High Fidelity Simulation of High Granularity Calorimeters with High Speed

4th Inter-experiment Machine Learning Workshop

Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Anatolii Korol, Katja Krüger

23.10.2020

Calorimeters in a HEP Experiment

- Incoming particle initiates the showers and secondary particles are produced
- These secondary particles further produce other particles until the full energy is absorbed

One type of EM calorimeter: sampling calorimeter

- Alternating layers of passive absorbers and active detectors
- Only **fraction** of particle energy is recorded (visible energy)

Shooting photon perpendicular to the ILD-ECAL (Si-W)

Photon energy: 10-100 GeV, continuous!

Results: Cell energy and Number of hits

- Both GAN and WGAN <u>fail</u> to capture MIP bump around 0.2 MeV
- ✓ BiB-AE is able to produce this feature thanks to Post-Processing network

- GAN and WGAN slightly <u>underestimate</u>
 the total number of hits
- ✓ BiB-AE reproduces the shape and width

Results: Other important distributions

 ✓ the shape, center and width of the peak are well reproduced for all models

- ✓ reproduce the bulk of the distributions very well.
 - slight deviations for the WGAN appear around the edges
- Deviations for BiB-AE
 - ✓ Explainable via latent space encoding

Conclusion

Application of generative models to high resolution EM shower simulation

- \checkmark Modelling of MIP peak and high fidelity
- ✓ Speedup: 3 orders of magnitude
- Architectures:
 - \odot GAN
 - \odot WGAN
 - BIB-AE (New!)
- Future Plans:
 - condition on incident position/angle
 - ${\scriptstyle \odot}$ hadronic showers
 - integrate into existing tools / frameworks

Paper: [arxiv:2005.05334] (submitted to journal, soon to be published)

