
Deep Dive on Graph Networks for
Learning Simulation

4th Inter-experiment Machine Learning Workshop
22 October 2020

Alvaro Sanchez-Gonzalez - DeepMind

Victor Bapst, Peter Battaglia, Kyle Cranmer, Miles Cranmer,
Meire Fortunato, Jonathan Godwin, Jessica Hamrick,

Shirley Ho, Jure Leskovec, Tobias Pfaff, Rex Ying, DeepMind

Simulation is fundamental to science and technology

Largest supercomputers in the world (Nov 2019)

#1. “Summit” @ Oak Ridge: “A Sneak Peek at 19 Science Simulations for the Summit Supercomputer in 2019”

1. Evolution of the universe
2. Whole-cell simulation
3. Inside a nuclear reactor
4. Post-Moore’s Law graphene circuits
5. Formation of matter
6. Cell’s molecular machine
7. Unpacking the nucleus
8. Mars landing
9. Deep learning for microscopy

10. Elements from star explosions

11. Cancer data
12. Earthquake resilience for cities
13. Nature of elusive neutrinos
14. Extreme weather with deep learning
15. Flexible, lightweight solar cells
16. Virtual fusion reactor
17. Unpredictable material properties
18. Genetic clues in the opioid crisis
19. Turbulent environments

https://www.top500.org/lists/2019/11/
https://www.olcf.ornl.gov/2019/01/17/a-sneak-peek-at-19-science-simulations-for-the-summit-supercomputer-in-2019/

Simulation is fundamental to science and technology

Largest supercomputers in the world (Nov 2019)

#1. “Summit” @ Oak Ridge: “A Sneak Peek at 19 Science Simulations for the Summit Supercomputer in 2019”

#2 “Sierra” @ Lawrence Livermore: “[nuclear] simulation in lieu of underground testing”

#3 “Sunway TaihuLight” @ NSC, Wuxi: “simulated the Universe with 10 trillion digital particles”

#4 “Tianhe-2A” @ NSC, Guangzhou: “main application … is for computational fluid dynamics (CFD) ... aircraft simulations”

#5 “Frontera” @ TACC: “high-resolution climate simulations, molecular dynamics models with millions of atoms”

#6 “Piz Daint” @ CSCS: “simulate processes for projects in geophysics, materials science, chemistry, ... climate modeling”

#7 “Trinity” @ Los Alamos: “A trillion-particle simulation? No sweat for the Trinity supercomputer at Los Alamos”

(#8 “ABCI” @ AIST, Japan: not simulation, but deep learning)

#9 “SuperMUC-NG” @ Leibniz Supercomputing Centre: “Researchers Visualize the Largest Turbulence Simulation Ever”

#10 “Lassen” @ Lawrence Livermore: “The system is designated for unclassified simulation and analysis”

https://www.top500.org/lists/2019/11/
https://www.olcf.ornl.gov/2019/01/17/a-sneak-peek-at-19-science-simulations-for-the-summit-supercomputer-in-2019/
https://computing.llnl.gov/computers/sierra
https://www.wired.co.uk/article/china-simulate-universe-supercomputer
https://futurism.com/china-upgrades-most-powerful-supercomputer-in-the-world-hosts-it-in-defense-research-center
https://www.tacc.utexas.edu/-/frontera-named-5th-fastest-supercomputer-in-the-world
https://spectrum.ieee.org/computing/hardware/piz-daint-supercomputer-shows-the-way-ahead-on-efficiency
https://www.wired.com/story/this-bomb-simulating-us-supercomputer-broke-a-world-record/
https://www.hpcwire.com/2019/10/30/researchers-visualize-the-largest-turbulence-simulation-ever/
https://computing.llnl.gov/computers/lassen

Why learn simulation?

 Engineered simulators:

1. Substantial effort to build

2. Substantial resources to run

3. Only as accurate as the designer

4. Not always suitable for solving inverse
problems

 Learned simulators:

1. Shared architectures

2. Accuracy-efficiency trade off

3. As accurate as the available data

4. Gradient-based planning

5. Interpretable models!*

 Engineered simulators:

1. Substantial effort to build

2. Substantial resources to run

3. Only as accurate as the designer

4. Not always suitable for solving inverse
problems

Why learn simulation?

*“Discovering Symbolic Models from Deep Learning with Inductive Biases”
Cranmer et al., NeurIPS 2020

https://arxiv.org/abs/2006.11287

Graph Networks for Learning Physical Simulation

● Deep Dive on our most recent models:

● Focus on general principles behind the design
○ Applicable to other domains

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)
Alvaro Sanchez-Gonzalez*, Jonathan Godwin*, Tobias Pfaff*, et al.
Arxiv: arxiv.org/abs/2002.09405
Video page: sites.google.com/view/learning-to-simulate

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Tobias Pfaff*, Meire Fortunato*, Alvaro Sanchez-Gonzalez*, Peter Battaglia
Arxiv: arxiv.org/abs/2010.03409
Video page: sites.google.com/view/meshgraphnets

http://arxiv.org/abs/2002.09405
http://sites.google.com/view/learning-to-simulate
http://arxiv.org/abs/2010.03409
https://sites.google.com/view/meshgraphnets

Water simulation (SPH)
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)

Video page: sites.google.com/view/learning-to-simulate

http://sites.google.com/view/learning-to-simulate
https://docs.google.com/file/d/1O2D8mpxwvbgVn06gUNNW9BIoDtXEAwTh/preview

Water simulation (SPH)
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)

Video page: sites.google.com/view/learning-to-simulate

https://docs.google.com/file/d/1O2D8mpxwvbgVn06gUNNW9BIoDtXEAwTh/preview
http://sites.google.com/view/learning-to-simulate

SPH MPM PBD

Multiple materials

Data from 3 distinct simulators:

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)
Video page: sites.google.com/view/learning-to-simulate

http://sites.google.com/view/learning-to-simulate

Cloth simulation (ArcSim)

● Triangular dynamic mesh
● Lagrangian representation

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1Puzo8nqueJyYmGFTfuE2zpdBpzCpZ6Jp/preview
https://sites.google.com/view/meshgraphnets

Structural dynamics (COMSOL)

● Tetrahedral mesh
● Lagrangian representation
● Quasi-static simulation

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1PJsky3flqjZVbHf97bYz3LWAGXSFr3H-/preview
https://sites.google.com/view/meshgraphnets

Incompressible fluids (COMSOL)

● Navier-Stokes
● Eulerian representation

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1tHdQvCbvCvDpkXEGaDgWqgLknotfDNpE/preview
https://sites.google.com/view/meshgraphnets

Aerodynamics (SU2)

● Navier-Stokes
● Eulerian representation

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1n43-gpya6xVEz4v4xyd-IFtskNjEq-g0/preview
https://sites.google.com/view/meshgraphnets

Why Graph Network based simulators?

● Adaptability
○ Same model → Vastly different materials and domains

● Data efficiency
○ < 1000 training trajectories

● Performance
○ Latest model: ~10 to 100 times faster than ground truth simulator

● Generalization

Generalization to more time-steps

Train time
● Pairs of states

Input state Target state

Test time
● 1000s of steps

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Video page: sites.google.com/view/meshgraphnets

https://sites.google.com/view/meshgraphnets

Generalization to many more particles
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)

Video page: sites.google.com/view/learning-to-simulate

http://sites.google.com/view/learning-to-simulate

Generalization to many more particles
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)

Video page: sites.google.com/view/learning-to-simulate

https://docs.google.com/file/d/1YdsH6PlxNV4zQMk8XugEnYNi1QPvWzJg/preview
http://sites.google.com/view/learning-to-simulate

Generalization to initial conditions

Training

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)
Video page: sites.google.com/view/learning-to-simulate

http://sites.google.com/view/learning-to-simulate

Generalization

Generalization to initial conditions

Training

“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)
Video page: sites.google.com/view/learning-to-simulate

https://docs.google.com/file/d/11St6p6nAR1jQs42X7aJV3vXl_Elfp954/preview
http://sites.google.com/view/learning-to-simulate

Generalization to different meshes

Training

Generalization

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1dy-AAfcEyktIQGosM3BrpOnCZgrPHEh2/preview
https://sites.google.com/view/meshgraphnets

Generalization to larger meshes

Training:
2k nodes

Generalization:
>20k nodes

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1JWfx63uOs0suNYjnprTe6iaicnQOQd_z/preview
https://sites.google.com/view/meshgraphnets

Graph Network-Based Simulators
“Learning to Simulate Complex Physics with Graph Networks” (ICML 2020)

Video page: sites.google.com/view/learning-to-simulate

Main design principle: neural networks are dumb, let’s make their life easy

http://sites.google.com/view/learning-to-simulate

“If I have seen further it is by
standing on the shoulders of giants.”

-Sir Isaac Newton-

Our Neural Networks should also have
the knowledge of giants!

Inductive Biases

Physics-inspired
inductive biases

“An inductive bias allows a learning algorithm to prioritize
one solution (or interpretation) over another.”

Mitchell, T. M.. The need for biases in learning generalizations. (1980)

Spatial
equivariance

Pairwise
interactionsLocal

interactions

Superposition
principleUniversal

rules
Permutation equivariance

Differential
equations

Physics-inspired inductive biases

Spatial
equivariance

Local
interactions

Universal
rules

Pairwise
interactions

Superposition
principle

Permutation equivariance

Differential
equations

Graph Networks
Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

MLP() ≠

MLP() ≠

MLP() ≠ ...

● MLPs operate over vectors

Graph Networks

● Neural networks that operate over graphs

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Permutation
equivariance

Graph Networks

● Neural networks that operate over graphs
○ Node features

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Graph Networks

● Neural networks that operate over graphs
○ Edge features

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Graph Networks

● Neural networks that operate over graphs
○ Global features

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Graph Networks
Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Update edge, node and global embeddings

GN

Message passing: Edge update

Edge (message) function (for every edge)

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Pairwise
interactions

Universal
rules

Edg
e f

ea
tur

es

Rec
eiv

er
no

de
 fe

atu
res

Sen
de

r n
od

e f
ea

tur
es

Glob
al

 fe
atu

res

()

Message passing: Node update

Node function (for every node)

Receiver edge aggregation (Message pooling) (for every node)

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)

Superposition
principle

Universal rules
Local

interactions

Agg
reg

ate
d e

dg
e f

ea
tur

es

Nod
e f

ea
tur

es

Glob
al

 fe
atu

res

()

Global node and edge aggregation

Interaction Networks (Battaglia et al., 2016, NeurIPS)

Graph Networks (Battaglia et al., 2016, arXiV)Graph Networks: Global update

Global function

Local
interactions

Agg
reg

ate
d e

dg
e f

ea
tur

es

Agg
reg

ate
d n

od
e

fea
tur

es

Glob
al

 fe
atu

res

()

Physics-inspired inductive biases

Spatial
equivariance

Local
interactions

Universal
rules

Pairwise
interactions

Superposition
principle

Permutation equivariance

Differential
equations

Encoder

● Transform the inputs into a graph
○ Add connectivity with a certain radius R

R

Local
(spatial)

interactions

Encoder

● Add features to the graph (naive approach)

posi veli typei

ext. forces

Encoder

● Add features to the graph

posi veli typei

ext. forces
posij=posi-posi

Relative positional
features

Spatial
equivariance

Universal
rules

E
rr

or

Relative
positional
features

Encoder

● Embed graph features

veli typei ext. forces

posij

MLP

MLP

Physics-inspired inductive biases

Spatial
equivariance

Local
interactions

Universal
rules

Pairwise
interactions

Superposition
principle

Permutation equivariance

Differential
equations

Processor: Graph Network stack

● Iterative message passing (MP) without global updates

● Increase range of communication Local
interactions

After 1 MP steps After 2 MP steps After 3 MP steps After n MP steps

After 1 MP steps After 2 MP steps After 3 MP steps After n MP steps

E
rr

or

Number of message passing iterations
Connectivity radius

O(n) O(nd)

How does generalization work?

Generalization to significantly more particles

Water surface dynamics

Interaction with box boundaries

Interactions with obstacles

Dense blocks of water

Physics-inspired inductive biases

Differential
equations

Spatial
equivariance

Local
interactions

Universal
rules

Pairwise
interactions

Superposition
principle

Permutation equivariance

Decoder and update (Newtonian system)

● Naive approach

○ post+1 = NN(post, velt)

Hard to predict static dynamics → Wrong prior

Decoder and update (Newtonian system)

● Less naive approach

○ post+1 = post + NN(post, velt)

Hard to predict inertial dynamics → Wrong prior
Easy to predict static dynamics

Decoder and update (Newtonian system)

● Better approach

○ velt+1 = velt + NN(post, velt)
○ post+1 = post + velt+1

Easy to predict static and inertial dynamics!

Decoder and update

○ velt+1 = velt + NN(post, velt)
○ post+1 = post + velt+1

Predicts
“acceleration”

Decoder and update

○ velt+1 = velt + NN(post, velt) · dt
○ post+1 = post + velt+1 · dt

● Reformulate as an ODE:

○ Choose integrator

Euler integrator!

Differential
equations
(Newton)

Incompressible
fluid

Structural mechanicsCloth simulation AerodynamicsParticle-based fluids

Decoder and update

Newtonian Quasistatic Eulerian Navier Stokes

Differential
equations

https://docs.google.com/file/d/1IDk45syuptBVWxXNHl3etlUtbXnI6243/preview

Training tricks

Training
noise

Optimization
tricks

Generalizing to more training steps: training with noise

TRANSITION
MODEL

Ground truth
input state

Predicted
next state
(imperfect)

Ground truth
next state

L2 loss

Train time (one step)

TRANSITION
MODEL

TRANSITION
MODEL

Ground truth
input state

Predicted
next state
(imperfect)

Test time
● Model has never seen imperfect inputs

Predicted
next state
(imperfect)

...

video credit:

Ummenhofer et al. 2020,
Lagrangian Fluid Simulation with
Continuous Convolutions

Generalizing to more training steps: training with noise

+ NOISE TRANSITION
MODEL

Ground truth
input state
with noise
(imperfect)

Predicted
next state
(imperfect)

Ground truth
next state

L2 loss
Ground truth
input state

Train time (with noise)
● Models learns to compensate imperfect inputs during training

TRANSITION
MODEL

Ground truth
input state

Predicted
next state
(imperfect)

TRANSITION
MODEL

Predicted
next state
(imperfect)

TRANSITION
MODEL ...

Test time (error stays bounded)

For additional details: Supplementary Section A.2.2. “Learning Mesh-Based Simulation with Graph Networks”

Optimization tricks

● Normalization of representations:
○ Weight initialization: MLP(~N(0, 1)) → ~N(0, 1)
○ Normalization of MLP inputs: μ=0, σ=1
○ Normalization of MLP outputs: μ=0, σ=1
○ LayerNorm: μ=0, σ=1 everywhere else!

● Normalization of representations:
○ Weight initialization: MLP(~N(0, 1)) → ~N(0, 1)
○ Normalization of MLP inputs: μ=0, σ=1
○ Normalization of MLP outputs: μ=0, σ=1
○ LayerNorm: μ=0, σ=1 everywhere else!

● Residual connections
○ At every message passing step

Optimization tricks

MeshGraphNets: Extension to meshes

40m

2·10-4m

adaptive mesh:
5,000 nodes

uniform grid (e.g.convnet) at 2·10-4m:
40,000,000,000 nodes

MeshGraphNets: Extension to meshes
unroll for 100s of steps

“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)
Video page: sites.google.com/view/meshgraphnets

https://sites.google.com/view/meshgraphnets

Dual space message passing

mesh space uworld space x

internal dynamics:
estimating differential operators
on the simulation manifold

external dynamics:
computing e.g. collision and contact

e.g. F = 𝛿x/𝛿u

unroll for 100s of steps

xi,ui

MeshGraphNets: Extension to meshes

MeshGraphNets: Extension to meshes
unroll for 100s of steps

xij,uij

xi,ui

Learned adaptive remeshing

Fine-scale dynamics regions
Fine-scale dynamics regions at

later step

Sizing field in mesh space

Predict sizing field
and remesh!

Sizing field in mesh space

sizing
field

R
es

ol
ut

io
n

Learned adaptive remeshing
“Learning Mesh-Based Simulation with Graph Networks” (arXiv, under review)

Video page: sites.google.com/view/meshgraphnets

https://docs.google.com/file/d/1qUSb8-weG-YnbcuLnoJ7ziucE-y9ay8Q/preview
https://sites.google.com/view/meshgraphnets

Bonus slide: additional inductive biases

● Hamiltonian inductive bias with Graph Networks
○ “Hamiltonian Graph Networks with ODE Integrators”

Sanchez-Gonzalez et al., 2019, arXiv/NeurIPS 2019 workshop
○ Makes use of the full Graph Network (including global update).
○ Explores additional integrators

● Lagrangian inductive bias with Graph Networks

○ “Lagrangian Neural Networks”

Cranmer et al., 2020, arXiv/ICLR 2020 workshop

Bonus slide: interpretable graph networks

● “Discovering Symbolic Models from Deep Learning with Inductive Biases”
Cranmer et al., NeurIPS 2020

● Extract symbolic models from edge and node functions of a GraphNet

Datasets and source code

● “Learning to Simulate Complex Physics with Graph Networks”
○ github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Tensorflow 1 & Sonnet 1 (GPU)
● DeepMind Graph Nets library (TF1 and TF2 compatible)

○ github.com/deepmind/graph_nets

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate
https://github.com/deepmind/graph_nets

learned_simulator.py (_build)

● One step model interface:

github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

learned_simulator.py (_build)

● One step model interface:

github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Fixed radius connectivity:

learned_simulator.py (_encoder_preprocessor)
github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Normalized node features:

learned_simulator.py (_encoder_preprocessor)
github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Normalized edge features:

learned_simulator.py (_encoder_preprocessor)
github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Normalized global features:

learned_simulator.py (_encoder_preprocessor)
github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Build a GraphsTuple with node, edge and global features:

learned_simulator.py (_encoder_preprocessor)
github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

learned_simulator.py (_build)

● One step model interface:

github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Build off-the-shelf Graph Networks:

graph_network.py (_networks_builder)
github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Embed features, run message passing and device node features:

graph_network.py (_build)
github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Several steps of message passing with residual connections:

graph_network.py (_process)
github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

learned_simulator.py (_build)

● One step model interface:

github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

● Inverse normalization and Euler Integrator:

learned_simulator.py (_decoder_postprocesor)
github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

Conclusions

● Graph Networks are powerful models for everyone!

● Architectures for simulation (mesh-based and-particle based)

● General principles to find well-matched inductive biases

● Effective model training tricks

● A reference implementation for one of these models at
https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

Deep Dive on Graph Networks for
Learning Simulation

4th Inter-experiment Machine Learning Workshop
22 October 2020

Alvaro Sanchez-Gonzalez - DeepMind

Victor Bapst, Peter Battaglia, Kyle Cranmer, Miles Cranmer,
Meire Fortunato, Jonathan Godwin, Jessica Hamrick,

Shirley Ho, Jure Leskovec, Tobias Pfaff, Rex Ying, DeepMind

Thanks for your attention!

Question time?

