DeepMind

Deep Dive on Graph Networks for
Learning Simulation

4th Inter-experiment Machine Learning Workshop
22 October 2020
Alvaro Sanchez-Gonzalez - DeepMind

Victor Bapst, Peter Battaglia, Kyle Cranmer, Miles Cranmer,
Meire Fortunato, Jonathan Godwin, Jessica Hamrick,

Shirley Ho, Jure Leskovec, Tobias Pfaff, Rex Ying, DeepMind @

Simulation is fundamental to science and technology

| argest supercomputers in the world (Nov 2019)

#1. "Summit” @ Oak Ridge: “A Sneak Peek at 19 Science Simulations for the Summit Supercomputer in 2019”

. Evolution of the universe 1. Cancer data
2. Whole-cell simulation 12. Earthquake resilience for cities
3. Inside a nuclear reactor 13. Nature of elusive neutrinos
4. Post-Moore’s Law graphene circuits 14. Extreme weather with deep learning
5. Formation of matter 15. Flexible, lightweight solar cells
6. Cell's molecular machine 16. Virtual fusion reactor
7. Unpacking the nucleus 17. Unpredictable material properties
8. Mars landing 18. Genetic clues in the opioid crisis
9. Deep learning for microscopy 19. Turbulent environments
10. Elements from star explosions

https://www.top500.org/lists/2019/11/
https://www.olcf.ornl.gov/2019/01/17/a-sneak-peek-at-19-science-simulations-for-the-summit-supercomputer-in-2019/

Simulation is fundamental to science and technology

| argest supercomputers in the world (Nov 2019)

#1. "Summit” @ Oak Ridge: “A Sneak Peek at 19 Science Simulations for the Summit Supercomputer in 2019”

#2 "Sierra” @ Lawrence Livermore: “[nuclear] simulation in lieu of underground testing”
#3 “Sunway TaihuLight” @ NSC, Wuxi: “simulated the Universe with 10 trillion digital particles”

#4 "Tianhe-2A” @ NSC, Guangzhou: “main application ... is for computational fluid dynamics (CFD) ... aircraft simulations”

#5 “Frontera” @ TACC: “"high-resolution climate simulations, molecular dynamics models with millions of atoms”

#6 "Piz Daint” @ CSCS: “simulate processes for projects in geophysics, materials science, chemistry, ... climate modeling”
#7 "Trinity” @ Los Alamos: “A trillion-particle simulation? No sweat for the Trinity supercomputer at Los Alamos”

(#8 "ABCI” @ AIST, Japan: not simulation, but deep learning)

#9 “"SuperMUC-NG” @ Leibniz Supercomputing Centre: “Researchers Visualize the Largest Turbulence Simulation Ever”

#10 “Lassen” @ Lawrence Livermore: “The system is designated for unclassified simulation and analysis”

O

https://www.top500.org/lists/2019/11/
https://www.olcf.ornl.gov/2019/01/17/a-sneak-peek-at-19-science-simulations-for-the-summit-supercomputer-in-2019/
https://computing.llnl.gov/computers/sierra
https://www.wired.co.uk/article/china-simulate-universe-supercomputer
https://futurism.com/china-upgrades-most-powerful-supercomputer-in-the-world-hosts-it-in-defense-research-center
https://www.tacc.utexas.edu/-/frontera-named-5th-fastest-supercomputer-in-the-world
https://spectrum.ieee.org/computing/hardware/piz-daint-supercomputer-shows-the-way-ahead-on-efficiency
https://www.wired.com/story/this-bomb-simulating-us-supercomputer-broke-a-world-record/
https://www.hpcwire.com/2019/10/30/researchers-visualize-the-largest-turbulence-simulation-ever/
https://computing.llnl.gov/computers/lassen

Why learn simulation?

Engineered simulators:
1. Substantial effort to build
Substantial resources to run

2
3. Only as accurate as the designer
4

Not always suitable for solving inverse
problems

t=0.000 ms

Why learn simulation?

Engineered simulators: Learned simulators:
1. Substantial effort to build — 1. Shared architectures
2. Substantial resources to run — 2. Accuracy-efficiency trade off
3. Only as accurate as the designer ——— 3. As accurate as the available data
4. Not always suitable for solving inverse — 4. Gradient-based planning
problems 5. Interpretable models!*

t=0.000 ms

**Discovering Symbolic Models from Deep Learning with Inductive Biases”
Cranmer et al., NeurlPS 2020

https://arxiv.org/abs/2006.11287

Graph Networks for Learning Physical Simulation

Deep Dive on our most recent models:

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)
Alvaro Sanchez-Gonzalez*, Jonathan Godwin*, Tobias Pfaff*, et al.

Arxiv: arxiv.org/abs/2002.09405

Video page: sites.google.com/view/learning-to-simulate

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Tobias Pfaff*, Meire Fortunato®, Alvaro Sanchez-Gonzalez*, Peter Battaglia

Arxiv: arxiv.org/abs/2010.03409
Video page: sites.google.com/view/meshgraphnets

Focus on general principles behind the design
o Applicable to other domains

O

http://arxiv.org/abs/2002.09405
http://sites.google.com/view/learning-to-simulate
http://arxiv.org/abs/2010.03409
https://sites.google.com/view/meshgraphnets

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)
° ° Video page: sites.google.com/view/learning-to-simulate
Water simulation (SPH)

Ground truth Prediction

= == P e

O

http://sites.google.com/view/learning-to-simulate
https://docs.google.com/file/d/1O2D8mpxwvbgVn06gUNNW9BIoDtXEAwTh/preview

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)
° ° Video page: sites.google.com/view/learning-to-simulate
Water simulation (SPH)

Ground truth Prediction

= == P e

O

https://docs.google.com/file/d/1O2D8mpxwvbgVn06gUNNW9BIoDtXEAwTh/preview
http://sites.google.com/view/learning-to-simulate

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)

i i ideo page: sites.google.com/view/learning-to-simulate
Multiple materials Video page: sites goog learning-to-simulat

Data from 3 distinct simulators:

SPH MPM PBD

O

http://sites.google.com/view/learning-to-simulate

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

i i i ideo page: sites google com/view/meshgraphnets
Cloth simulation (ArcSim) Video page:sitesgoog ngraphnet

e Triangular dynamic mesh
e Lagrangian representation

https://docs.google.com/file/d/1Puzo8nqueJyYmGFTfuE2zpdBpzCpZ6Jp/preview
https://sites.google.com/view/meshgraphnets

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

Structural dynamics (COMSOL)

e Tetrahedral mesh
e Lagrangian representation
e Quasi-static simulation

Ground truth

@ actuator

metal plate

von mises stress [MPa]

o 400 1600 3600 6400 10000 14400

Video page: sites.google.com/view/meshgraphnets

Prediction

https://docs.google.com/file/d/1PJsky3flqjZVbHf97bYz3LWAGXSFr3H-/preview
https://sites.google.com/view/meshgraphnets

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

Incompressible fluids (COMSOL)

e Navier-Stokes
e FEulerian representation

Ground truth

Prediction

Video page: sites.google.com/view/meshgraphnets

x-velocity [m/s]

25
2.0

15

https://docs.google.com/file/d/1tHdQvCbvCvDpkXEGaDgWqgLknotfDNpE/preview
https://sites.google.com/view/meshgraphnets

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

i ideo page: sites.google.com/view/meshgraphnets
Aerodynamics (SU2) Video page: sites goce ngraphner

e Navier-Stokes
e FEulerian representation

Ground truth Prediction

mach number 0.58
angle of attack 21.9

x-velocity [m/s]

—400 -200 o 200 400

https://docs.google.com/file/d/1n43-gpya6xVEz4v4xyd-IFtskNjEq-g0/preview
https://sites.google.com/view/meshgraphnets

Why Graph Network based simulators?

e Adaptability
o Same model — Vastly different materials and domains

e Data efficiency
o <1000 training trajectories

e Performance
o Latest model: ~10 to 100 times faster than ground truth simulator

e Generalization

O

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

° ° ° ideo page: sites.google.com/view/meshgraphnets
Generalization to more time-steps ideo poge siesgootiaconfanimashamaineis
Input state Target state

Train time
e Pairs of states

Test time
e 1000s of steps

O

https://sites.google.com/view/meshgraphnets

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)
Generalization tO many more partiCleS Video page: sites.google.com/view/learning-to-simulate

Training
1 x 1 domain

2k particles
600 steps

o

http://sites.google.com/view/learning-to-simulate

Generalization to many more particles

Training
1 x 1 domain

2k particles
600 steps

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)

Video page: sites.google.com/view/learning-to-simulate

Generalization Generalization
2 X 2 domain 8 x 4 domain
28k particles 85k particles

2500 steps 5000 steps

https://docs.google.com/file/d/1YdsH6PlxNV4zQMk8XugEnYNi1QPvWzJg/preview
http://sites.google.com/view/learning-to-simulate

Generalization to initial conditions

Training

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)

Video page: sites.google.com/view/learning-to-simulate

o

http://sites.google.com/view/learning-to-simulate

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)
Generalization to initial conditions

Video page: sites.google.com/view/learning-to-simulate

Training Generalization

Ground truth Prediction

slow motion

https://docs.google.com/file/d/11St6p6nAR1jQs42X7aJV3vXl_Elfp954/preview
http://sites.google.com/view/learning-to-simulate

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

Generalization to different meshes

Video page: sites.google.com/view/meshgraphnets

Generalization

Training

https://docs.google.com/file/d/1dy-AAfcEyktIQGosM3BrpOnCZgrPHEh2/preview
https://sites.google.com/view/meshgraphnets

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

Generalization to larger meshes

Video page: sites.google.com/view/meshgraphnets

Training:
2k nodes

Generalization:
>20k nodes

https://docs.google.com/file/d/1JWfx63uOs0suNYjnprTe6iaicnQOQd_z/preview
https://sites.google.com/view/meshgraphnets

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)

Graph Network-Based Simulators

Video page: sites.google.com/view/learning-to-simulate

Xto Xto

Learned simulator, sy

G

dp —1
ENCODER r CGNL PROCESSOR r GNM?\ DECODER
X— — G° ~H>G' .- GV -H— GV — — Y

Main design principle: neural networks are dumb, let’s make their life easy @

http://sites.google.com/view/learning-to-simulate

“If I have seen further it is by
standing on the shoulders of gla

-Sir Isaac Newton-

Our Neural Networks should also have |
the knowledge of giants! 5

$

Inductive Biases

Phvsics-i ired “An inductive bias allows a learning algorithm to prioritize
ySICS-INSpIre one solution (or interpretation) over another.”

inductive biases

Mitchell, T. M.. The need for biases in learning generalizations. (1980)

XK

Learned simulator, sy

G

dp —1
ENCODER r aN?! PROCESSOR r GNM)\ DECODER
X— — GO ()Gl ... gM-1 > GM — —>Y

Pairwise Superposition

Spatial Local Universal interactions principle

equivariance interactions rules

Differential

equations@

Permutation equivariance

Physics-inspired inductive biases

Learned simulator, sy

G

dp —1

PROCESSOR aNM DECODER

X —> _GO Gl . ea GM—I r

_>Y

Pairwise Superposition

interactions principle Differential

equations@

Local Universal
interactions rules

Spatial
equivariance

Permutation equivariance

Interaction Networks (Battaglia et al., 2016, NeurlPS)

Graph Networks Graph Networks (Battaglia et al, 2016, arXiV)

e MLPs operate over vectors

MLP()

o

Interaction Networks (Battaglia et al., 2016, NeurlPS)

Graph Networks Graph Networks (Battaglia et al, 2016, arXiV)

e Neural networks that operate over graphs

Permutation
equivariance

o

Interaction Networks (Battaglia et al., 2016, NeurlPS)

Graph Networks Graph Networks (Battaglia et al, 2016, arXiV)

e Neural networks that operate over graphs
o Node features

o

Interaction Networks (Battaglia et al., 2016, NeurlPS)

Graph Networks Graph Networks (Battaglia et al, 2016, arXiV)

e Neural networks that operate over graphs
o Edge features

o

Interaction Networks (Battaglia et al., 2016, NeurlPS)

Graph Networks Graph Networks (Battaglia et al, 2016, arXiV)

e Neural networks that operate over graphs
o Global features

u [

o

Graph Networks

Interaction Networks (Battaglia et al., 2016, NeurlPS)
Graph Networks (Battaglia et al., 2016, arXiV)

Update edge, node and global embeddings

u [

75

V;

u

/

rTM
[N R

T
(N R

O

Interaction Networks (Battaglia et al., 2016, NeurlIPS)

Message paSSing: Edge update Graph Networks (Battaglia et al, 2016, arXiV)

Edge (message) function (for every edge) ¢ &

(_ ¢e (ekavrkavskau) = NNe (

Pairwise Universal
interactions rules

Interaction Networks (Battaglia et al., 2016, NeurlIPS)

Message paSSing: NOde update Graph Networks (Battaglia et al, 2016, arXiV)

Receiver edge aggregation (Message pooling) (for every node)

—~/ / iti %
- § : el Supe_rpc?smon o
, principle -
Tk = 060) \Q’%
Q‘é@b ‘\@6\0 \Ke(b
Node function (for every node) VQQ@ éoée 0\0@

Vil ¢ (& vi,u) == NN, (EICTIE)

Local _
interactions Universal rules

Graph Networks: Global update

Global node and edge aggregation

Interaction Networks (Battaglia et al., 2016, NeurlPS)
Graph Networks (Battaglia et al., 2016, arXiV)

Physics-inspired inductive biases

Xto

=

Learned simulator, sy

G

do
ENCODER aN?! PROCESSOR r GNM)\ DECODER
X —> ey Gl ... gM-1 >(4) GM — > YV
: : Pairwise Superposition _
Spatial Local Universal Differential

interactions principle

interactions rules

equivariance

equations@

Permutation equivariance

Encoder

e Transform the inputs into a graph
o Add connectivity with a certain radius R

Local
(spatial)
interactions
%
(" —_—
¢ - -

ENCODER

X— — G

O

Encoder

e Add features to the graph (naive approach)

ext. forces

o

ENCODER

X —

—GO'

pos.

veIi

type,

O

Encoder ENCODER

X— — G
e Add features to the graph
1071 3
Relative positional ext. forces _
features pos,=pos,-pos, £102

pes, | vel. [type, Lls l

2 &
9
RN

. i Relative
Spatial Universal positional

equivariance rules features

O

Encoder

e Embed graph features

pos.

veh

type,

ext. forces

MLP

MLP

ENCODER

X —

—GO'

Physics-inspired inductive biases

Xto Xto XK

Learned simulator, sy ~ Q’ S0 ||

— Update e
| et

dp —1

ENCODE r aN?! PROCESSOR r GNM)\ DECODER
X —> GO :a-)—»Gl e QM1 >(+) GM —> Y
Pairwise Superposition
Spatial Local Universal .) L ; :
P interactions principle Differential

equivariance interactions rules equations@
Permutation equivariance

Processor: Graph Network stack

e Iterative message passing (MP) without global updates

r aNL PROCESSOR r aNM
e Increase range of communication _ Local
interactions
After 1MP steps After 2 MP steps After 3 MP steps After n MP steps

20705
o O(n) e O(nY)
’é 1072 5 : . o
G :
d L | 1
- |
1073 - I l R
01 23456 78 910111315 Q&QQ'\Q\,xQ@Q_Q'»QQ
. : Q" Q7 Q" O
Number of message passing iterations o ,
Connectivity radius
After IMP steps After 2 MP steps After 3 MP steps After n MP steps

How does generalization work?

-

Training

O

Generalization to significantly more particles

‘ Interactions with obstacles
Trainin .
9 Water surface dynamics

m Interaction with box boundaries
B Dense blocks of water

Generalization

{)
Q

{)

Physics-inspired inductive biases

Xto XtO
i Learned i
e Update
A=
ENCODER 1 PROCESSOR DECODER
GN
X—> — GO r (> Gt ... gM1 r :é —> Y
: : Pairwise Superpositionf _
Spatial Local Universal Differential

interactions principle

equivariance interactions rules equations

Permutation equivariance

Decoder and update (Newtonian system) DECODER

GM — __f

e Naive approach

o pos'! = NN(pos", vel')

Hard to predict static dynamics — Wrong prior

O

Decoder and update (Newtonian system) DECODER

aM—[—

e Less naive approach

o post! = pos' + NN(post, velt)

Easy to predict static dynamics
Hard to predict inertial dynamics — Wrong prior

O

Decoder and update (Newtonian system) DECODER

GM — __f

e Better approach

o vel™ = vel' + NN(pos", vel')
o post™ = post + velt*

Easy to predict static and inertial dynamics!

O

Decoder and update DECODER

eM—| |—1
o vel™ = vel' + NN(pos", vel') < Predicts
o post™! = post + vel* “acceleration”

O

Decoder and update DECODER

GM — 4

o vel™ = vel' + NN(pos!, vel) - dt

° Pos’=pos’+vell dt Differential

Euler integrator! ‘?ﬂl‘;:’t;g:)s
d vel

= 0s, vel

e Reformulate as an ODE: a1)

d pos

Ch int t _
o oose integrator - vel o

Decoder and update

Newtonian
Particle-based fluids Cloth simulation
d x

E —f(X,X)

Quasistatic

Structural mechanics

dx _
dt

f(x)

Eulerian Navier Stokes

Aerodynamics

0%
dt

— f(V7)0)

Incompressible

fluid

Differential)
equations

https://docs.google.com/file/d/1IDk45syuptBVWxXNHl3etlUtbXnI6243/preview

Training tricks

ENCODER

X —>

Learned simulator,

G

dp —1

GNL PROCESSOR

- ol

Trainin
noise

g

(> Gl ... gM-

Xtk Xt

S

DECODER

»

GNM

Optimization

tricks

O

Generalizing to more training steps: training with noise

Train time (one step)

Ground truth TRANSITION Predicted L2loss o0 truth
. —» next state E*——>»
input state MODEL : next state
(imperfect)
video credit:
Test time Ummenhofer et al. 2020,

Lagrangian Fluid Simulation with

e Model has never seen imperfect inputs Continuous Convolutions

Predicted Predicted
Qround truth > TRANSITION | > next state —» TRANSITION | > next state —»
input state MODEL . MODEL .
(imperfect) (imperfect)
e 7ty

0 0 (o)
e

Generalizing to more training steps: training with noise

Train time (with noise)
e Models learns to compensate imperfect inputs during training

Ground truth
input state

+ NOISE

Test time (error stays bounded)

Ground truth
input state

TRANSITION
MODEL

Predicted L2 loss

redicte

—> TRGg%IE:_ON —» next state < » Ground truth

(imperfect) next state

Predicted Predicted

> next state —»| TRANSITION | - ° . | TRANSITION
; MODEL : MODEL
(imperfect) (imperfect)

For additional details: Supplementary Section A.2.2. “Learning Mesh-Based Simulation with Graph Networks”

Optimization tricks

e Normalization of representations:

O

O
O
O

Weight initialization: MLP(~N(O, 1)) — ~N(O, 1)
Normalization of MLP inputs: u=0, o=1
Normalization of MLP outputs: y=0, o=1
LayerNorm: u=0, o=1 everywhere else!

O

Optimization tricks

e Normalization of representations:

O

O
O
O

Weight initialization: MLP(~N(O, 1)) — ~N(O, 1)
Normalization of MLP inputs: u=0, o=1
Normalization of MLP outputs: y=0, o=1
LayerNorm: u=0, o=1 everywhere else!

e Residual connections

o At every message passing step

GN!

o

MeshGraphNets: Extension to meshes

uniform grid (e.g.convnet) at 2:10“m:
_.40,000,000,000 nodes

40m

adaptive mesh:
9,000 nodes

2:10*m

O

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

. Video page: sites.google.com/view/meshgraphnets
MeshGraphNets: Extension to meshes A ’
Xto xtx

Learned one-step simulator

t t+1
q; qﬁ
>

Cloth mesh nodes
Obstacle mesh nodes

Encoder Processor Decoder ¥

Mesh-space edges FE M
World-space edges EW

M
Mesh-space messages € ij

w
World-space messages e',-j

f> = Message
passing x L

L) || ee

Decoded accelerations P:

O

https://sites.google.com/view/meshgraphnets

Dual space message passing

world space x mesh space u

internal dynamics: e.g. F = 6x/6u
estimating differential operators —
on the simulation manifold

external dynamics:
computing e.g. collision and contact

O

MeshGraphNets: Extension to meshes
Xto XK

Learned one-step simulator

t t+1
q; q¢+
»
v I (Cloth mesh nodes v
Encoder x . u. Processor (. Obstacle mesh nodes
—— Mesh-space edges EM
~— World-space edges EW
> M
== Mesh-space messages € ;;
«= World-space messages e'g
e o
M
I/ p;i?:g?(L == Decoded accelerations P

o

MeshGraphNets: Extension to meshes

Xto Xtk unroll for 100s of steps

lterative

Learned one-step simulator rollout

t t+1
q; qi+
>

Cloth mesh nodes
Obstacle mesh nodes

|4

Encoder 3 4 Processor
Mesh-space edges B
World-space edges EW
M
Mesh-space messages € ;;

w
World-space messages e'ij

L) || ee

passing x L Decoded accelerations Pi

o

Resolution

Learned adaptive remeshing

Fine-scale dynamics regions at
Fine-scale dynamics regions later step

Sizing field in mesh space

Decoper\Update

M- |—

sizing
field

Predict sizing field
and remesh!

O

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

i i ideo page: sites.google.com/view/meshgraphnets
Learned adaptive remeshing Video page: sites.goog| hgraphnet

https://docs.google.com/file/d/1qUSb8-weG-YnbcuLnoJ7ziucE-y9ay8Q/preview
https://sites.google.com/view/meshgraphnets

Bonus slide: additional inductive biases

e Hamiltonian inductive bias with Graph Networks

O “Hamiltonian Graph Networks with ODE Integrators”
Sanchez-Gonzalez et al,, 2019, arXiv/NeurlPS 2019 workshop

o Makes use of the full Graph Network (including global update).

o Explores additional integrators

e |agrangian inductive bias with Graph Networks

O “Lagrangian Neural Networks”
Cranmer et al,, 2020, arXiv/ICLR 2020 workshop

o

Bonus slide: interpretable graph networks

® “Discovering Symbolic Models from Deep Learning with Inductive Biases”
Cranmer et al., NeurlPS 2020

e Extract symbolic models from edge and node functions of a GraphNet

Model with Extract to
Graph Neural Network Symbolic Equation

Dataset

Q9

= 5 Predict Dynamics E ;9
e S » e)
» % » a; = ﬁ Z(l — T'ij)"'z‘j
" ‘\:6 '
(N Known spring law

Simple Particles

Encourage Low-Dimensionality
Representation

|/ ®e 1 c
,) + M
- 61 = C : !
= " Gr G ZJ_ — Cs + Co(rij)"

Unknown Dark Matter

overdensity equation ‘q

Detailed
Dark Matter Simulation

Datasets and source code

e “Learning to Simulate Complex Physics with Graph Networks”

o github.com/deepmind/deepmind-research/tree/master/learning to simulate

Ground truth Prediction

e Tensorflow 1& Sonnet 1(GPU)

e DeepMind Graph Nets library (TF1 and TF2 compatible)
o github.com/deepmind/graph_nets @

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate
https://github.com/deepmind/graph_nets

ithub.com/deepmind/deepmind-research/tree/master/learnin

learned_simulator.py (_build)

e One step model interface:

def _build(self, position_sequence, n_particles_per_example,
global_context=None, particle_types=None):

input_graphs_tuple = self._encoder_preprocessor(
position_sequence, n_particles_per_example, global_context,
particle_types)

normalized_acceleration = self._graph_network(input_graphs_tuple)

next_position = self._decoder_postprocessor(
normalized_acceleration, position_sequence)

return next_position

to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

github.com/deepmind/deepmind-research/tree/master/learning _to_simulate

learned_simulator.py (_build)

e One step model interface:

def _build(self, position_sequence, n_particles_per_example,
global_context=None, particle_types=None):

input_graphs_tuple = self._encoder_preprocessor(
position_sequence, n_particles_per_example, global_context,
particle_types)

normalized_acceleration = self._graph_network(input_graphs_tuple)

next_position = self._decoder_postprocessor(
normalized_acceleration, position_sequence)

return next_position

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

github.com/deepmind/deepmind-research/tree/master/learning _to_simulate

learned_simulator.py (_encoder_preprocessor)

e Fixed radius connectivity:

vitrrar't I M7 ol nb=1 2 B & FAa=t11 ™ ¢ Fvm o al= ™ e e oMoy
Extract 1mportant features fTrom the poslition_sequence.

most_recent_position = position_sequence[:, -1]

) ™ o g g~ P YL E IV ~ = + |- e
Get connectivity of the graph.

(senders, receivers, n_edge
= connectivity_utils.compute_connectivity_ for_batch_pyfunc(
most_recent_position, n_node, self._connectivity_radius)

O

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

ithub.com/deepmind/deepmind-research/tree/master/learnin

learned_simulator.py (_encoder_preprocessor)

e Normalized node features:

Normalized velocity sequence, merging spatial an time axis.

velocity_sequence = time_diff(position_sequence) # Finite-difference.

velocity stats = self._normalization_stats["velocity"]
normalized_velocity sequence = (

velocity sequence - velocity stats.mean) / velocity_stats.std

flat_velocity sequence = snt.MergeDims(start=1, size=2)(
normalized_velocity_sequence)
node_features.append(flat_velocity_sequence)

Particle type.
if self._num_particle_types > 1:
particle_type_embeddings = tf.nn.embedding_lookup(
self._particle_type_embedding, particle_types)
node_features.append(particle_type_embeddings)

to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

ithub.com/deepmind/deepmind-research/tree/master/learning to_ simulate

learned_simulator.py (_encoder_preprocessor)

e Normalized edge features:

Collect edge features.
edge_features = []

Relative displacement and distances normalized to
normalized_relative_displacements = (
tf.gather(most_recent_position, senders) -
tf.gather(most_recent_position, receivers)) / self._connectivity_radius

edge_features.append(normalized_relative_displacements)
normalized_relative_distances = tf.norm(

normalized_relative_displacements, axis=-1, keepdims=True)
edge_features.append(normalized_relative_distances)

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

github.com/deepmind/deepmind-research/tree/master/learning _to_simulate

learned_simulator.py (_encoder_preprocessor)

e Normalized global features:

Normalize the global context.
if global_context is not None:
context_stats = self. _normalization_stats["context"]

Context in some datasets are all zero,

- \ - ——— ~~ ' Jp— s -]
zero, so add an epsilon for numerical
S i_ alv i .“] t V

IL‘.
H

global_context =
context_stats.std, STD_EPSILON)

(global_context - context_stats.mean) / tf.math.maximum(

O

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

ithub.com/deepmind/deepmind-research/tree/master/learning to_ simulate

learned_simulator.py (_encoder_preprocessor)

e Build a GraphsTuple with node, edge and global features:

return gn.graphs.GraphsTuple(
nodes=tf.concat(node_features, axis=-1),
edges=tf.concat(edge_features, axis=-1),
globals=global_context,
n_node=n_node, n_edge=n_edge,
senders=senders, receivers=receivers,)

Copy the globals to all of the nodes, if applicable.
if input_graph.globals is not None:
broadcasted_globals = gn.blocks.broadcast_globals_to_nodes(input_graph)
input_graph = input_graph.replace(
nodes=tf.concat([input_graph.nodes, broadcasted_globals], axis=-1),
globals=None)

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

ithub.com/deepmind/deepmind-research/tree/master/learnin

learned_simulator.py (_build)

e One step model interface:

def _build(self, position_sequence, n_particles_per_example,
global_context=None, particle_types=None):

input_graphs_tuple = self._encoder_preprocessor(
position_sequence, n_particles_per_example, global_context,
particle_types)

normalized_acceleration = self._graph_network(input_graphs_tuple)

next_position = self._decoder_postprocessor(
normalized_acceleration, position_sequence)

return next_position

self._graph_network = graph_network.EncodeProcessDecode(
output_size=num_dimensions, **graph_network_kwargs)

to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

github.com/deepmind/deepmind-research/tree/master/learning to

simulate

graph_network.py (_networks_builder)

e Build off-the-shelf Graph Networks:

The encoder graph network independently encodes edge and node features.
encoder_kwargs = dict(
edge_model_fn=build_mlp_with_layer_norm,
node model fn=build mlp with laver norm)

self._encoder_network = gn.modules.GraphIndependent(**encoder_kwargs)

with unshared
parame s that update the
self. processor_networks = []
for _ in range(self._num_message_passing_steps):
self._processor_networks.append(
gn.modules.InteractionNetwork(
edge_model_fn=build_mlp_with_layer_norm,
node_model_fn=build_mlp_with_layer_norm))
The decoder MLP decodes latent features into
self._decoder_network = build_mlp(
hidden_size=self._mlp_hidden_size,
num_hidden_layers=self._mlp_num_hidden_layers,
output_size=self._output_size)

O

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

github.com/deepmind/deepmind-research/tree/master/learning _to_simulate

graph_network.py (_build)

e Embed features, run message passing and device node features:

def _build(self, input_graph: gn.graphs.GraphsTuple) -> tf.Tensor:
"""Forward pass of the learnable dynamics model."""

Encode the input _graph.

latent_graph_0 = self._encoder_network input_graph)

Do m message passing steps 1n the latent graphs.

latent_graph_m‘= self._process(latent_graph_0)

4 NDNarands + v m + I~ 1 me=+4+] = 4= o o vr=rmh
Decode from the last latent grapn.

return self._decoder_network(latent_graph.nodes)

O

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

github.com/deepmind/deepmind-research/tree/master/learning _to_simulate

graph_network.py (_process)

e Several steps of message passing with residual connections:

latent_graph_prev_k = latent_graph_0
Do 'm message passing steps in the latent graphs.
for processor_network_k in self._processor_networks:
One step of message passing.
latent_graph_k = processor_network_k(latent_graph_prev_k)
Add residuals with previous laver.
latent_graph_k = latent_graph_k.replace(
nodes=latent_graph_k.nodes+latent_graph_prev_k.nodes,
edges=latent_graph_k.edges+latent_graph_prev_k.edges)
latent_graph_prev_k = latent_graph_k

latent_graph_m = latent_graph_k

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

github.com/deepmind/deepmind-research/tree/master/learning _to_simulate

learned_simulator.py (_build)

e One step model interface:

def _build(self, position_sequence, n_particles_per_example,
global_context=None, particle_types=None):

input_graphs_tuple = self._encoder_preprocessor(
position_sequence, n_particles_per_example, global_context,
particle_types)

normalized_acceleration = self._graph_network(input_graphs_tuple)

next_position = self._decoder_postprocessor(
normalized_acceleration, position_sequence)

return next_position

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

github.com/deepmind/deepmind-research/tree/master/learning _to_simulate

learned_simulator.py (_decoder_postprocesor)

e Inverse normalization and Euler Integrator:

def _decoder_postprocessor(self, normalized_acceleration, position_sequence):

output in normalized space so we apply inverse
normalliz
acceleration_stats = self._normalization_stats["acceleration"]
acceleration = (
normalized_acceleration * acceleration_stats.std
) + acceleration_stats.mean

position, assuming
a dt=1 corresponding to the s € of the Tlinlte dlirtfTerence.

most_recent_position position_sequence[:, -1]
most_recent_velocity most_recent_position - position_sequence[:, -2]

new_velocity = most_recent_velocity + acceleration # * dt =
new_position = most_recent_position + new_velocity # * dt =

return new_position @

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

Conclusions

Graph Networks are powerful models for everyone!
Architectures for simulation (mesh-based and-particle based)
General principles to find well-matched inductive biases
Effective model training tricks

A reference implementation for one of these models at

https://github.com/deepmind/deepmind-research/tree/master/learning to simulate

o

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

DeepMind

-<1 Battaglia, Kyle Cranmer, Miles Cranmer,
~ rortunato, Jonathan Godwin, Jessica Hamrick,

Shirley Ho, Jure Leskovec, Tobias Pfaff, Rex Ying, DeepMind @

