SWAN: Powering CERN's Data Analysis and Machine Learning Use cases

Riccardo Castellotti
On behalf of the SWAN team

https://swan.cern.ch

Oct 22nd, 2020
4th IML Machine Learning Workshop
SWAN in a Nutshell

- Data analysis with a web browser
 - No local installation needed
 - Based on Jupyter Notebooks
 - Calculations, input data and results “in the Cloud”

- Support for multiple analysis ecosystems and languages
 - Python, ROOT C++, R and Octave

- Easy sharing of scientific results: plots, data, code

- Already in use since 2016
 - 2000+ unique users in Physics, Accelerators and IT
Integrating services

Software

Compute

Storage

Isolation | local compute

TensorFlow

PYTORCH

CUDA

Spark

docker

kubernetes

CERNBox

EOS
Integration with Apache Spark

- Connection to CERN Spark Clusters
 - Spark: general purpose distributed computing framework
- Same environment across platforms (local/remote)
 - Software - CVMFS
- Graphical Jupyter extensions developed
 - Spark Connector
 - Spark Monitor
- Spark Clusters
 - NXCals: – Dedicated cluster for accelerator logging
 - Analytix: – General purpose YARN cluster
 - For HDFS access
 - Cloud Containers: – General purpose Kubernetes cluster
 - For non-local storage (EOS)

https://github.com/cerndb/SparkDLTrigger
Recent improvements and outlook
Jupyterlab on SWAN

Next-generation interface for Project Jupyter
 • “IDE-like” environment

Next steps: integration of current extensions
 • SWAN Projects
 • CERNBox sharing integration
 • Spark Connector and Monitor

...
SWAN on Kubernetes

> We have refactored the backend of SWAN to run on Kubernetes
 - Until now, notebooks have run in containers on physical servers
 - Kubernetes is a cluster manager for containerized applications

> This allows to run SWAN in Cloud deployments
 - SWAN runs in CERN cloud
 - Access GPUs from CERN cloud

> Pilot projects to run in public clouds
 - While accessing CERN storage (EOS) and software
 - Idea: overflow capacity in periods of high demand
Currently, one pilot instance of SWAN on Kubernetes at https://swan-k8s.cern.ch
 - It will become the default instance at https://swan.cern.ch

Through CERN openlab, a test cluster has been deployed on OCI (Oracle)
 - In the future, also other public cloud providers will be tested
In the pilot instance in CERN cloud, we are offering 5 GPUs (4x Tesla T4 + 1x V100) as of October 2020

- If there is demand, we will ask for more from CERN cloud

How are the resources shared?

- The user gets 1 GPU, 2 cores and 16 GB RAM from the available pool
- Users are removed after 4 hours of inactivity

Software packages from CVMFS

- The latest release has Tensorflow 2.1.0 and PyTorch 1.4.0
- The Bleeding Edge release has Tensorflow 2.3.0 and PyTorch 1.4.0
- You can install your own with `pip --user install`
https://indico.cern.ch/event/852553/contributions/4060355/attachments/2125796/3579027/GPU_demo.mp4
Thanks to: the SWAN Team (EP-SFT, IT-ST, IT-CM, IT-DB) and CERN openlab

Thanks to all the users for the feedback they provide

Access for beta users to GPUs at https://swan-k8s.cern.ch

- Please contact us on Service Now to ask access to this cluster