IBPs without IBPs -

Intersection theory and the vector space of Feynman integrals

Hjalte Frellesvig

Dipartimento di Fisica e Astronomia "Galileo Galilei", University of Padova.

November 27, 2019

Università degli Studi di Padova

Introduction

 Publashed for SISSA by $仑$ Springer Published for SISSA by Q Sprivgen
 Recerved: February ts, 20Is Revased: April to, 2059 Accepted: $M a_{y} 5,2019$ Publashed: May 24,2019

Decomposition of Feynman integrals on the maximal cut by intersection numbers

Hjalte Frellesvig. ${ }^{a, b}$ Federico Gasparotto, ${ }^{\alpha, h}$ Stefano Laporta, ${ }^{a, b}$ Manoj K. Mandal, ${ }^{a,}$

 Pierpaolo Mastrolia, ${ }^{\alpha, k}$ Luca Mattiazzith and Sebastian Mizera ${ }^{\text {d }}$${ }^{\text {Diparparfimento di Fisicu e Astronomian, Unversità di Padova }}$
Via Marzolo 8, 85131 Padone, Italy
$\varsigma_{\text {INFN, Se Sezone di Pudowa, }}$
Via Marzalo 8, S51.31 Padores, Italy
${ }^{\text {c Perinneter Institule for Theoretical Physics, }}$
3I Caroline St N, Waterioo, ON NoL 2Y5, Canada
${ }^{\text {DDepartment of Physics } \& \text { A Astronomy, Unaersity of Wateriao }}$
200 University Aze W. Waterioo, ON NQL SG1, Canada
E-mail: hjalte.frellesvigupd.infn.it, federico.gasparottoêpd.infn.it, stefano.laportaapd.infn.it, manojkumar. mandal@pd.infn.it,
pierpaolo.mastroliađpd.infn.it, luca.mattiazzi@pd.infn.it,
smizeraspitp.ca
Abstract: We elaborate on the recent idea of a direct decomposition of Feynman integral onto a basis of master integrals on maximal cuts using intersection numbers. We begin by showing an application of the method to the derivation of contiguity relations for special functions, such as the Euler beta function, the Gauss ${ }_{2} F_{1}$ hypergeometric function, and the Appell F_{1} function. Then, we apply the new method to decompose Feynman integral. whose maximal cuts admit 1 -form integral representations, including examples that have from two to an arbitrary number of loops, and/or from zero to an arbitrary number of legs. Direct constructions of differential equations and dimensional recurrence relations for Feynman integrals are also discussed. We present two novel approaches to decomposition-by-intersections in cases where the maximal cuts admit a 2 -form integral representation with a view towards the extension of the formalism to n-form representations. The decomposition formulae computed through the use of intersection numbers are directly verified to agree with the ones obtained using integration-by-parts identities.

Keywords: Scattering Amplitudes, Differential and Algebraic Geometry
ArXiv ePrint: 1901.11510
Vector Space of Feynman Integrals and Multivariate Intersection Numbers
Hjalte Frellesvig. ${ }^{1.2 *}$ Federico Gasparotto, ${ }^{1,2 /}$ Manoj K. Mandal, ${ }^{1,24}$ Pierpaolo Mastroliae, ${ }^{1,2,3}$ Luca Mattiazzi ${ }^{2,1,5}$ and Sebastian Mizera ${ }^{3,}$,
${ }^{1}$ Dipartimento di Fisica e Astronamia, Università di Padona, Via Marzalo 8, 35131 Padova, Italy

${ }^{4}$ Dequrrment of Physics and Astronomy, University of Waterioo, Waterioo, Ontario N2L 3GI, Canada
(Q) (Received 17 July 2019; publishod 12 November 2019)

Feynman integrals obey linear relations govemed by intersection numbers, which act as scalar products between vector spaces. We present a general algosithm for the construction of multivariate intersection numbers relevimt to Feynman integrals, and show for the first time bow they can be used to solve the and equatonns furfiled by the latter We apply it the the decomposition of a few Feynman integrals st one and two
lovens, as first steps toward potential applications to generic maltiloop integrals. The proposed method can be more generally employed for the derivation of contiguity reblations for special functions adruiting mullifold integrall repreventation.

DOL 10 HO3/Physkerlett 123201602

Introduction.-Scattering amplitudes encode crucial infomation about collision phenomena in our Universe, field-theoretical approach, the evaluation of multilioop Feynman integrals is mandatory for the determination of scattering amplitudes and related quantitics. An exception is made for those cases where a limited number of kinematic invariants yields the use of direct integration techniques. the evaluation of multiloop Feyuman integrals requires the exploitation of lincar relations among integrals, in order to simplify the otherwise impossible calculations. Those relations can be used both for decomposing scattering ampliintegrals (Ms), and for the evaluation of the latter. The standard procedure used to derive relations among Feynman integrals in dimensional regularization makes use of integration-by-parts identities (IBPs) [1], which are found by solving linear systems of equations [2] (see [3,4] and references therein for reviews). Algebraic manipulations in these cases are very demanding, and efficient algorithms for solving large-size systems of linear equations have been devised recently, by making use of finite field anthmetic and
Th his Leter, we popose novel,
the direct decomposition of Feynman integrak Our method

Published by the Anerican Prysiical Society wider the terms of the Crathe Commums Atrribution 4.0 International license.
Further disfribution of this work must maintain atributution to the cuuthon(s) and the published anticle's's title, joumal citation,
based on the identification of algebraic propeties obeyed by Feynman integrals, not known until recently, and which we access by means of intersection theory
In [9], it was shown that intersection numbers [10] of ifferential forms can be employed to define (what amounts a) a scalar product on a vector space of Feynman integrals ha given family. Using this approach, projecting any different from decomposing a generic vector into a basis of vector space. Within this new approach, relations among Feynman integrals can be derived avoiding the generation when applying Gauss' elimination, as in the standard IBP. based approaches. In the initial studies, [9,11], this novel decomposition method was applied to the realm of special mathematical functions falling in the class of Lauricella F_{0} functions, as well as to Feynman integrals on maximal cut. ce., with on-shell internal lines, mostly admittung a onefold integral representation. Those results concemed a partial construction of Fey mman integral relations, mainly limited o the determination of the coefficients of the MIs with the which was achieved by means of intersection numbers for univariate form
In thi forms.
Idress the cter, we make an important step further, and coefficients, including those associated to MIs cormispond ing to subgraphs. In the current Letter, we show it application to a few paradigmatic cases at one and two loops. Generic Feynman integrals admit multifold integra representations. Their complete decomposition requires the

Introduction

1) Write down all Feynman diagrams
2) Perform Dirac (gamma-matrix) algebra and Lorentz algebra
3) Express in terms of scalar Feynman integrals

Introduction

1) Write down all Feynman diagrams
2) Perform Dirac (gamma-matrix) algebra and Lorentz algebra
3) Express in terms of scalar Feynman integrals

$$
I_{a_{1} \cdots a_{P} ; \cdots a_{n}}=\int \frac{\mathrm{d}^{d} k_{i}}{\pi^{d / 2}} \cdots \int \frac{\mathrm{~d}^{d} k_{L}}{\pi^{d / 2}} \frac{N(k)}{D_{1}^{a_{1}}(k) D_{2}^{a_{2}}(k) \cdots D_{P}^{a_{P}}(k)}
$$

The $D \mathrm{~s}$ are propagators of the form $D_{i}=(k+p)^{2}-m^{2}$, k and p are d-dimensional momenta (internal and external), $N(k)=\prod_{i=P+1}^{n} D_{i}^{a_{i}}(k)$ is a numerator function, P is the number of propagators, L and E are the numbers of loops and (independent) legs, $n=L(L+1) / 2+E L$ is the number of independent scalar products, a_{i} are integer powers.

Introduction

For state-of-the art two-loop scattering amplitude calculations Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals

Linear relations bring this down to $\mathcal{O}(100)$ master integrals

Introduction

For state-of-the art two-loop scattering amplitude calculations
Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals
Linear relations bring this down to $\mathcal{O}(100)$ master integrals
Linear relations may be derived using IBP (integration by part) identities

$$
\int \frac{\mathrm{d}^{d} k}{\pi^{d / 2}} \frac{\partial}{\partial k^{\mu}} \frac{q^{\mu} N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=0
$$

Systematic by Laporta's algorithm \Rightarrow Solve a huge linear system.

Introduction

For state-of-the art two-loop scattering amplitude calculations Feynman diagrams $\rightarrow \mathcal{O}(10000)$ Feynman integrals

Linear relations bring this down to $\mathcal{O}(100)$ master integrals
Linear relations may be derived using IBP (integration by part) identities

$$
\int \frac{\mathrm{d}^{d} k}{\pi^{d / 2}} \frac{\partial}{\partial k^{\mu}} \frac{q^{\mu} N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=0
$$

Systematic by Laporta's algorithm \Rightarrow Solve a huge linear system.
The linear relations are often informally referred to as IBPs as well.

Theory

The linear relations form a vector space

$$
I=\sum_{i \in \text { masters }} c_{i} I_{i}
$$

Subsectors are sub-spaces

The linear relations form a vector space

$$
I=\sum_{i \in \text { masters }} c_{i} I_{i}
$$

Subsectors are sub-spaces
Not all vector spaces are inner product spaces

$$
\begin{aligned}
\langle v| & =\sum_{i}\left\langle v v_{j}^{*}\right\rangle\left(C^{-1}\right)_{j i}\left\langle v_{i}\right| \quad \text { with } \quad C_{i j}=\left\langle v_{i} v_{j}^{*}\right\rangle \\
& =\sum_{i} c_{i}\left\langle v_{i}\right| \quad\left(c_{i}=\left\langle v v_{i}^{*}\right\rangle \text { if } C_{i j}=\delta_{i j}\right)
\end{aligned}
$$

The linear relations form a vector space

$$
I=\sum_{i \in \text { masters }} c_{i} I_{i}
$$

Subsectors are sub-spaces
Not all vector spaces are inner product spaces

$$
\begin{array}{rlrl}
\langle v| & =\sum_{i}\left\langle v v_{j}^{*}\right\rangle\left(C^{-1}\right)_{j i}\left\langle v_{i}\right| \quad \text { with } \quad C_{i j}=\left\langle v_{i} v_{j}^{*}\right\rangle \\
& =\sum_{i} c_{i}\left\langle v_{i}\right| \quad\left(c_{i}=\left\langle v v_{i}^{*}\right\rangle\right. & \text { if } \left.C_{i j}=\delta_{i j}\right)
\end{array}
$$

If only there were a way to define an inner product for Feynman integrals...

Theory

Baikov representation

$$
I=\int \frac{\mathrm{d}^{d} k_{1}}{\pi^{d / 2}} \cdots \int \frac{\mathrm{~d}^{d} k_{L}}{\pi^{d / 2}} \frac{N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=K \int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

The x_{i} are Baikov variables, \mathcal{B} is the Baikov Polynomial, $\mathcal{C}=\{\mathcal{B}>0\}$.

$$
n=L(L+1) / 2+E L \quad \gamma=(d-E-L-1) / 2
$$

P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347-349, [hep-ph/9611449]

Baikov representation

$$
I=\int \frac{\mathrm{d}^{d} k_{1}}{\pi^{d / 2}} \cdots \int \frac{\mathrm{~d}^{d} k_{L}}{\pi^{d / 2}} \frac{N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=K \int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

The x_{i} are Baikov variables, \mathcal{B} is the Baikov Polynomial, $\mathcal{C}=\{\mathcal{B}>0\}$.

$$
n=L(L+1) / 2+E L \quad \gamma=(d-E-L-1) / 2
$$

P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347-349, [hep-ph/9611449]

The loop-by-loop version of Baikov representation can often decrease n

$$
I=\tilde{K} \int_{\mathcal{C}} \mathrm{d}^{\tilde{n}} x \frac{\left(\prod_{j=1}^{2 L-1} \mathcal{B}_{j}^{\gamma_{j}}(x)\right) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

HF and C. Papadopoulos, JHEP 04 (2017) 083, [arXiv:1701.07356]

Baikov representation

$$
I=\int \frac{\mathrm{d}^{d} k_{1}}{\pi^{d / 2}} \cdots \int \frac{\mathrm{~d}^{d} k_{L}}{\pi^{d / 2}} \frac{N(k)}{D_{1}^{a_{1}}(k) \cdots D_{P}^{a_{P}}(k)}=K \int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

The x_{i} are Baikov variables, \mathcal{B} is the Baikov Polynomial, $\mathcal{C}=\{\mathcal{B}>0\}$.

$$
n=L(L+1) / 2+E L \quad \gamma=(d-E-L-1) / 2
$$

P. Baikov: Nucl. Instrum. Meth.A 389 (1997) 347-349, [hep-ph/9611449]

The loop-by-loop version of Baikov representation can often decrease n

$$
I=\tilde{K} \int_{\mathcal{C}} \mathrm{d}^{\tilde{n}} x \frac{\left(\prod_{j=1}^{2 L-1} \mathcal{B}_{j}^{\gamma_{j}}(x)\right) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}
$$

$$
\text { HF and C. Papadopoulos, JHEP } 04 \text { (2017) 083, [arXiv:1701.07356] }
$$

Baikov representation is suitable for generalized unitarity cuts $\int \mathrm{d} x \rightarrow \oint \mathrm{~d} x$. Preserve linear relations.
J. Bosma, M. Søgaard, Y. Zhang, JHEP 08 (2017) 051, [arXiv:1704.04255]

Theory

$$
\begin{aligned}
I & =\int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}=\int_{\mathcal{C}} u \phi \\
u & =\mathcal{B}^{\gamma} \text { is a multivalued function in }\{x\} \\
\phi & =\frac{N(x)}{x_{1}^{a_{1} \ldots x_{P}^{a_{P}}} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \text { is a form }}
\end{aligned}
$$

$$
\begin{aligned}
I & \left.=\int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}=\int_{\mathcal{C}} u \phi=\langle\phi| \mathcal{C}\right]_{\omega} \\
u & =\mathcal{B}^{\gamma} \text { is a multivalued function in }\{x\} \\
\phi & =\frac{N(x)}{x_{1}^{a_{1} \ldots x_{P}^{a_{P}}}} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \text { is a form } \\
\omega & =\mathrm{d} \log (u) \text { is the twist }
\end{aligned}
$$

$\langle\phi| \mathcal{C}]_{\omega}$ is a pairing of a twisted cycle (\mathcal{C}) and a twisted cocycle (ϕ) (equivalence classes of contours and integrands respectively)
P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139 dim of the set of $\phi \mathrm{s}$, is the number of master integrals.

$$
\begin{aligned}
I & \left.=\int_{\mathcal{C}} \mathrm{d}^{n} x \frac{\mathcal{B}^{\gamma}(x) N(x)}{x_{1}^{a_{1}} \cdots x_{P}^{a_{P}}}=\int_{\mathcal{C}} u \phi=\langle\phi| \mathcal{C}\right]_{\omega} \\
u & =\mathcal{B}^{\gamma} \text { is a multivalued function in }\{x\} \\
\phi & =\frac{N(x)}{x_{1}^{a_{1} \ldots x_{P}^{a_{P}}}} \mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n} \text { is a form } \\
\omega & =\mathrm{d} \log (u) \text { is the twist }
\end{aligned}
$$

$\langle\phi| \mathcal{C}]_{\omega}$ is a pairing of a twisted cycle (\mathcal{C}) and a twisted cocycle (ϕ) (equivalence classes of contours and integrands respectively)
P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139 dim of the set of ϕs, is the number of master integrals.

Lee Pomeransky criterion:

nr. of master integrals $=\mathrm{nr}$. of solutions to $\omega=0$
R. Lee and A. Pomeransky, JHEP 11 (2013) 165, [arXiv:1308.6676].

Theory

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle ϕ with a dual twisted cocycle ξ
Lives up to all criteria for being a scalar product.

Theory

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle ϕ with a dual twisted cocycle ξ
Lives up to all criteria for being a scalar product.
When there is one integration variable z (ϕ and ξ are one-forms)

$$
\langle\phi \mid \xi\rangle_{\omega}=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

\mathcal{P} is the set of poles of ω.
$(\mathrm{d}+\omega) \psi_{p}=\phi$ can be solved with a series ansatz around $z=p$ $\psi_{p}=\sum_{i} \psi_{p}^{(i)}(z-p)^{i}$. The exact expressions are not needed for the Res.

Theory

The intersection number $\langle\phi \mid \xi\rangle$ is a pairing of a twisted cocycle ϕ with a dual twisted cocycle ξ
Lives up to all criteria for being a scalar product.
When there is one integration variable z (ϕ and ξ are one-forms)

$$
\langle\phi \mid \xi\rangle_{\omega}=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

\mathcal{P} is the set of poles of ω.
$(\mathrm{d}+\omega) \psi_{p}=\phi$ can be solved with a series ansatz around $z=p$ $\psi_{p}=\sum_{i} \psi_{p}^{(i)}(z-p)^{i}$. The exact expressions are not needed for the Res.

References:

K. Cho and K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann's period relations, Nagoya Math. J. 139 (1995) 67-86
K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Scattering Amplitudes from Intersection Theory, Phys. Rev. Lett. 120 (2018) no. 14141602

Theory

Summary:

$$
\left.\left.I=\sum_{i \in \text { masters }} c_{i} I_{i} \quad \Leftrightarrow \quad\langle\phi| \mathcal{C}\right]=\sum_{i} c_{i}\left\langle\phi_{i}\right| \mathcal{C}\right]
$$

with $I=\int_{\mathcal{C}} u \phi . u$ is multivalued function, ϕ is a form (rational pre-factor), $\omega=\mathrm{d} \log (u)$.

Summary:

$$
\left.\left.I=\sum_{i \in \text { masters }} c_{i} I_{i} \Leftrightarrow\langle\phi| \mathcal{C}\right]=\sum_{i} c_{i}\left\langle\phi_{i}\right| \mathcal{C}\right]
$$

with $I=\int_{\mathcal{C}} u \phi . u$ is multivalued function, ϕ is a form (rational pre-factor), $\omega=\mathrm{d} \log (u)$.

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

Summary:

$$
\left.\left.I=\sum_{i \in \text { masters }} c_{i} I_{i} \Leftrightarrow\langle\phi| \mathcal{C}\right]=\sum_{i} c_{i}\left\langle\phi_{i}\right| \mathcal{C}\right]
$$

with $I=\int_{\mathcal{C}} u \phi . u$ is multivalued function,
ϕ is a form (rational pre-factor), $\omega=\mathrm{d} \log (u)$.
$c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad$ with $\quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle$
For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

Summary:

$$
\left.\left.I=\sum_{i \in \text { masters }} c_{i} I_{i} \quad \Leftrightarrow \quad\langle\phi| \mathcal{C}\right]=\sum_{i} c_{i}\left\langle\phi_{i}\right| \mathcal{C}\right]
$$

with $I=\int_{\mathcal{C}} u \phi . u$ is multivalued function, ϕ is a form (rational pre-factor), $\omega=\mathrm{d} \log (u)$.

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

References:

P. Mastrolia and S. Mizera, Feynman Integrals and Intersection Theory, JHEP 1902 (2019) 139

HF, F. Gasparotto, S. Laporta, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Decomposition of Feynman integrals on the maximal cut by intersection numbers, JHEP 1905 (2019) 153
HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers, PhysRevLett. 123 (2019) 201602.

Università degli Studi di Padova

Example (double box)

Massless double box:

$$
\begin{gathered}
D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}-p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-p_{1}-p_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-k_{2}\right)^{2}, \\
D_{5}=\left(k_{2}-p_{1}-p_{2}\right)^{2}, \quad D_{6}=\left(k_{1}-p_{1}-p_{2}-p_{3}\right)^{2}, \quad D_{7}=k_{2}^{2} \\
n_{\text {std }}=L(L+1) / 2+L E=9
\end{gathered}
$$

Example (double box)

Massless double box:

$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}-p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-p_{1}-p_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-k_{2}\right)^{2}, \\
& D_{5}=\left(k_{2}-p_{1}-p_{2}\right)^{2}, \quad D_{6}=\left(k_{1}-p_{1}-p_{2}-p_{3}\right)^{2}, \quad D_{7}=k_{2}^{2}, \quad D_{8}=\left(k_{2}-p_{1}\right)^{2}=z . \\
& n_{\text {std }}=L(L+1) / 2+L E=9 \text { but } n_{\mathrm{LBL}}=8
\end{aligned}
$$

$$
I=\int \mathrm{d}^{8} x \frac{u N(x)}{x_{1}^{a_{1}} \cdots x_{7}^{a_{1}}} \rightarrow I_{7 \times \mathrm{xut}}=\int u_{7 \times \mathrm{xut}} \phi \quad u_{7 \times \mathrm{cut}}=z^{d / 2-3}(z+s)^{2-d / 2}(z-t)^{d-5}
$$

Example (double box)

Massless double box:

$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}-p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-p_{1}-p_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-k_{2}\right)^{2}, \\
& D_{5}=\left(k_{2}-p_{1}-p_{2}\right)^{2}, \quad D_{6}=\left(k_{1}-p_{1}-p_{2}-p_{3}\right)^{2}, \quad D_{7}=k_{2}^{2}, \quad D_{8}=\left(k_{2}-p_{1}\right)^{2}=z . \\
& n_{\text {std }}=L(L+1) / 2+L E=9 \quad \text { but } \quad n_{\mathrm{LBL}}=8
\end{aligned}
$$

$$
\begin{gathered}
I=\int \mathrm{d}^{8} x \frac{u N(x)}{x_{1}^{a_{1} \cdots x_{7}^{a_{1}}}} \rightarrow \quad I_{7 \times \text { cut }}=\int u_{7 \times \text { cut }} \phi \quad u_{7 \times \text { xut }}=z^{d / 2-3}(z+s)^{2-d / 2}(z-t)^{d-5} \\
\omega=d \log (u)=\left(\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \mathrm{d} z \quad \Rightarrow \quad \nu=2
\end{gathered}
$$

Example (double box)

We want to reduce

$$
I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower }
$$

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

$$
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z
$$

Example (double box)

We want to reduce

$$
I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower }
$$

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

$$
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z,
$$

The ξ basis is (almost) arbitrary. A dlog form is convenient

Example (double box)

We want to reduce

$$
I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower }
$$

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

$\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z$,
The ξ basis is (almost) arbitrary. A dlog form is convenient
We need the intersection numbers

$$
\left\{\left\langle\phi \mid \xi_{1}\right\rangle,\left\langle\phi \mid \xi_{2}\right\rangle,\left\langle\phi_{1} \mid \xi_{1}\right\rangle,\left\langle\phi_{1} \mid \xi_{2}\right\rangle,\left\langle\phi_{2} \mid \xi_{1}\right\rangle,\left\langle\phi_{2} \mid \xi_{2}\right\rangle\right\}
$$

Example (double box)

We want to reduce

$$
I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower }
$$

$$
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad \text { with } \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

$$
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z
$$

The ξ basis is (almost) arbitrary. A dlog form is convenient
We need the intersection numbers

$$
\left\{\left\langle\phi \mid \xi_{1}\right\rangle,\left\langle\phi \mid \xi_{2}\right\rangle,\left\langle\phi_{1} \mid \xi_{1}\right\rangle,\left\langle\phi_{1} \mid \xi_{2}\right\rangle,\left\langle\phi_{2} \mid \xi_{1}\right\rangle,\left\langle\phi_{2} \mid \xi_{2}\right\rangle\right\}
$$

Let us calculate

$$
\begin{gathered}
\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right) \\
\omega=\left(\frac{d-\omega) \psi=\phi_{1}}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \mathrm{d} z \rightarrow \text { Poles of } \omega: \mathcal{P}=\{0,-s, t, \infty\} \\
\text { Let us start with } z=0
\end{gathered}
$$

Example (double box)

$$
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \underset{z=p}{\operatorname{Res}}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1}
$$

Example (double box)

$$
\begin{aligned}
\phi_{1}=1 \mathrm{~d} z, & \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
& (\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
\psi_{0}= & \sum_{i} \kappa_{i} z^{i}
\end{aligned}
$$

Example (double box)

$$
\begin{gathered}
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
(\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
\psi_{0}=\sum_{i} \kappa_{i} z^{i} \quad \kappa_{\leq 0}=0, \quad \kappa_{1}=\frac{2}{d-4}, \quad \kappa_{2}=\frac{4(d-5) s+2(d-4) t}{(d-4)(d-2) s t}, \ldots \\
\operatorname{Res}_{z=0}\left(\left(\frac{2}{d-4} z+\mathcal{O}\left(z^{2}\right)\right)\left(\frac{1}{z}-\frac{1}{z+s}\right)\right)=0
\end{gathered}
$$

Example (double box)

$$
\begin{gathered}
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
(\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
\psi_{0}=\sum_{i} \kappa_{i} z^{i} \quad \kappa_{\leq 0}=0, \quad \kappa_{1}=\frac{2}{d-4}, \quad \kappa_{2}=\frac{4(d-5) s+2(d-4) t}{(d-4)(d-2) s t}, \ldots \\
\operatorname{Res}_{z=0}\left(\left(\frac{2}{d-4} z+\mathcal{O}\left(z^{2}\right)\right)\left(\frac{1}{z}-\frac{1}{z+s}\right)\right)=0
\end{gathered}
$$

Likewise in $-s$ and $t: \operatorname{Res}_{z \in\{-s, t\}}\left(\psi \xi_{1}\right)=0$

Example (double box)

$$
\begin{gathered}
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
(\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
\psi_{0}=\sum_{i} \kappa_{i} z^{i} \quad \kappa_{\leq 0}=0, \quad \kappa_{1}=\frac{2}{d-4}, \quad \kappa_{2}=\frac{4(d-5) s+2(d-4) t}{(d-4)(d-2) s t}, \ldots \\
\operatorname{Res}_{z=0}\left(\left(\frac{2}{d-4} z+\mathcal{O}\left(z^{2}\right)\right)\left(\frac{1}{z}-\frac{1}{z+s}\right)\right)=0
\end{gathered}
$$

Likewise in $-s$ and $t: \operatorname{Res}_{z \in\{-s, t\}}\left(\psi \xi_{1}\right)=0$
For $z=\infty$ we use $y=z^{-1}$ giving $\xi_{1}=\frac{-s}{1+s y} d y$

$$
\begin{array}{ll}
(\mathrm{d}+\omega) \psi_{\infty}=\phi & \Rightarrow \quad\left(\partial_{y}+\frac{-1}{2 y}\left((d-6)-\frac{d-4}{1+s y}+\frac{2(d-5)}{1-t y}\right)\right) \psi_{\infty}=\frac{-1}{y^{2}} \\
\psi_{\infty}=\sum_{i} \kappa_{i} y^{i} \quad \kappa_{\leq-2}=0, \quad \kappa_{-1}=\frac{1}{d-5}, \quad \kappa_{0}=\frac{-((d-4) s+2(d-5) t)}{2(d-6)(d-5)}, \ldots \\
\operatorname{Res}_{y=0}\left(\left(\frac{1}{d-5} \frac{1}{y}+\mathcal{O}\left(y^{0}\right)\right)\left(\frac{-s}{1+s y}\right)\right)=\frac{-s}{d-5}
\end{array}
$$

Example (double box)

$$
\begin{gathered}
\phi_{1}=1 \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \mathcal{P}=\{0,-s, t, \infty\}, \quad\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right), \quad(\mathrm{d}+\omega) \psi=\phi_{1} \\
(\mathrm{~d}+\omega) \psi_{0}=\phi \quad \Rightarrow \quad\left(\partial_{z}+\frac{d-6}{2 z}+\frac{4-d}{2(z+s)}+\frac{d-5}{z-t}\right) \psi_{0}=1 \\
\psi_{0}=\sum_{i} \kappa_{i} z^{i} \quad \kappa_{\leq 0}=0, \quad \kappa_{1}=\frac{2}{d-4}, \quad \kappa_{2}=\frac{4(d-5) s+2(d-4) t}{(d-4)(d-2) s t}, \ldots \\
\operatorname{Res}_{z=0}\left(\left(\frac{2}{d-4} z+\mathcal{O}\left(z^{2}\right)\right)\left(\frac{1}{z}-\frac{1}{z+s}\right)\right)=0
\end{gathered}
$$

$$
\text { Likewise in }-s \text { and } t: \operatorname{Res}_{z \in\{-s, t\}}\left(\psi \xi_{1}\right)=0
$$

$$
\text { For } z=\infty \text { we use } y=z^{-1} \quad \text { giving } \quad \xi_{1}=\frac{-s}{1+s y} d y
$$

$$
\begin{array}{cl}
(\mathrm{d}+\omega) \psi_{\infty}=\phi & \Rightarrow \quad\left(\partial_{y}+\frac{-1}{2 y}\left((d-6)-\frac{d-4}{1+s y}+\frac{2(d-5)}{1-t y}\right)\right) \psi_{\infty}=\frac{-1}{y^{2}} \\
\psi_{\infty}=\sum_{i} \kappa_{i} y^{i} & \kappa_{\leq-2}=0, \quad \kappa_{-1}=\frac{1}{d-5}, \quad \kappa_{0}=\frac{-((d-4) s+2(d-5) t)}{2(d-6)(d-5)}, \ldots \\
& \operatorname{Res}_{y=0}\left(\left(\frac{1}{d-5} \frac{1}{y}+\mathcal{O}\left(y^{0}\right)\right)\left(\frac{-s}{1+s y}\right)\right)=\frac{-s}{d-5}
\end{array}
$$

$$
\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi \xi_{1}\right)=\frac{-s}{d-5}
$$

Example (double box)

$$
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z
$$

We needed the intersection numbers: $\left\{\left\langle\phi \mid \xi_{1}\right\rangle,\left\langle\phi \mid \xi_{2}\right\rangle,\left\langle\phi_{1} \mid \xi_{1}\right\rangle,\left\langle\phi_{1} \mid \xi_{2}\right\rangle,\left\langle\phi_{2} \mid \xi_{1}\right\rangle,\left\langle\phi_{2} \mid \xi_{2}\right\rangle\right\}$

$$
\text { Using }\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \text { with }(\mathrm{d}+\omega) \psi_{p}=\phi \text {, we get }
$$

$$
\begin{aligned}
\left\langle\phi \mid \xi_{1}\right\rangle= & \frac{s\left(4(d-5) t^{2}-3(d-4)(3 d-14) s^{2}-4(d-5)(2 d-9) s t\right)}{4(d-5)(d-4)(d-3)}, \\
\left\langle\phi \mid \xi_{2}\right\rangle= & \frac{s(s+t)(3(d-4)(3 d-14) s+2(d-6)(d-5) t)}{4(d-5)(d-4)(d-3)}, \\
\left\langle\phi_{1} \mid \xi_{1}\right\rangle=\frac{-s}{d-5}, & \left\langle\phi_{1} \mid \xi_{2}\right\rangle=\frac{s+t}{d-5}, \\
\left\langle\phi_{2} \mid \xi_{1}\right\rangle=\frac{s((3 d-14) s+2(d-5) t)}{2(d-5)(d-4)}, & \left\langle\phi_{2} \mid \xi_{2}\right\rangle=\frac{-(3 d-14) s(s+t)}{2(d-5)(d-4)} . \\
& c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
\end{aligned}
$$

Example (double box)

$$
\phi=z^{2} \mathrm{~d} z, \quad \phi_{1}=1 \mathrm{~d} z, \quad \phi_{2}=z \mathrm{~d} z, \quad \xi_{1}=\left(\frac{1}{z}-\frac{1}{z+s}\right) \mathrm{d} z, \quad \xi_{2}=\left(\frac{1}{z+s}-\frac{1}{z-t}\right) \mathrm{d} z
$$

We needed the intersection numbers: $\left\{\left\langle\phi \mid \xi_{1}\right\rangle,\left\langle\phi \mid \xi_{2}\right\rangle,\left\langle\phi_{1} \mid \xi_{1}\right\rangle,\left\langle\phi_{1} \mid \xi_{2}\right\rangle,\left\langle\phi_{2} \mid \xi_{1}\right\rangle,\left\langle\phi_{2} \mid \xi_{2}\right\rangle\right\}$

$$
\begin{aligned}
& \text { Using }\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \text { with }(\mathrm{d}+\omega) \psi_{p}=\phi \text {, we get } \\
& \left\langle\phi \mid \xi_{1}\right\rangle=\frac{s\left(4(d-5) t^{2}-3(d-4)(3 d-14) s^{2}-4(d-5)(2 d-9) s t\right)}{4(d-5)(d-4)(d-3)}, \\
& \left\langle\phi \mid \xi_{2}\right\rangle=\frac{s(s+t)(3(d-4)(3 d-14) s+2(d-6)(d-5) t)}{4(d-5)(d-4)(d-3)}, \\
& \left\langle\phi_{1} \mid \xi_{1}\right\rangle=\frac{-s}{d-5}, \\
& \left\langle\phi_{1} \mid \xi_{2}\right\rangle=\frac{s+t}{d-5}, \\
& \left\langle\phi_{2} \mid \xi_{1}\right\rangle=\frac{s((3 d-14) s+2(d-5) t)}{2(d-5)(d-4)}, \\
& \left\langle\phi_{2} \mid \xi_{2}\right\rangle=\frac{-(3 d-14) s(s+t)}{2(d-5)(d-4)} \text {. } \\
& c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle \\
& I_{1111111 ;-2}=c_{0} I_{1111111 ; 0}+c_{1} I_{1111111 ;-1}+\text { lower } \quad c_{0}=\frac{(d-4) s t}{2(d-3)}, \quad c_{1}=\frac{2 t-3(d-4) s}{2(d-3)},
\end{aligned}
$$

Further examples

We did $\mathcal{O}(30)$ examples in arXiv:1901.11510

Further examples

We did $\mathcal{O}(30)$ examples in arXiv:1901.11510

Further examples

A planar integral contributing to NLO Higgs+jet production

$$
H+j \text { "Family A": }
$$

$$
\begin{aligned}
& D_{1}=k_{2}^{2}-m_{t}^{2}, \quad D_{2}=\left(k_{2}+p_{1}\right)^{2}-m_{t}^{2}, \quad D_{3}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \quad D_{4}=\left(k_{1}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \\
& D_{5}=\left(k_{1}+p_{1}+p_{2}+p_{3}\right)^{2}-m_{t}^{2}, \quad D_{6}=k_{1}^{2}-m_{t}^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}
\end{aligned}
$$

Further examples

A planar integral contributing to NLO Higgs+jet production
$H+j$ "Family A":

$$
\begin{gathered}
D_{1}=k_{2}^{2}-m_{t}^{2}, \quad D_{2}=\left(k_{2}+p_{1}\right)^{2}-m_{t}^{2}, \quad D_{3}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \quad D_{4}=\left(k_{1}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \\
D_{5}=\left(k_{1}+p_{1}+p_{2}+p_{3}\right)^{2}-m_{t}^{2}, \quad D_{6}=k_{1}^{2}-m_{t}^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2} ; \quad D_{8}=\left(k_{1}+p_{1}\right)^{2}-m_{t}^{2}=z \\
\\
\\
u=z^{d-5}\left(z^{2}+s z+m_{t}^{2} s\right)^{\frac{4-d}{2}}\left(\left(m_{H}^{2}-s\right)^{2} z^{2}+2\left(m_{H}^{2}-s\right) s t z+s t\left(4 m_{t}^{2}\left(m_{H}^{2}-s-t\right)+s t\right)\right)^{\frac{d-5}{2}}
\end{gathered}
$$

There are four master integrals.

Further examples

A planar integral contributing to NLO Higgs+jet production

$$
H+j \text { "Family A": }
$$

$$
\begin{gathered}
D_{1}=k_{2}^{2}-m_{t}^{2}, \quad D_{2}=\left(k_{2}+p_{1}\right)^{2}-m_{t}^{2}, \quad D_{3}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \quad D_{4}=\left(k_{1}+p_{1}+p_{2}\right)^{2}-m_{t}^{2}, \\
D_{5}=\left(k_{1}+p_{1}+p_{2}+p_{3}\right)^{2}-m_{t}^{2}, \quad D_{6}=k_{1}^{2}-m_{t}^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2} ; \quad D_{8}=\left(k_{1}+p_{1}\right)^{2}-m_{t}^{2}=z \\
\\
\\
u=z^{d-5}\left(z^{2}+s z+m_{t}^{2} s\right)^{\frac{4-d}{2}}\left(\left(m_{H}^{2}-s\right)^{2} z^{2}+2\left(m_{H}^{2}-s\right) s t z+s t\left(4 m_{t}^{2}\left(m_{H}^{2}-s-t\right)+s t\right)\right)^{\frac{d-5}{2}}
\end{gathered}
$$

There are four master integrals.

$$
I_{1111111 ;-1}=c_{1} I_{1111111 ; 0}+c_{2} I_{1211111 ; 0}+c_{3} I_{1111211 ; 0}+c_{4} I_{1111112 ; 0}+\text { lower }
$$

The intersection procedure gives cs in agreement with Kira.

Further examples

A non-planar integral contributing to NNLO 3-jet production

First non-planar pentabox:

$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}-k_{2}-p_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-k_{2}\right)^{2}, \quad D_{5}=\left(k_{2}+p_{1}+p_{2}\right)^{2} \\
& D_{6}=\left(k_{2}+p_{1}+p_{2}+p_{3}\right)^{2}, \quad D_{7}=\left(k_{2}+p_{1}+p_{2}+p_{3}+p_{4}\right)^{2}, \quad D_{8}=\left(k_{2}\right)^{2} ; \quad D_{9}=\left(k_{2}+p_{1}\right)^{2}=z \\
& \quad u=\left(z\left(z+s_{12}\right)\left(s_{35} z^{2}+\left(s_{51} s_{12}+s_{12} s_{23}-s_{23} s_{34}+s_{34} s_{45}-s_{45} s_{51}\right) z-s_{51} s_{12} s_{23}\right)\right)^{\frac{d-6}{2}}
\end{aligned}
$$

The Lee-Pomeransky criterion gives three master integrals in agreement with the literature.

$$
I_{11111111 ;-3}=c_{0} I_{11111111 ; 0}+c_{1} I_{11111111 ;-1}+c_{2} I_{11111111 ;-2}+\text { lower }
$$

Again the intersection procedure gives $c s$ in agreement with the codes.

Further examples

An example of apparent discrepancy:

Further examples

An example of apparent discrepancy:

Internally massive double-box:

$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}+p_{1}+p_{2}\right)^{2}, \quad D_{4}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m^{2}, \\
& D_{5}=\left(k_{2}-p_{4}\right)^{2}-m^{2}, \quad D_{6}=k_{2}^{2}-m^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}-m^{2} ; \quad D_{8}=\left(k_{1}-p_{4}\right)^{2}=z .
\end{aligned}
$$

Further examples

An example of apparent discrepancy:

Internally massive double-box:

$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}+p_{1}+p_{2}\right)^{2}, \quad D_{4}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m^{2}, \\
& D_{5}=\left(k_{2}-p_{4}\right)^{2}-m^{2}, \quad D_{6}=k_{2}^{2}-m^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}-m^{2} ; \quad D_{8}=\left(k_{1}-p_{4}\right)^{2}=z .
\end{aligned}
$$

The Lee-Pomeransky criterion gives three master integrals, but the literature mentions four!

$$
I_{1111111 ; 0}, \quad I_{1211111 ; 0}, \quad I_{1111211 ; 0}, \quad I_{1111112 ; 0}
$$

Further examples

An example of apparent discrepancy:

Internally massive double-box:

$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}+p_{1}+p_{2}\right)^{2}, \quad D_{4}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m^{2}, \\
& D_{5}=\left(k_{2}-p_{4}\right)^{2}-m^{2}, \quad D_{6}=k_{2}^{2}-m^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}-m^{2} ; \quad D_{8}=\left(k_{1}-p_{4}\right)^{2}=z
\end{aligned}
$$

The Lee-Pomeransky criterion gives three master integrals, but the literature mentions four!

$$
I_{1111111 ; 0}, \quad I_{1211111 ; 0}, \quad I_{1111211 ; 0}, \quad I_{1111112 ; 0}
$$

There is an extra relation relating 7-propagator sectors:

$$
I_{1111211 ; 0}=I_{1111112 ; 0}-2 I_{01111111 ; 1}-\frac{d-4}{2 m^{2}} I_{1111011 ; 1}+\frac{d-4}{m^{2}} I_{1111110 ; 1}+\text { lower }
$$

The intersection theory knows this relation!
On the $7 \times$ cut there are three (checked numerically)

Further examples

An example of apparent discrepancy:

Internally massive double-box:

$$
\begin{aligned}
& D_{1}=k_{1}^{2}, \quad D_{2}=\left(k_{1}+p_{1}\right)^{2}, \quad D_{3}=\left(k_{1}+p_{1}+p_{2}\right)^{2}, \quad D_{4}=\left(k_{2}+p_{1}+p_{2}\right)^{2}-m^{2}, \\
& D_{5}=\left(k_{2}-p_{4}\right)^{2}-m^{2}, \quad D_{6}=k_{2}^{2}-m^{2}, \quad D_{7}=\left(k_{1}-k_{2}\right)^{2}-m^{2} ; \quad D_{8}=\left(k_{1}-p_{4}\right)^{2}=z
\end{aligned}
$$

The Lee-Pomeransky criterion gives three master integrals, but the literature mentions four!

$$
I_{1111111 ; 0}, \quad I_{1211111 ; 0}, \quad I_{1111211 ; 0}, \quad I_{1111112 ; 0}
$$

There is an extra relation relating 7 -propagator sectors:

$$
I_{1111211 ; 0}=I_{1111112 ; 0}-2 I_{01111111 ; 1}-\frac{d-4}{2 m^{2}} I_{1111011 ; 1}+\frac{d-4}{m^{2}} I_{1111110 ; 1}+\text { lower }
$$

The intersection theory knows this relation!
On the $7 \times$ cut there are three (checked numerically)
This also holds for $H+j$ fam. F

$$
(6 \rightarrow 4)
$$

multivariate

Does it only work for maximal cuts?

multivariate

Does it only work for maximal cuts? NO!

Does it only work for maximal cuts? NO!

$$
I=\int_{\mathcal{C}} u \hat{\phi} \mathrm{~d}^{n} z=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

but now $\langle\phi \mid \xi\rangle$ is a multivariate intersection number
K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, [arXiv:1906.02099]

HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers, PhysRevLett. 123 (2019) 201602.

Does it only work for maximal cuts? NO!

$$
I=\int_{\mathcal{C}} u \hat{\phi} \mathrm{~d}^{n} z=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

but now $\langle\phi \mid \xi\rangle$ is a multivariate intersection number
K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) no. 4 873-893
S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, [arXiv:1906.02099]

HF, F. Gasparotto, M. Mandal, P. Mastrolia, L. Mattiazzi, S. Mizera,
Vector Space of Feynman Integrals and Multivariate Intersection Numbers, PhysRevLett. 123 (2019) 201602.

$$
\begin{gathered}
\mathbf{n}\left\langle\phi^{(\mathbf{n})} \mid \xi^{(\mathbf{n})}\right\rangle=-\sum_{p \in \mathcal{P}_{n}} \operatorname{Res}_{z_{n}=p}\left(\mathbf{n - 1}\left\langle\phi^{(\mathbf{n})} \mid h_{i}^{(\mathbf{n}-\mathbf{1})}\right\rangle \psi_{i}^{(n)}\right) \\
\left(\delta_{i j} \partial_{z_{n}}-\hat{\mathbf{\Omega}}_{i j}^{(n)}\right) \psi_{j}^{(n)}=\hat{\xi}_{i}^{(n)} \\
\hat{\mathbf{\Omega}}_{i j}^{(n)}=-\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}^{-1}\right)_{i k} \mathbf{n - \mathbf { 1 }}\left\langle e_{k}^{(\mathbf{n}-\mathbf{1})} \mid\left(\partial_{z_{n}}-\hat{\omega}_{n}\right) h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle \\
\xi_{i}^{(n)}=\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}^{-1}\right)_{i j} \mathbf{n - \mathbf { 1 }}\left\langle e_{j}^{(\mathbf{n}-\mathbf{1})} \mid \xi^{(\mathbf{n})}\right\rangle \\
\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}\right)_{i j} \equiv \mathbf{n - \mathbf { 1 }}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle
\end{gathered}
$$

multivariate

We have done the full reduction of

multivariate

We have done the full reduction of

In particular

$$
I=\int u(\mathbf{x}) \hat{\phi}(\mathbf{x}) \mathrm{d}^{4} \mathbf{x} \text { with } \quad u(\mathbf{x})=\begin{array}{r}
\left(\left(s t-s x_{4}-t x_{3}\right)^{2}-2 t x_{1}\left(s\left(t+2 x_{3}-x_{2}-x_{4}\right)+t x_{3}\right)\right. \\
\\
\left.+s^{2} x_{2}^{2}+t^{2} x_{1}^{2}-2 s x_{2}\left(t\left(s-x_{3}\right)+x_{4}(s+2 t)\right)\right)^{\frac{d-5}{2}}
\end{array}
$$

We have to introduce regulators $\rho: u \rightarrow u \prod_{i} x_{i}^{\rho_{i}}$ since all poles of $\hat{\phi}$ must be poles of ω. We now get $\nu=3$.

multivariate

We have done the full reduction of

In particular

$$
I=\int u(\mathbf{x}) \hat{\phi}(\mathbf{x}) \mathrm{d}^{4} \mathbf{x} \text { with } \quad u(\mathbf{x})=\begin{array}{r}
\left(\left(s t-s x_{4}-t x_{3}\right)^{2}-2 t x_{1}\left(s\left(t+2 x_{3}-x_{2}-x_{4}\right)+t x_{3}\right)\right. \\
\\
\left.+s^{2} x_{2}^{2}+t^{2} x_{1}^{2}-2 s x_{2}\left(t\left(s-x_{3}\right)+x_{4}(s+2 t)\right)\right)^{\frac{d-5}{2}}
\end{array}
$$

We have to introduce regulators $\rho: u \rightarrow u \prod_{i} x_{i}^{\rho_{i}}$ since all poles of $\hat{\phi}$ must be poles of ω. We now get $\nu=3$.

$$
\begin{gathered}
\hat{\phi}=\left(x_{1}^{2} x_{2}^{2} x_{3} x_{4}\right)^{-1} \quad \hat{\phi}_{1}=\left(x_{1} x_{2} x_{3} x_{4}\right)^{-1} \quad \hat{\phi}_{2}=\left(x_{1} x_{3}\right)^{-1} \quad \hat{\phi}_{3}=\left(x_{2} x_{4}\right)^{-1} \\
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
\end{gathered}
$$

multivariate

We have done the full reduction of

In particular

$$
I=\int u(\mathbf{x}) \hat{\phi}(\mathbf{x}) \mathrm{d}^{4} \mathbf{x} \text { with } \quad u(\mathbf{x})=\begin{array}{r}
\left(\left(s t-s x_{4}-t x_{3}\right)^{2}-2 t x_{1}\left(s\left(t+2 x_{3}-x_{2}-x_{4}\right)+t x_{3}\right)\right. \\
\\
\left.+s^{2} x_{2}^{2}+t^{2} x_{1}^{2}-2 s x_{2}\left(t\left(s-x_{3}\right)+x_{4}(s+2 t)\right)\right)^{\frac{d-5}{2}}
\end{array}
$$

We have to introduce regulators $\rho: u \rightarrow u \prod_{i} x_{i}^{\rho_{i}}$ since all poles of $\hat{\phi}$ must be poles of ω. We now get $\nu=3$.

$$
\begin{gathered}
\hat{\phi}=\left(x_{1}^{2} x_{2}^{2} x_{3} x_{4}\right)^{-1} \quad \hat{\phi}_{1}=\left(x_{1} x_{2} x_{3} x_{4}\right)^{-1} \quad \hat{\phi}_{2}=\left(x_{1} x_{3}\right)^{-1} \quad \hat{\phi}_{3}=\left(x_{2} x_{4}\right)^{-1} \\
c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \quad \text { with } \quad \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle \\
c_{1}=\frac{(d-5)(d-6)}{s t}, \quad c_{2}=\frac{-4(d-5)(d-3)}{s^{3} t}, \quad c_{3}=\frac{-4(d-5)(d-3)}{s t^{3}}
\end{gathered}
$$

in agreement with FIRE

multivariate

The cut of the s-channel bubble: cut $\left\{x_{2}, x_{4}\right\}$.

$$
\left.\int \frac{u \mathrm{~d}^{4} x}{x_{1}^{2} x_{2}^{2} x_{3} x_{4}}\right|_{\text {cut } 2,4}=\left.\int \frac{\partial_{x_{2}} u}{x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}=\int\left(\left.u_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} \frac{\partial_{x_{2} u} u x_{1}^{2} x_{3}}{}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}\right)
$$

multivariate

The cut of the s-channel bubble: cut $\left\{x_{2}, x_{4}\right\}$.

$$
\begin{gathered}
\left.\int \frac{u \mathrm{~d}^{4} x}{x_{1}^{2} x_{2}^{2} x_{3} x_{4}}\right|_{\text {cut } 2,4}=\left.\int \frac{\partial_{x_{2}} u}{x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}=\int\left(\left.u_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} \frac{\partial_{x_{2} u} u x_{1}^{2} x_{3}}{}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{3} \mathrm{~d} x_{3}}\right)=\int u_{24 \mathrm{cut}} \phi \\
u_{24 \mathrm{cut}}=\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right)^{\frac{d-5}{2}} \\
\phi=\hat{\phi} \mathrm{d} x_{1} \wedge \mathrm{~d} x_{3} \quad \text { with } \quad \hat{\phi}=\frac{(d-5) s\left(x_{1}+x_{3}-s\right)}{\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right) x_{1} x_{3}}
\end{gathered}
$$

multivariate

The cut of the s-channel bubble: cut $\left\{x_{2}, x_{4}\right\}$.

$$
\begin{gathered}
\left.\int \frac{u \mathrm{~d}^{4} x}{x_{1}^{2} x_{2}^{2} x_{3} x_{4}}\right|_{\text {cut } 2,4}=\left.\int \frac{\partial_{x_{2}} u}{x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}=\int\left(\left.u_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} \frac{\partial_{x_{2} u} u x_{1}^{2} x_{3}}{}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{3} \mathrm{~d} x_{3}}\right)=\int u_{24 \mathrm{cut}} \phi \\
u_{24 \mathrm{cut}}=\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right)^{\frac{d-5}{2}} \\
\phi=\hat{\phi} \mathrm{d} x_{1} \wedge \mathrm{~d} x_{3} \quad \text { with } \quad \hat{\phi}=\frac{(d-5) s\left(x_{1}+x_{3}-s\right)}{\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right) x_{1} x_{3}}
\end{gathered}
$$

With regulators: $u_{24 \mathrm{cut}} \rightarrow u_{24 \mathrm{cut}} x_{1}^{\rho_{1}} x_{3}^{\rho_{3}}$ we get $\nu=2$.

$$
\hat{\phi}_{1}=\left(x_{1} x_{3}\right)^{-1} \text { and } \hat{\phi}_{2}=1 . \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \text { with } \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle \text { gives } c_{1} \text { and } c_{2} .
$$

multivariate

The cut of the s-channel bubble: cut $\left\{x_{2}, x_{4}\right\}$.

$$
\begin{gathered}
\left.\int \frac{u \mathrm{~d}^{4} x}{x_{1}^{2} x_{2}^{2} x_{3} x_{4}}\right|_{\text {cut } 2,4}=\left.\int \frac{\partial_{x_{2}} u}{x_{1}^{2} x_{3}}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{1} \mathrm{~d} x_{3}}=\int\left(\left.u_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} \frac{\partial_{x_{2} u} u x_{1}^{2} x_{3}}{}\right|_{\left\{x_{2}, x_{4}\right\} \rightarrow 0} ^{\mathrm{d} x_{3} \mathrm{~d} x_{3}}\right)=\int u_{24 \mathrm{cut}} \phi \\
u_{24 \mathrm{cut}}=\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right)^{\frac{d-5}{2}} \\
\phi=\hat{\phi} \mathrm{d} x_{1} \wedge \mathrm{~d} x_{3} \quad \text { with } \quad \hat{\phi}=\frac{(d-5) s\left(x_{1}+x_{3}-s\right)}{\left(s^{2} t+t\left(x_{1}-x_{3}\right)^{2}-2 s\left(2 x_{1} x_{3}+t\left(x_{1}+x_{3}\right)\right)\right) x_{1} x_{3}}
\end{gathered}
$$

With regulators: $u_{24 \mathrm{cut}} \rightarrow u_{24 \mathrm{cut}} x_{1}^{\rho_{1}} x_{3}^{\rho_{3}}$ we get $\nu=2$.

$$
\hat{\phi}_{1}=\left(x_{1} x_{3}\right)^{-1} \text { and } \hat{\phi}_{2}=1 . \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \text { with } \mathbf{C}_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle \text { gives } c_{1} \text { and } c_{2} .
$$

The $\left\{x_{1}, x_{3}\right\}$-cut would yield c_{3}. Combine spanning cuts: The bottom-up approch.

Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.

Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.
Not only for integral relations:

Differential equations:

$$
\partial_{s} I=\int_{\mathcal{C}} \partial_{s}(u \phi)=\int_{\mathcal{C}} u \tilde{\phi}
$$

Dimension shift relations:

$$
I_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}}(u \phi)_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}} u \tilde{\tilde{\phi}}
$$

Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.
Not only for integral relations:
Differential equations:
Dimension shift relations:

$$
\partial_{s} I=\int_{\mathcal{C}} \partial_{s}(u \phi)=\int_{\mathcal{C}} u \tilde{\phi} \quad I_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}}(u \phi)_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}} u \tilde{\tilde{\phi}}
$$

Also for contiguity relations for (generalized) hypergeometric functions

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, b+2 \\
c+2
\end{array}, x\right)=C_{12} F_{1}(\underset{c}{a, b}, x)+C_{2}{ }_{2} F_{1}\left(\begin{array}{c}
a, b+1 \\
c+1
\end{array}, x\right)
$$

Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.
Not only for integral relations:
Differential equations:
Dimension shift relations:

$$
\partial_{s} I=\int_{\mathcal{C}} \partial_{s}(u \phi)=\int_{\mathcal{C}} u \tilde{\phi} \quad I_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}}(u \phi)_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}} u \tilde{\tilde{\phi}}
$$

Also for contiguity relations for (generalized) hypergeometric functions

$$
{ }_{2} F_{1}(\underset{c+2}{a, b+2}, x)=C_{1}{ }_{2} F_{1}(\underset{c}{a, b}, x)+C_{2}{ }_{2} F_{1}\left(\begin{array}{c}
a, b+1 \\
c+1
\end{array}, x\right)
$$

Can find integral relations without the use of IBPs.

Perspectives

$$
I=\int_{\mathcal{C}} u \phi \quad \rightarrow \quad I=\sum_{i} c_{i} I_{i} \quad \text { with } \quad c_{i}=\left\langle\phi \mid \xi_{j}\right\rangle\left(C^{-1}\right)_{j i} \quad C_{i j}=\left\langle\phi_{i} \mid \xi_{j}\right\rangle
$$

For one-forms:

$$
\langle\phi \mid \xi\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \xi\right) \quad(\mathrm{d}+\omega) \psi_{p}=\phi
$$

For multivariate forms it is more involved but similar.
Not only for integral relations:
Differential equations:
Dimension shift relations:

$$
\partial_{s} I=\int_{\mathcal{C}} \partial_{s}(u \phi)=\int_{\mathcal{C}} u \tilde{\phi} \quad I_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}}(u \phi)_{d \rightarrow d \pm 2 n}=\int_{\mathcal{C}} u \tilde{\tilde{\phi}}
$$

Also for contiguity relations for (generalized) hypergeometric functions

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, b+2 \\
c+2
\end{array}, x\right)=C_{1}{ }_{2} F_{1}(\underset{c}{a, b}, x)+C_{2}{ }_{2} F_{1}\left(\begin{array}{c}
a, b+1 \\
c+1
\end{array}, x\right)
$$

Can find integral relations without the use of IBPs.
"IBPs without IBPs"

Perspectives

Future work:

- Full understanding of the multivariate case

Perspectives

Future work:

- Full understanding of the multivariate case
- Classify hypergeometric functions
- Clarify connection to co-action (see also arXiv:1910.08358)
- Clarify connection to pure functions (see also arXiv:1910.11852)
- Combine with rational reconstruction
- Optimized algorithm for sub-sectors

Perspectives

Future work:

- Full understanding of the multivariate case
- Classify hypergeometric functions
- Clarify connection to co-action (see also arXiv:1910.08358)
- Clarify connection to pure functions (see also arXiv:1910.11852)
- Combine with rational reconstruction
- Optimized algorithm for sub-sectors
- Make an extremely fast code

Università

Perspectives

Future work:

- Full understanding of the multivariate case
- Classify hypergeometric functions
- Clarify connection to co-action (see also arXiv:1910.08358)
- Clarify connection to pure functions (see also arXiv:1910.11852)
- Combine with rational reconstruction
- Optimized algorithm for sub-sectors
- Make an extremely fast code

Thank you for the invitation to speak, and thank you for listening!

Hjalte Frellesvig

