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Issues on using existing solutions

» Existing MLaaS services (e.g. provided by Amazon, Google or Microsoft) can’t read HEP data directly in ROOT
data-format: most of the cases ML deal with either CSV or NumPy arrays representing tabular data.

* We don’t use ROOT data directly in ML framework, we need a conversion step.

* Pre-processing operations may be more complex than offered by service providers

» R&D for specialized solutions to speed-up inference on FPGAs, e.g. HLS4ML, SonicCMS, etc.

* These solution are designed for optimization of inference phase rather than targeting the whole ML
pipeline from reading data, to training and serving predictions.



Towards MLaaS for HEP

Data repositories (GRID sites)

MLaa$S for HEP should provide the following: m
» natively read HEP data, e.g. be able to read ROOT files of

arbitrary size from local or remote distributed data-sources via

XrootD
» use heterogeneous resources, local CPU, GPUs, farms, cloud '

resources, etc.

(T 4
» use different ML frameworks (TF, PyTorch, etc.)

» serve pre-trained HEP models, like a model repository, and

access it easily from any place, any code, any framework. m m
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ML as a Service for HEP R&D

» Data Streaming Layer is responsible for local and remote data
access of HEP ROOQT files

» Data Training Layer is responsible for feeding HEP ROOT data
into existing ML frameworks

» Data Inference Layer provides access to pre-trained HEP model
for HEP users

All three layers are independent from each other and allow
independent resource allocation.

Data streaming and training tools: github.com/vkuznet/MLaaS4HEP
Data inference tools: github.com/vkuznet/TFaa$S

https://arxiv.org/abs/2007.14781 https://arxiv.org/abs/1811.04492v?2

HDFS

local ¢ N
filesystem >D

Remote
storage

Input data: NumPy array

T 11 NumPy 1D array

shape: (3,)

BEEl NumPy 2D array

shape: (2,3)

NumPy N dim array

shape: (X,Y.Z,...)

A
SERVICE

Data Reader

preprocessing —— batches

.
o

Data Streaming Layer

- - - -

ML model: e.g. Neural Network

Data Training Layer

-t - - -

Repository
of ML models

Data Inference Layer



Real case scenario:

ttH (bb) analysis in the boosted, all-hadronic final states

» A proof-of concept of the entire pipeline using CMS NANOAOD.

» We want to validate the MLaaS framework, namely we want

to test the infrastructure on real physics use-case. We chose a
signal vs background discrimination problem in a ttH analysis.
This allows us to:

1. validate MLaaS results from the physics point of view
2. test performances of MLaa$S framework

For phase 1 we used 9 ROOT files, 8 of background and 1 of signal.
Each file has 27 branches, with 350 hundreds events for the whole
pool of files and a total size of almost 28 MB. Ratio between signal
and background is 10.8%. We need to:

» choose a generic ML model
» compare results inside and outside MLaa$S
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MLaaS validation

In order to verify the validity of the MLaaS framework, we decided to use a generic ML model (Keras sequential Neural
Network) and to compare the results obtained inside and outside MLaaS: curves are almost indistinguishable!
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MLaaS performance

» For this phase we used all available ROOT files without any physics cut: namely 8 ROOT files, 7 of background and 1 of
signal, with a total size of almost 10.1 GB and almost 28.5 million of events.

» We performed all the tests running MLaaS framework on

* mac0S, 2.2 GHz Intel Core i7 dual-core, 8 GB of RAM
e CentOS 7 Linux, 4 VCPU Intel Core Processor Haswell 2.4 GHz, 7.3 GB of RAM CERN Virtual Machine.

» The ROOT files are read from local file-systems and remotely from the Grid sites. In particular, we read files remotely
from three different data-centers located at
* Bologna (BO)
e Pisa (Pl)
e Bari (BA).

E.g. in macOS with local files we have a reading + specs computing frequency of 11 kHz and a frequency of creating a
chunk of 1.1 kHz (for chunk size fixed to 100 thousands events).



summary

We built a MLaaS solution for HEP where:

local and remote ROOT files can be directly read

complexity of data transformation from ROOT I/O to ML is hidden to the user

resources can be used dynamically and independently for training and inference layers

ML framework of user choice can be used (R&D works towards model transformation from one framework to another)

customization is provided: total number of events to read; chunk size of data read; select or exclude branches to read,
choice of XrootD redirector

VVVYY

And...
» we validated the MLaaS framework with a physics use case
» we did performance tests for the streaming and training layers

Several aspects are planned to be investigated and integrated: reading multiple files concurrently, doing distributed
training, dynamically load user based pre-processing functions; possible graphical Ul to build full workflow pipeline (via

go-hep/groot)

For more details about MLaaS for HEP: https://arxiv.org/abs/2007.14781
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Machine Learning as a Service

CLOUD MACHINE LEARNING SERVICES COMPARISON

» MLaaS is a set of tools and services including:
Amazon e data visualization, pre-processing, model

Automated and semi-automated ML services
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Anomaly
detection

Recommendation

Ranking

Microsoft Azure ML Google Prediction =~ IBMWatson ML
Studio API Model Builder

v v
v
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Platforms for custom modeling
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algorithms

TensorFlow, MXNet,
Supported Keras, Gluon.
HEIMET S Pytorch, Caffe2,
Chainer, Torch
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Studio

v
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TensorFlow,
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scikit-learn,
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PyTorch, IBM
SPSS, PMML

TensorFlow, scikit-
learn, Microsoft
Cognitive Toolkit,
Spark ML

TensorFlow,
scikit-learn,
XGBoost, Keras

training and evaluation, serving predictions, etc.

Many of the world’s leading cloud providers
provide different types of MLaaS services,
including Amazon, Microsoft, Google and IBM.

MLaaS service providers offer pre-defined
models that can be used to cover standard use-
cases, e.g. classification, regression, natural
language  processing, facial recognition,
DeepLearning.



Data Streaming Layer

» The development of DIANA-HEP uproot library provides ability to read ROOT data in Python, access them as NumPy
arrays, and implements XrootD access

» Now we’re able to access ROOT files via XrootD protocol in C++, Python and Go

» MLaaS4HEP extends uproot library and provide APIs to read local and remote distributed ROOT files and feed them
into existing ML frameworks

 the DataReader and DataGenerator wrappers are created to read ROOT files and deliver them upstream as
batches

* random reads from multiple files are also supported (data shuffle mode)

* the non-flat ROOT branches are read and represented as Jagged Arrays



Data Training Layer

» Each event is a composition of flat and Jagged Arrays,
where usually flat arrays size is less then jagged ones

» Such data representation is not directly suitable for ML
(dynamic dimension of Jagged Arrays across events)

» To feed these data into ML we need to resolve how to
treat Jagged Arrays. We opted to flatten jagged array
into fixed size array with padding values through a two-
step procedure:

know up-front dimensionality of every Jagged
Array attribute (pre-processing step)

update dimension of jagged branches using
padding values, which should be assigned as NANs
since all other numerical values can represent
attribute spectrum. Keep the mask array with
padding values location.
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Data Inference Layer

Data Inference Layer is implemented as TensorFlow as a Service (TFaaS), written in the Go programming language
Capable of serving any TensorFlow model

Can be used as global repository of pre-trained HEP models

Both Python and C++ clients were developed on top of the REST APIs (end-points) and other clients can be developed
thanks to HTTP protocol used by the TFaaS Go RESTful implementation.

e C++ client library talks to TFaaS using ProtoBuffer data-format, all others use JSON

Can be deployed everywhere (Docker image and Kubernetes files are provided)

TFaaS allows a rapid development or continuous training of TF models and their validation: clients can test multiple TF
models at the same time


https://hub.docker.com/r/veknet/tfaas-public/
https://github.com/dmwm/CMSKubernetes/tree/master/kubernetes/tfaas

Loss

MLaaS validation (2)

In order to properly train any ML model we need the ability to read data in chunks and shuffle them accordingly in each

batch of training. How?

» The user specifies a chunk size (in this case 10 thousands events) and MLaaS ensures that each chunk will have the

same proportion of signal and backgrounds events presented in the ROOT files.
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MLaaS validation (3)

The trend of the metrics in the previous slide is not smooth, namely we see sawtooth shape patterns.
To investigate this behaviour we dropped one by one ROOT files from the pool, and we found that a particular ROOT file

with ttH_noDRmatch background is responsible for this effect.
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MLaaS validation (4)

Actually, we found that physics analysis drop certain features due to their high correlations and used set of
custom engineered features in their final ML training.

loss accuracy | AUC
27 features model | 0.187 0.911 0.934
14 features model | 0.298 0.892 0.766
analysis reference 0.886

The reason of the discrepancy between different models is two-fold.

» we did not performed any features engineering.

» the results of physics analysis was based on TMVA tool, which we treated as black-box. Moreover, we knew that in
TMVA a weight for each ROOT file was applied according to the inverse of the luminosity.

But this is not our goal: in fact we have a clear demonstration of a working system, we validate it by applying it to an
HEP use case, and we are able to build ML models using directly ROOT files.
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./workflow.py ——files=files.txt ——labels=1labels.txt —model=model.py ——params=params.json

WIIEERS Input ROOT Labels of

workflow HIES ROOT files

Keras model

from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout

def model(idim):
"Simple Keras model for testing purposes"
ml_model = Sequential([Dense(128, activation='relu',input_shape=(idim,)),
Dropout(0.5),
Dense(64, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')])
ml_model.compile(optimizer=keras.optimizers.Adam(lr=1e-3),
loss=keras. losses.BinaryCrossentropy(),
keras.metrics.AUC(name='auc')])

\EER
parameters

MLaa$S parameters

"nevts": 30000,

"shuffle": true,

"chunk_size": 10000,

"epochs": 5,

"batch_size": 100,

"identifier": ["runNo", "evtNo", "lumi"],
"branch": "boostedAk8/events",

"selected_branches":"",
"exclude_branches": "",

"hist": "pdfs",

"redirector": "root://xrootd.ba.infn.it",

"verbose": 1

4th IML Machine Learning Workshop - 22.10.2020
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MLaaS parameters Read remote root files Write and load the specs
| » I

] 1593445994.0
00, "identifier"™: ["runNo",

./workflow.gLLf—files=files.txt —1 s.txt —model=model.py ——params=params.json
DataGenerat <MLaaS4HEP.generato nerator object at 0x7f@cb58d7fdo> [29/Jun/2020:17:53:
model parameters: {"nevts": 3000 true, "chunk_size": 10000, "epochs": 2, "batch_size"
"branch": "boostedAk8/events", | ches": "", "exclude_branches": "", "hist": "pdfs", "

Reading root://xrootd.ba.infn.it//$PATH_F LES/flatTree_ttHJetTobb_M125 13TeV_amcatnloFXFX_madspi
# 10000 entries, 77 branches, 9.52220344] /3457 MB, 1.0169336795806885 sec, 9.36364252323795 MB/
# 10000 entries, 77 branches, 9.53391557 /14355 MB, 1.2977769374847412 sec, 7.346343770133804 M
# 10000 entries, 77 branches, 9.5386676/ ;833008 MB, 1.4104814529418945 sec, 6.7627033726234735
——— first pass: 948348 events, (22-flat /52-jagged) branches, 328 attrs

<MLaaS4HEP. reader.RootDataReader objec/ /at 0x7f840dbf4d50> init is complete in 4.852992534637

pythia8.root

, 9.833482950553169 kHz
sec, 7.705484441248654 kHz
/sec, 7.089777734505208 kHz

secC

root

MB/sec, 10.42047313071777 kHz
MB/sec, 7.728618026459661 kHz
MB/sec, 8.874771534572496 kHz

Reading root://xrootd.ba.infn.it//$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg—pythia
# 10000 entries, 77 branches, 8.875920295715332 MB, 0.9596493244171143 sec, 9.2491288951894
# 10000 entries, 77 branches, 8.868906021118164 MB, 1.2938923835754395 sec, 6.8544386949790
# 10000 entries, 77 branches, 8.869449615478516 MB, 1.1267895698547363 sec, 7.871433897477
——— first pass: 1003980 events, (22-flat, 52-jagged) branches, 312 attrs

<MLaaS4HEP. reader.RootDataReader object at 0x7f8410el15f90> init is complete in 4.53512477
write global-specs.json

7559 sec

"evtNo", "lumi"],
irector": "root://xrootd.ba.infn.it", "verbose": 1}

load specs from global-specs.json for root://xrootd.ba.infn.it//$PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8. root

load specs from global-specs.json for root://xrootd.ba.infn.it//$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg—-pythia8.root
init RootDataGenerator in 11.186564683914185 sec

label 1, file <flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root>, going to read 4858 events

read chunk [0:4857] from /$PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8. root

# 10000 entries, 77 branches, 9.52220344543457 MB, 1.3816642761230469 sec, 6.891835889507034 MB/sec, 7.237648228164387 kHz
total read 4858 evts from /$PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8. root

label 0, file <flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root>, going to read 5142 events

read chunk [4858:9999] from /$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg—pythia8.root

# 10000 entries, 77 branches, 8.875920295715332 MB, 1.7170112133026123 sec, 5.169401473297779 MB/sec, 5.8240737873606205 kHz
total read 5142 evts from /$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root

Create the chunk




Model: "sequential"

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 49152

dropout (Dropout) (None, 128) 0

dense_1 (Dense) (None, 64) 8256 Init the ML model
dropout_1 (Dropout) (None, 64) 0

dense_2 (Dense) (None, 1) 65

Total params: 57,473
Trainable params: 57,473
Non-trainable params: @

Perform train cycle

Train on 7000 samples, validate on 3000 samples
Epoch 1/2

7000/7000 [
val_auc: 1.0000 - val_accuracy: 1.0000
Epoch 2/2

7000/7000 [
1.0000 - val_accuracy: 1.0000

] - 2s 220@us/sample — loss: 1.5275 - auc: 0.7845 - accuracy: 0.7307 - val_loss: 2.5731e-04 -

] - @0s 20us/sample - loss: 0.1406 — auc: 0.9883 - accuracy: 0.9543 - val_loss: 8.8477e-06 — val_auc:
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run in CERN VM with remote (BOLOGNA) files

—run in CERN VM with remote (PISA) files

time to go through | reading + specs comp. | reading freq. | specs comp. freq.

all the files (s) frequency (kHz) (kHz) (kHz)
macOS with local files 2608 11.2 18.6 28
macOS with remote files (BO) 5463 5.3 6.5 28
VM with local files 2153 13.4 24.9 28.8
VM with remote files (BO) 2994 9.6 14.7 27.7
VM with remote files (BA) 3193 9 13.2 28.5
VM with remote files (PI) 3171 9.1 13.3 28.3

Values for chunk size fixed to 100 thousands events
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Frequency of creating a chunk

—__

Frequency (kHz)
B
&
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Thousands events in a chunk
——run in macOS with local files =run in macOS with remote (BOLOGNA) files
—run in CERN VM with local files run in CERN VM with remote (BOLOGNA) files
—run in CERN VM with remote (BARI) files —run in CERN VM with remote (PISA) files
Frequency for creating a chunk (kHz) | Frequency for handling a chunk (kHz)
macOS with local files 1.1 1.16
macOS with remote files (BO) 1.05 1.19
VM with local files 1.08 1.12
VM with remote files (BO) 1.02 1.08
VM with remote files (BA) 0.94 1.19
VM with remote files (PI) 0.98 1.06

Values for chunk size fixed to 100 thousands events
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