
WMS and Computing
Resources

A.Tsaregorodtsev,
CPPM-IN2P3-CNRS, Marseille,

10th virtual DIRAC User Workshop,
10 May 2021 London

Outline

2

} WMS overview

} Computing resources

} Interfaces

} Conclusions

WMS with pilot jobs

3

} No revolutionary changes in the last year
} Stable system, proven architecture
} Many optimizations are done and still ongoing

} No use of grid WMS resource brokers for most grid
infrastructures
} E.g. replaces grid WMS for the EGI infrastructure
} Pilot factory (SiteDirectory) SubmissionMode option has

gone !

WMS with pilot jobs

4

} Pilot jobs are submitted to computing
resources by specialized Pilot
Directors

} Pilots retrieve user jobs from the
central Task Queue and steer their
execution on the worker nodes
including final data uploading

} Pilot based WMS advantages:
} increases efficiency of the user job

execution
} allows to apply efficiently community

policies at the Task Queue level
} allows to integrate heterogeneous

computing resources

Site Directors

5

} DIRAC Pilot Factory
} Submits pilot jobs for a givenVO according to the status of the Task

Queue
} Gets the pilot status
} Renews proxy delegation on CE’s
} Optionally retrieves pilot job outputs

} Refactored for optimization and simplification
} Submitting Pilot3 jobs by default
} Parallel execution for some operations

} E.g. pilot status update
} Simplified evaluation of numbers of pilots to submit

} Easier to debug pilot submission problems
} Dropped SubmitPool option usage

} MultiProcessorSiteDirector is discontinued
} Use pilots starting PoolComputingElement instead

Pilots

6

} Pilot3 is a separate DIRAC subproject to
encapsulate code used in pilot jobs
} Pilots are running in a DIRAC-free environment
} All the new developments are going to Pilot3. Pilot2 is

discontinued as of v7r2
} Many (but not all) installations use Pilot3 package

for running pilot jobs
} All the DIRAC installation administrators are invited to move

to using Pilot3 (if not yet done)
} Pilot3 software is bundled and stored on a web

server by running a special agent.
} No special configuration for the web server is required for file

uploads

User jobs steered by pilots

7

} Pilots are launching user jobs on WN’s to “inner”
Computing Elements

} InProcess CE – execution in the same process as
JobAgent

} Sudo CE – execution in a spawned process with a
different user ID
} Used on VMs to isolate pilot environment from the user job

} Singularity CE
} The user job is executed inside a Singularity container
} Isolation of the pilot environment
} Possibility to update the environment for user job execution, e.g.

reinstall DIRAC client with different options.
} Pool CE

Fat multi-core nodes

8

} Pilots can exploit multi-core nodes use PoolCE “inner”
Computing Element
} On-WN batch system
} Flexible strategy with prioritized job requests to the Matcher, e.g.:

} First, ask for jobs requiring WholeNode tag
} If none, ask for jobs requesting as many cores as available
} If none, ask for jobs with MultiProcessor requirement
} If none, ask for single-core jobs

} The goal is to fill the nodes with payloads fully exploiting there
multi-core capacity

Matcher

TimeLeft tool

9

} Evaluation of the time left in the reserved job slot
} Allow to present the CPU time in the job request to the Matcher

service
} The implementation depends on the information

obtained from the execution environment – batch
systems

} Multiple problems due to failures to get batch system
numbers in pilots

} Reverting in case of problems to the time left estimation
only with numbers available in the pilot:
} initial queue time length
} CPU/Wallclock time consumed

} Encrease in efficiency
} Especially for the case of large numbers of short jobs

Job State Machine

10

} WMS jobs are proceeding through a
chain of states from Submitting to
Done/Failed
} In some cases illegal state transitions happened

due to a desynhronization of the state reports

} Introduction in v7r3 of a strict
JobState machine (in develoment)
} Forbid state transitions which are not allowed in the state machine

definition
} E.g. Failed -> Running

} In v7r1 The Completed status is split into:
} Completing: the user application is done but the job finalization is

ongoing, e.g. ouput sandboxes/data uploading
} Completed: the user job is done but there are pending requests in the

RMS remaining

Resources

11

} Computing resources in DIRAC are represented by
logical Computing Elements with various
implementations
} CREAM: obsoleted and is progressively discontinued
} Main grid CE types:

} HTCondorCE
} ARC

} SSH Computing Element
} No-CE access

} HPC (see Alexandre’s presentation)

HTCondorCE

12

} HTCondorCE Computing Element is implemented
using the condor command line interface:
} Both local and remote schedd condor service can be used

} Stable operation in general

} Using remote schedd service requires job files to be
kept after the submission command executed
} Needs asycnhronous clean-up of large number of files

} Could result in SiteDirector blocking in this operation

} Fixed in recent patches

} Allow for token-based authentication

ARC

13

} ARC Computing Element in DIRAC
} Implementation is based on the python API encapsulating calls

} ldap service for job operations
} gridftp for file operations

} Difficult to debug in case of problems, dependency on the
python API provided by the ARC developers

} ARC6 version of the software offers a RESTful
interface
} Job and data operations
} Proxy delegation renewal
} Access authenticated with OIDC tokens

} Developing access to ARC6 CE’s with the REST
interface is ongoing

BDII to CS synchronization

14

} Information about Computing Elements as defined
by system administrators is kept in the BDII
database
} ldap based service

} BDII2CSAgent automatically updates the DIRAC
Configuration Service for the CE parameters

} The agent was updated to use the Glue2 BDII
information schema
} Enabled by a configuration option
} Will become the only option starting from v7r3

Clouds

15

} VM scheduler
} Dynamic VM spawning

taking Task Queue state into
account

} Discarding VMs
automatically when no more
needed

} The DIRAC VM scheduler
by means of dedicated VM
Directors is interfaced to
} Public:

} OpenStack, OpenNebula
} Amazon EC2
} …

VMDIRAC Status

} The VMDIRAC package encapsulated codes for
cloud management

} Simon Fayer, IC, has taken over the responsibility for the
package

} Only minor changes in the past year:

} Bug/compatibility patches.
} Started improving documentation.
} Python3 readiness.
} Enabled standard set of DIRAC tests + (minimal) unit testing.
} VMDIRAC now included on certification server.

} Basic functionality is verified with new releases.

VMDIRAC Plans

Short-term goals:

} More bug-fixes and documentation!

} Use the EGI FedCloud Marketplace service to discover
appropriate images

Long-term goals:

} Make it easier to debug issues in cloud jobs.
} Make cloud-init start-up the default method and deprecate

others
} Look at feasibility of merging cloud-type endpoints back into

core DIRAC.
} Reduce dependence on X.509 when tokens are available.

} May be neat to do this alongside other long-term tasks as most will need
major code refactor.

Resource and job tags

18

} Tags were introduced to declare special capabilities
of computing resources
} E.g.Tags = GPU to declare GPU applications support
} Tags can be requested in job’s JDLs in order to limit them only

to sites with special capabilities
} Site queues can also define jobs with which tags they accept

} Tags are not statically predefined and can be used
for flexible tuning
} Example: site queues offering resources for the biomed VO but

only for COVID19 related jobs define:
RequiredTag = COVID19
VO = biomed

User jobs

19

} Users are managing jobs using various tools
} Command line (batch system like interface):

} Python API

Web Interface

20

Job Launchpad

Job Monitoring

Getting CE info

21

} Getting computing resources eligible for a given VO
} As defined in the DIRAC CS

} After sunchronization with the BDII index

Check for matching sites

22

} Get CEs/Queues matching the job requirements
} Lists eligible Sites/CEs/Queues
} Attempts to give a reason of no match for non-eligible

Sites/CEs/Queues

} Do not take into account input data yet
} Can help in understanding “why my jobs are not running

this site ?”

Conclusions

23

} Pilot based WMS proven to be efficient in the HEP
experiments is now available for the users of dedicated
and multi-VO DIRAC services

} A large variety of heterogeneous computing resources
can be federated due to the pilot job mechanism

} Ongoing effort to make new non-grid resources
conveniently available (HPC, Cloud)

} Keeping uniform resource access interfaces for the
users – single DIRAC computer

