
On AutheNtication, AuthoriZation and Single Sign On

Andrii Lytovchenko, CPPM

● Introduction

○ Prerequisites

○ Basic concepts

○ Main goal

● User management

○ Registry service

○ DIRAC group

● Log in

● Access to DIRAC services

● Delegation

● Pilot framework with tokens

● Status and plans

● Conclusion

CONTENT

INTRODUCTION

DIRAC is using only X509 certificates for user authentication, but using X509 certificates is
complicated for the end-users:

- Complex issuing procedure, yearly renewal, installation in multiple places with a format conversion,
loading in browsers, etc

- Users of many communities do not have access to
Certification Authorities issuing X509 certificates

NOTE: still need the certificate uploaded to the ProxyManager, because it is still used in the DISET protocol

Single sign-on (SSO) is an authentication process that
allows a user to access multiple applications with one
set of login credentials.

The EGI Check-in service enables access to EGI
services and resources using federated authentication
mechanisms

Identity Provider (IdP) is a service that creates, maintains and manages user identity information
and provides it together with the user authentication.

Proxy Provider is a service that creates, maintains, and manages X509 certificate proxies and
provides them together with the user authentication.

INTRODUCTION

INTRODUCTION

OAuth 2.0 is the industry-standard delegation protocol for conveying authorization decisions across a
network of web-enabled applications and APIs, full specification - RFC6749. More information here.

Open ID Connect is an interoperable authentication protocol based on the OAuth 2.0 family of
specifications. More information here.

OAuth2 roles:

Resource owner is the user who is giving access to some portion of their account.

Resource server is the server that contains the user’s information that is being accessed by the third-party
application, capable of accepting and responding to protected resource requests using access tokens.

Authorization server is the server issuing access tokens to the client after successfully authenticating the
resource owner and obtaining authorization.

Client is the app that is attempting to act on the user’s behalf or access the user’s resources.

https://tools.ietf.org/html/rfc6749
https://www.oauth.com/
https://openid.net/connect/

INTRODUCTION

The main goal to introduce the AuthN/AuthZ mechanism to DIRAC based on Identity Provider services using
OIDC(OAuth2) protocol and standard authorization code grant type.

http TornadoServer

http DIRAC services

DIRAC RESTFul endpoints

DIRAC Proxy endpoint

DIRAC Authorization Server

DIRAC CLI

Identity Provider

 dips DISET

dips DIRAC services

Web handlers

authentication request

tokens

get proxy request

proxy

1

2

3

4

5

6

Five authorization steps shown on the previous slide:

1. The DIRAC Client sends a request to the DIRAC Authorization Server (AS)
2. DIRAC AS terminates the authorization session and redirects the user to the identity provider, where

the user logs in
3. Identity provider returns to DIRAC AS user tokens, that DIRAC AS stored in the database
4. DIRAC AS returns access tokens to the DIRAC Client
5. The DIRAC Client makes a request to the DIRAC RESTful Proxy endpoint to get a proxy
6. The DIRAC Client can query DIRAC services using either tokens or proxy

INTRODUCTION

USER MANAGEMENT

Currently, all users are described in the DIRAC
configuration in the Registry section. The user information is
synchronized with the VOMS servers using VOMS2CS
agent.

USER MANAGEMENT

Registry service receives information about VO users
from IdP or VOMS. There is no need to store this information in
the DIRAC configuration.

User management is completely outside DIRAC, this is
done by the VO administrators using appropriate web interface
provided to VO upon registration.

DIRAC relies entirely on the information received from the
relevant IdP.

USER MANAGEMENT

The main element of user management is the DIRAC
group to manage permissions and separate activities.

DIRAC groups must be created for the registered VO, it
must be associated with one of the roles defined by the VO.

At the moment, DIRAC groups are in "many-to-one"
relation with VOMS role. For example, the user and pilot
groups, which usually have the same VOMS role.

After the transition from VOMS VO to IdPs, it is
necessary to ensure one-to-one correspondence between
DIRAC groups and associated VO roles, for correct
authorization using tokens.

LOG IN

Now, to start a working session with DIRAC, one needs to create a proxy certificate with the extension of the
DIRAC group. This method remains intact. This is done with the command:

dirac-proxy-init -g my_group

But if a user wants to work without a certificate, user can do it with the command:
dirac-login -g my_group

This command uses the standard OAuth2 DeviceCode flow to obtain authorization from the IdP. As a result
the user receives access tokens restricted to work with the requested group.

The received access tokens are enough to access DIRAC services that work through the http protocol. But
given that there are still DIRAC services that work via the DISET protocol, user will need also a proxy certificate.

For the time when both access protocols, http and dips, will be in use at the same time, it will be possible to
get the proxy certificate along with the tokens.

Therefore, adding the --proxy flag will result in users proxy from ProxyManager:
dirac-login -g my_group --proxy

LOG IN

WebApp portal users will be able to choose
authorization methods by selecting a certificate or
identity provider:

Example of executing a command from DIRACCLI:

ACCESS TO DIRAC SERVICES

Consider the process of accessing the DIRAC service:

● the proxy or token received from the client with
the request is first checked and validated. In the
case of a token, the signature with the public key
of the corresponding IdP is checked.

● Using the Registry Service and the information
obtained from the proxy or token, the
corresponding group is determined

● Finally, the AuthManager checks access rights of
the received user group to the requested
resource. The AuthManager implementation
stays as it is.

Users delegate their access rights to DIRAC by uploading their long proxy certificates. In the case of
OAuth2 access tokens, it will also have to be saved and updated, to be readily available without additional
user interaction.

The existing method of delegation is to delegate a proxy by uploading it to ProxyManager. This
happens transparently when executing the dirac-proxy-init command, or through the web interface.

Tokens are also deposited in the database in a similar service after successful authorization through
the IdP, and an access token signed by DIRAC is returned to the user. Thus, DIRAC service being a
registered client of the IdP, is able to maintain these tokens valid.

DELEGATION

The most obvious use case of asynchronous user task execution is the pilot job framework. Pilots
should be able to obtain valid tokens of the users owners of the payloads to be executed.

Discussions are currently underway on how the flow to getting user tokens by pilots will look like.
The concept is being developed in DIRAC, but the work is still ongoing.

PILOT FRAMEWORK WITH TOKENS

Several prototypes of using tokens were developed to provide user authentication and access to the
DIRAC service as a technology preview. The elaborated architecture will be implemented and included in
the release v7r3.

The implementation includes DIRAC original components. However, we consider the possible use of
other relevant projects such as:
- MyToken: https://mytoken-docs.data.kit.edu/
- Vault: https://www.vaultproject.io/
- WLCG IAM: https://indigo-iam.github.io/

STATUS AND PLANS

https://mytoken-docs.data.kit.edu/
https://www.vaultproject.io/
https://indigo-iam.github.io/

DIRAC must follow the tendency of moving the security infrastructures from X509 certificate to
OAuth2/OIDC tokens

Several prototypes led to an architecture where the user and VO management will be done completely
on the Identity Provider side.

Work is in progress to deliver the first fully functional implementation in the next major DIRAC release

CONCLUSION

Questions ?

Acknowledgements

This work is co-funded by the EOSC-hub project (Horizon 2020) under Grant number 777536

EGI-ACE receives funding from the European Union's Horizon 2020 research and Innovation
programme under grant agreement no. 101017567

