
Tevatron [42], increased these limits to 100 GeV. Searches for pair-produced resonances in hadronic final
states were performed at the LHC at 7 TeV and 8 TeV of centre-of-mass energy by both the ATLAS [43,
44] and CMS experiments [45, 46]. For decays including heavy-flavour jets in the final state, exclusion
limits at 95% CL on the mass of the top squark in the ranges 100 GeV  mt̃  320 GeV and 200 GeV 
mt̃  385 GeV have been reported by ATLAS [44] and CMS [46], respectively.

2 ATLAS detector

The ATLAS detector [47] is a multi-purpose particle physics detector with a forward-backward symmetric
cylindrical geometry and nearly 4⇡ coverage in solid angle2. The inner tracking detector consists of pixel
and silicon microstrip detectors covering the pseudorapidity region |⌘| < 2.5, surrounded by a transition
radiation tracker which provides electron identification in the region |⌘| < 2.0. Starting in Run 2, a new
inner pixel layer, the Insertable B-Layer (IBL) [48, 49], has been inserted at a mean sensor radius of 3.3
cm. The inner detector is surrounded by a thin superconducting solenoid providing an 2 T axial magnetic
field and by a lead/liquid-argon (LAr) electromagnetic calorimeter covering |⌘| < 3.2. A steel/scintillator-
tile calorimeter provides hadronic coverage in the central pseudorapidity range (|⌘| < 1.7). The endcap
and forward regions (1.5 < |⌘| < 4.9) of the hadronic calorimeter are made of LAr active layers with either
copper or tungsten as the absorber material. An extensive muon spectrometer with an air-core toroidal
magnet system surrounds the calorimeters. Three layers of high-precision tracking chambers provide

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector.
The positive x-axis is defined by the direction from the interaction point to the centre of the LHC ring, with the positive y-axis
pointing upwards, while the beam direction defines the z-axis. Cylindrical coordinates (r, �) are used in the transverse plane, �
being the azimuthal angle around the z-axis. The pseudorapidity ⌘ is defined in terms of the polar angle ✓ by ⌘ = � ln tan(✓/2).
Rapidity is defined as y = 0.5 · ln[(E + pz)/(E � pz)] where E denotes the energy and pz is the component of the momentum
along the beam direction.

3

Counting experiment in bins of

distribution, we indeed see no dependence of f on the mass while in the top right a

clear correlation is there for g. On the other hand, in the bottom left, we see a trend

between f and ⌧32 which encodes to which amount the jet is compatible with a 3-prong

substructure. This information is largely not learned by g.

We conclude that Double DisCo can do better than Single DisCo because it is

partitioning the information di↵erently than just mass versus everything else.

4.3 RPV SUSY

For our third example, we consider an actual “real-life” application of the ABCD

method on LHC data: the
p
s = 13 TeV ATLAS search for paired dijet resonances [84].

Similar searches were conducted by CMS [85] and by both experiments at
p
s = 8

TeV [95, 96]. These searches were motivated by pair production of identical squarks

which each decay promptly to two jets via RPV couplings. For background estimation,

these searches all used the standard ABCD method. In this section we will describe

our recast of this search and the performance gains derived from training Single and

Double DisCo on it.

The ATLAS search consisted of the following steps:

• Preselection: Events are required to have at least four jets with pT > 120 GeV

and |⌘| < 2.4. The leading four such jets are used to form two squark candidates

based on nearest proximity in �R =
p
(��)2 + (�⌘)2. The minimum �R from

the resulting pairings is defined as �Rmin and the two dijet masses are used to

form the average mass mavg = 1
2(mdijet 1 + mdijet 2) and fractional mass asym-

metry Amass =
1

mavg
|mdijet 1 � mdijet 2|. Events with mavg < 255 GeV must have

�Rmin < 0.72 � 0.002(mavg/GeV � 255) and events with mavg � 255 GeV must

have �Rmin < 0.72� 0.0013(mavg/GeV� 255).

• Final selection: For the final selection, the ATLAS search performs counting

experiments in successive windows of mavg, and for background estimation uses

the ABCD method in | cos ✓⇤| and Amass, where ✓⇤ is the polar angle of one of the

squarks in the squark-squark center-of-mass frame. The signal region is defined

as Amass < 0.05 and | cos ✓⇤| < 0.3.

ATLAS ended up setting a limit at approximately msquark = 500 GeV, so we will

also focus our analysis on this value of the squark mass. We repeat the preselection

cuts but instead of the final selection on mavg, Amass and cos ✓⇤, we instead feed a list

of inputs to Single and Double DisCo to learn the optimal features. The inputs are:

�Rmin, mavg, cos ✓⇤, Amass, z12, z34, �R12, �R34, m12, m34, �⌘, ��, pT,12, pT,34 ,

(4.6)
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ABCDisCo
Kasieczka, Nachman, Schwartz & DS 2007.14400

Can significantly reduce signal contamination and boost 
background rejection! 
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Conclusions

Decorrelating NNs against auxiliary features is a fascinating topic 
with many important applications to the LHC and beyond. 

Adding a simple regularizer term based on Distance Correlation 
to the loss function achieves state-of-the-art performance for W-
tagging. 

DisCo can also be used to effectively automate feature 
construction for the ABCD method, simultaneously boosting 
background rejection and reducing signal contamination.

Stay tuned, more applications to come!

• Applications to real-world issues such as AI bias and algorithmic fairness?



Thanks for your attention!



Backup



Previous approaches

• Data “planing” [old idea, named and studied in 1709.10106, 1908.08959]

- reweight training data to flatten mass distribution
- very simple and potentially powerful, but cannot guarantee full statistical 

independence

• Designed decorrelated taggers - DDT [1603.00027]

- Removes most of the dependence of 𝜏21 on mass
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Appendix A: More details on the methods

1. Planing

One method to reduce correlation is to remove discrim-
inating information carried by a variable. The approach
of giving weights to training events so the distributions
for di↵erent classes are identical has been long used ex-
perimentally9 and recently was studied for understanding
network decisions [69] and resonance tagging [63]. Specif-
ically a weight wi,C for event with index i of class C is
calculated by building a histogram of the feature x so
that nj denotes the number of events in bin j.10 The
weight can then be calculated as:

wi,C |xi in bin j = AC
1

nj
, (A1)

where A is a per-class normalisation factor.
Planing weights are then used in the training of an

e.g. neural network classifier and modify the contribution
of each event to the loss function. When applying the
algorithm to events of unknown class in the testing phase
no weights are used (i.e. weights are set equal to one).

2. Designed decorrelated taggers

For decorrelating a classifier for a single selection e�-
ciency, a transformation of the output using the expected
shape of the background distribution after the training
is completed is possible as well [42]. This approach is
named Designed decorrelated taggers (DDT ). Concretely,
to decorrelate feature y against x, it is transformed ac-
cording to:

y
0 = y �M · (x�O) (A2)

where O in an o↵set and M is a slope parameter dy
dx

extracted for the background.

9
See e.g. [65–68]

10
Due to the explicit use of histogramming, it can be di�cult to

generalise planing to multiple variables.

3. Fixed e�ciency regression

It is also possible to design decorrelated variables for
non-linear relations between features by subtracting the
expected response for background examples [70]. This
average response can also be parametrised against mul-
tiple features. Take for example the de-correlation of a
feature y against x and x

0.

The decorrelated y
k-NN can be calculated as

y
k-NN = y � y

(P %)(x, x0) (A3)

with the threshold y
(P %)(x, x0) corresponding to a true

positive rate for background events P interpoldated using
a k-nearest neighbour regression fit [61].

4. uBoost

The uBoost approach is a modified training methods
for boosted decision trees (BDTs). A decision tree is a se-
ries of binary selection criteria that subsequently divide
the data. Boosting refers to a combination of multiple
decision trees to maximise a chosen classification metric
such as the Gini coe�cient or cross entropy. uBoost [62]
introduces an additional weight term in the boosting pro-
cedure so that regions in mass with low e�ciency receive
a higher weigth and regions with large e�ciency receive
a lower weight.

Following ATLAS, we used the implementa-
tion provided in the hep mlv0.6.0 package [71].
The hyperparameters were n estimators = 500,
learning rate = 0.5, and base estimator was
the DecisionTreeClassifier from sklearn with
max depth = 20 and min samples leaf = 0.01. For the
uBoost uniforming rate (the analogue of � for DisCo and
adversary), we scanned the range 0–3. We performed 5
independent trainings per uniforming rate and observed
that the results were quite stable and consistent be-
tween them. Larger values of the uniforming rate were
observed to populate lower R50 but with a unreliably
large variation in JSD50, so they were not included in
this study.

5. DNN classifier

As in the ATLAS study, we use for the DNN classifier a
fully connected network consisting of 3 hidden layers with
64 nodes each. Except for the final softmax layer we use
ReLU activations everywhere. Unlike the ATLAS study,
we chose to include a batchnorm layer [72] after the first
hidden layer, as we found this improved the stability of
the outcome.

⌧DDT
21 = ⌧21 � a⇥ log

m2

pTµ
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Previous approaches

• Nonlinear subtraction via kNN regression 

- Use kNN regression to remove dependence on mass and pT for a single 
cut efficiency

• Convolved SubStructure - CSS [1710.06859]

- Generalization of DDT
- Convolve variable with shape function

• uBoost [1305.7248]

- Modified BDT, adaptive boosting for classification performance and 
uniformity at fixed selection efficiency

A linear fit is performed to the ⌧21 profile in the range ⇢DDT 2 [1.5, 4.0]. From this fit, the transform
⌧21 7! ⌧DDT

21 is defined as
⌧DDT

21 = ⌧21 � a ⇥ (⇢DDT � 1.5) (6)

where a is the measured slope of the fit in Figure 1. Figure 1 shows how the DDT transformation removes
the linear correlation of ⌧21 with ⇢DDT. Consequently, since ⇢DDT e�ectively encodes information about
the kinematics of the jet (through m and pT), the DDT transform yields a jet substructure discriminant
which is decorrelated from the jet mass. Jets with ⇢DDT < [1.5, 4.0] are kept and the transform in
Equation (6) is applied to these as well.

6.2 Fixed-e�ciency regression

Whereas the DDT transform requires the existence of a linear relationship between a substructure variable
and kinematic variable(s) in order to remove the mean bias, more general strategies do not have such
requirements.

First, a fixed percentile of inclusive background e�ciency "rel
bkg for the D2 distribution is computed for

multijets in bins of ⇢ = log(m2/p
2
T) and pT, resulting in a two-dimensional profile. The e�ciency selected

in this case is "rel
bkg = 16%, corresponding roughly to a signal e�ciency of "rel

sig = 50%. Second, in order
to determine its functional dependence, a two-dimensional regression fit using the k-nearest neighbours
(k-NN) algorithm [15] is performed, yielding the distribution D

(16%)
2 (⇢, pT). Finally, for each jet a new

observable D2 7! D
k-NN
2 is constructed by subtracting the predicted values from D2:

D
k-NN
2 = D2 � D

(16%)
2 (7)

The profiles of the fixed-e�ciency D2 cut as a function of ⇢ and pT are shown in Figure 2. The fixed-
e�ciency regression generalises the central concept behind DDT, making the method admissible to a
more general class of substructure variables.

N2 [35] was initially studied as a potential base variable, in order to emulate the method used in Ref. [12].
However, Ref. [12] uses jets groomed with the soft drop method [36, 37] in contrast to the trimmed
jets described in Section 4, which has significant consequences for the behaviour of the jet substructure
moments computed for each jet collection. It was found that, while the distribution of N2 computed using
soft drop-groomed jets is robust with respect to both mass and pT, this is not the case for trimmed jets.
D2 [38] was found to have a much more stable behaviour than N2 when used with trimmed jets, and thus
it is used instead.

6.3 Convolved substructure

The DDT constructed in Sec. 6.1 removes the average dependence of a hadronic two-body decay tagging
observable x on the jet mass. This idea is extended in Ref. [16], by the introduction of convolved
substructure (CSS), to remove the dependence on the entire shape by convolving the distribution of the
substructure variable of interest with a shape function:

1
�

d�

dx
7! 1
�

d�

dxCSS
=

1
�

d�

dx
⌦ FCSS(x |↵,⌦D), (8)
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