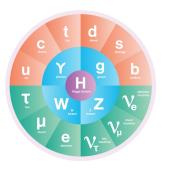


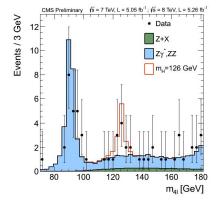
Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP) Introduction and Context

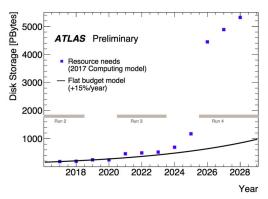

OAC-1836650

PI: Peter Elmer (Princeton), co-PIs: Brian Bockelman (Morgridge Institute), Gordon Watts (U.Washington) with UC-Berkeley, University of Chicago, University of Cincinnati, Cornell University, Indiana University, MIT, U.Michigan-Ann Arbor, U.Nebraska-Lincoln, New York University, Stanford University, UC-Santa Cruz, UC-San Diego, U.Illinois at Urbana-Champaign, U.Puerto Rico-Mayaguez and U.Wisconsin-Madison

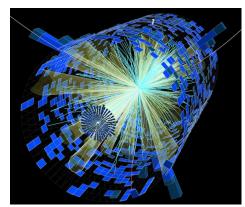
iris hep

http://iris-hep.org

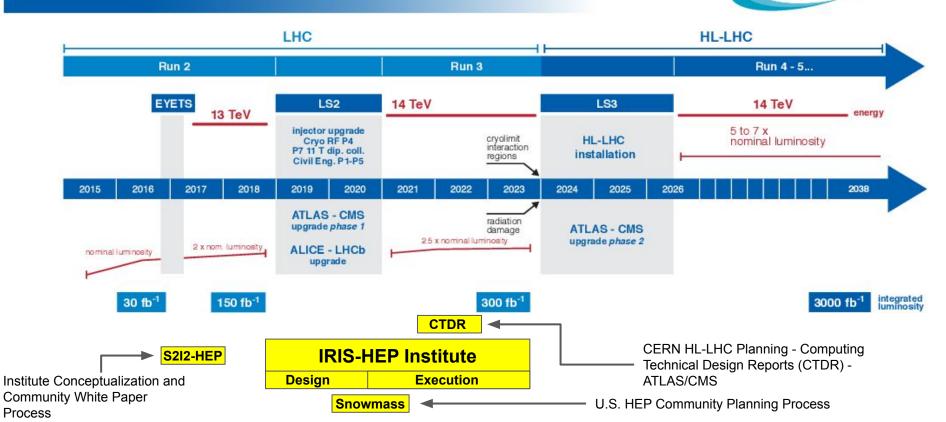

Science Driver: Discoveries beyond the Standard Model of Particle Physics


From "Building for Discovery - Strategic Plan for U.S. Particle Physics in the Global Context" - Report of the Particle Physics Project Prioritization Panel (P5):

- 1) Use the Higgs boson as a new tool for discovery
- 2) Pursue the physics associated with neutrino mass
- 3) Identify the new physics of dark matter
- 4) Understand cosmic acceleration: dark matter and inflation
- 5) Explore the unknown: new particles, interactions, and physical principles


Computational and Data Science Challenges of the High Luminosity Large Hadron Collider (HL-LHC) and other HEP experiments in the 2020s

HIGGS BOSO


The HL-LHC will produce exabytes of science data per year, with increased complexity: an average of 200 overlapping proton-proton collisions per event.

During the HL-LHC era, the ATLAS and CMS experiments will record ~10 times as much data from ~100 times as many collisions as were used to discover the Higgs boson (and at twice the energy).

LHC / HL-LHC Plan

lep

HL-LHC PROJEC

The HSF (http://hepsoftwarefoundation.org) was created in early 2015 as a means for organizing our community to address the software challenges of future projects such as the HL-HLC. The HSF has the following objectives:

- Catalyze new common projects
- Promote commonality and collaboration in new developments to make the most of limited resources
- Provide a framework for attracting effort and support to S&C common projects (new resources!)
- Provide a structure to set priorities and goals for the work

Community White Paper

January 2017 UCSD

Many workshops, involving a diverse group

- International participants
- Computing Management from the Experiments and Labs
- Individuals interested in the problems
- Members of other compute intensive scientific endeavors
- Members of Industry
- http://s2i2-hep.org/
- <u>https://hepsoftwarefoundation.org/</u>

Physics > Computational Physics A Roadmap for HEP Software and Computing R&D for the 2020s Johannes Albrecht, Antonio Augusto Alves Jr, Guilherme Amadio, Giuseppe Andronico, Nguyen Anh-Ky, Laurent Aphecetche, John Apostolakis, Makoto Asai, Luca Atzori, Marian Babik, Giuseppe Bagliesi, Marilena Bandieramonte. Sunanda Baneriee, Martin Barisits, Lothar A.T. Bauerdick, Stefano Belforte, Douglas Benjamin, Catrin Bernius, Wahid Bhimji, Riccardo Maria Bianchi, Ian Bird, Catherine Biscarat, Jakob Blomer, Kenneth Bloom, Tommaso Boccali, Brian Bockelman, Tomasz Bold, Daniele Bonacorsi, Antonio Boveia, Concezio Bozzi, Marko Bracko, David Britton, Andy Buckley, Predrag Buncic, Paolo Calafiura, Simone Campana, Philippe Canal, Luca Canali, Gianpaolo Carlino, Nuno Castro, Marco Cattaneo, Gianluca Cerminara, Javier Cervantes Villanueva, Philip Chang, John Chapman, Gang Chen, Taylor Childers, Peter Clarke, Marco Clemencic, Eric Cogneras, Jeremy Coles, Ian Collier, David Colling, Gloria Corti, Gabriele Cosmo, Davide Costanzo, Ben Couturier, Kyle Cranmer, Jack Cranshaw, Leonardo Cristella, David Crooks, Sabine Crépé-Renaudin, Robert Currie, Sünje Dallmeier-Tiessen, Kaushik De, Michel De Cian, Albert De Roeck, Antonio Delgado Peris, Frédéric Derue, Alessandro Di Girolamo, Salvatore Di Guida, Gancho Dimitrov, Caterina Doglioni, Andrea Dotti, Dirk Duellmann, Laurent Duflot, Dave Dykstra, Katarzyna Dziedziniewicz-Wojcik, Agnieszka Dziurda, Ulrik Egede, Peter Elmer, Johannes Elmsheuser, V. Daniel Elvira, Giulio Eulisse, Steven Farrell, Torben Ferber, Andrej Filipcic, Ian Fisk, Conor Fitzpatrick, José Flix, Andrea Formica, Alessandra Forti, Giovanni Franzoni, James Frost, Stu Fuess, Frank Gaede, Gerardo Ganis, Robert Gardner, Vincent Garonne, Andreas Gellrich et al. (210 additional authors not shown) (Submitted on 18 Dec 2017 (v1), last revised 19 Dec 2018 (this version, v5))

Particle physics has an ambilious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upprade existing ones. Similari, it requires commensurate investment in the RAD of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL_HC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this while paper describes the R&D activities required to prepare for this software upgrade.

Individual Papers on the arXiv:

arXiv.org > physics > arXiv:1712.06982

Careers & Training, Conditions Data, DOMA, Data Analysis & Interpretation, Data and Software Preservation, Detector Simulation, Event/Data Processing Frameworks, Facilities and Distributed Computing, Machine Learning, Physics Generators, Security, Software Development, Deployment, Validation, Software Trigger and Event Reconstruction, Visualization

Community White Paper & the Strategic Plan

IRIS-HEP

Download:

physics.comp.ph

INSPIRE HEP

Export citation Google Scholar

Bookmark

(refers to | cited by) • NASAADS

< prev | next >
new | recent | 1712

Current browse context

Change to browse by:

References & Citations

PDF
 Other formats

(cc) 0Y

hep-ex physics

arXiv 1712.06982

arXiv 1712.06592

U.S. S2I2-HEP Conceptualization: Additional Criteria

Impact - Physics: Will efforts in this area enable new approaches to computing and software that maximize, and potentially radically extend, the physics reach of the detectors?

Impact - Cost/Resources: Will efforts in this area lead to improvements in software efficiency, scalability and performance and make use of the advances in CPU, storage and network technologies, that allow the experiments to maximize their physics reach within their computing budgets?

Impact - Sustainability: Will efforts in this area significantly improve the long term sustainability of the software through the lifetime of the HL-LHC?

Strategic Plan for a Scientific Software Innovation Institute (S^2I^2) for High Energy Physics arXiv 1712.06592 Dec. 2017 Interest/Expertise: Does the U.S. university community have strong interest and expertise in the area?

Leadership: Are the proposed focus areas complementary to efforts funded by the US-LHC Operations programs, the DOE, and international partners?

Value: Is there potential to provide value to more than one HL-LHC experiment and to the wider HEP community?

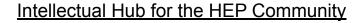
Research/Innovation: Are there opportunities for combining research and innovation as part of partnerships between the HEP and Computer Science/Software Engineering/Data Science communities?

US-ATLAS and US-CMS Ops were integral partners in developing this strategic plan

IRIS-HEP

Sustainable Software R&D objectives

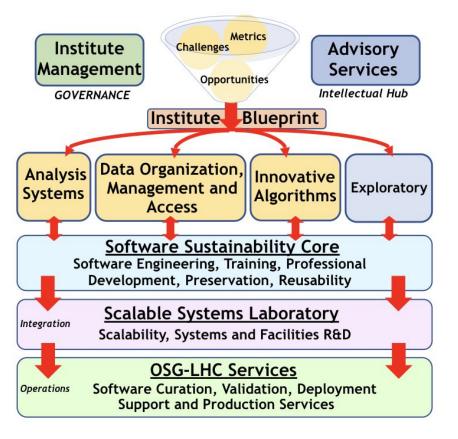
1) Development of <u>innovative algorithms</u> for data reconstruction and triggering;


 Development of highly performant <u>analysis</u> <u>systems</u> that reduce "time-to-insight" and maximize the HL-LHC physics potential; and

3) Development of <u>data organization, management</u> <u>and access systems</u> for the community's upcoming Exabyte era.

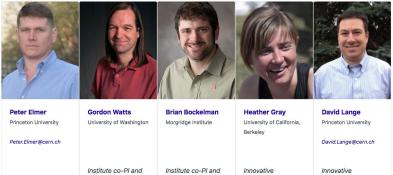
4) Integration of software and scalability for use by **the LHC community on the Open Science Grid**, the Distributed High Throughput Computing infrastructure in the U.S.

IRIS-HEP funded as a 5 year project from 1 Sep, 2018



The plan for IRIS-HEP reflects a community vision developed by an international community process organized by the HEP Software Foundation (<u>https://hepsoftwarefoundation.org</u>). The S2I2-HEP conceptualization project (<u>http://s2i2-hep.org</u>) derived a Strategic Plan from the community roadmap which would leverage the strengths of the U.S. university community. IRIS-HEP aims to function as an **intellectual hub** for the national and international HEP community, through training, community workshops and the development of wider collaborations with the larger computer and data science communities.

IRIS-HEP Structure and Executive Board


The Executive Board meets weekly.

Executive Board

Institute PI and

Executive Director

The IRIS-HEP Executive Board manages the day to day activities of the Institute.

Director

Deputy Executive

Algorithms Area

co-Lead

			R MI	
Kyle Cranmer New York University	Sudhir Malik University of Puerto Rico at Mayaguez	Mark Neubauer University of Illinois at Urbana-Champaign	Rob Gardner University of Chicago	Frank Wuerthwein University of California, San Diego
Analysis Systems Area Lead	Training, Education and Outreach Coordinator	Blueprint Coordinator	SSL Area Lead	OSG-LHC Area Lead and OSG Executive Director

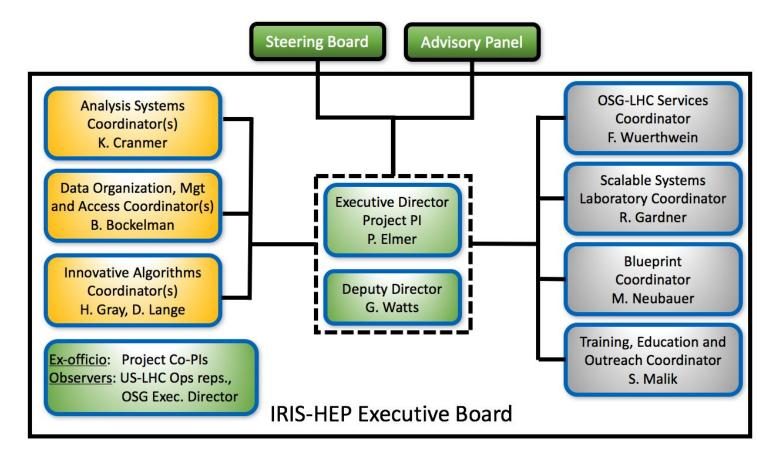
Peter Wittlch Cenel University	Dan Riley Correl University	Ever Lantz Comel University	Michael (Tres) Rold Comultification	Susa Sons Indee University	Adrea Chian Beleverty of Chiange	Arc Veinberg Delawrity of Chicago	Kike Sobolef Hawesty of Circleword	Karian Stahl Delwenday of Cincinnas
Ziak Shah Irdana Uriyansiy	His Wilaws Mise Wilaws Mise Wilaws di Tehneigo	Arkus Klute Markus Klute Maschastra Harass	PhD Student	Entiel Crait Management	David S. Katz Universit of lines at Universit of lines at	Ben Gabwesky Nidowi Cester for Superoraping Agalication	Rekas Atlinon Ubers Central	Atthey Fickert Urber: Comparison
Systems Analyst	e in interest	(Class)		Postdoctoral Research Associate		Applications	1000	Postdoctorel researcher
	9		R		Ken Bloom	Derok Weitzel	Oksana Shadura	Marian Zvada
Dylan Rankin Massochusetts institute of Technology	Even Massaro Massochusetta Institute of Yechnology	Brian Bockelman Morgridge Institute Institute co-Pl and DOMA R&D Area Lead	Kyle Cranmer New York University Analysis Systems Area Load	Johann Brehmer New York University	University of Nebreake - Lincoln	University of Nebraska - Lincoln	University of Nebraska - Linearis DIANAA/HEP collaborator	University of Netraska - Lineais Systems Integrator
		60	P		Hether Gray university of California,	Xiaccong Al University of California,	Kickolas Ciriko Utawaty af California,	Carlos Maltzahr Bitweisy of California,
Sebastian Macaluso New York University	Alexander Held New York University	Irina Espejo New York University	Peter Elmer Princeton University Institute PI and Executive Director	David Lange Princetos University Annovative Algorithms Area co-Lead	Investiya Canonia, Berkey Algorithms Area co-Lead	Develop at California, Barkeley Postdoc and ACTS	Graduate Student	University of California, Santa Cruz
R		0	63		Xiowei(Aaron)	Edger Fajardo	Avi Yagii	Frank Waarthwein
Jim Pivarski Princeton University	Vassil Vassilev Princeton University	Floe Pusin- Wischusen Princeton University	Maureen Carothers Princeton University	Henry Schreiner Princeton University	Chu University of Colfornia, Senta Cruz	Cogar Fejardo University of California, Son Diego OSG Software Team	San Diego	University of California, Sen Diego OSG-LHC Area Lead and OSO
	DIANA/HEP, USCMS collaborator	PICSoII Institute Manager	Project Office		Ph.D.Student	Developer		Executive Director
		5			P	S	B	E.
Bei Wang Princeton University	Savannah Thais Princeton University	Lauren Tompkins Stanford University	Rob Gardner University of Chicago	Lincoln Bryant University of Chicago	Slava Krutelyov University of Colfornia, San Diego	Mario Masciovecchio University of California, San Diego	Igor Sfiligoi University of California, San Diego	Diego Davila University of California, San Diego
HPC Software Engineer	Post-doctoral researcher		SSL Area Load	DevOps Engineer			Leed Scientific Software Developer and Researcher	Scientific Software Developer and Researcher

IRIS-HEP Team

http://iris-hep.org/about/team

About 28 FTEs of funded effort spread over a larger number of people from 18 universities/institutions

University of Califor


and Outread

Gender Diversity

Exec Board: 10% Subaward PIs: 16.7% Full Team: 17% For comparison: CoDaS-HEP 2019: 25.9% US-CMS Physicists 2017: 16% US-CMS Grad Students 2017: 17%

Management and Coordination

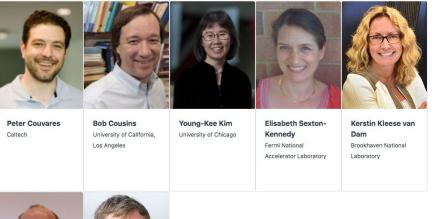
Steering Board

Represents the major stakeholders and partners for the IRIS-HEP project. Will meet quarterly with the IRIS-HEP Executive Board to learn the status of the project and **provide feedback on the large scale priorities** and current strategy of the Institute.

The steering board meets quarterly with the executive board:

https://indico.cern.ch/category/10989/

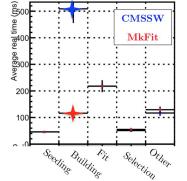
https://iris-hep.org/about/steering-board


Advisory Panel

Provides annual non-stakeholder feedback on the goals and evolving project plans, and evaluates how well the institute is achieving its overall mission as defined with NSF. The Advisory Panel consists of 7 fixed members with an option of inviting ad-hoc additional members as needed for particular topics.

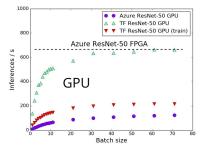
The first in-person meeting with the Advisory Panel took place on 9 September, 2019:

https://indico.cern.ch/event/840467/

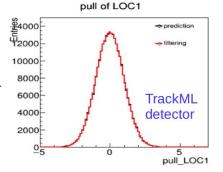

Dave Brown Lawrence Berkeley National Laboratory Mike Norman San Diego Supercomputer Center & University of California, San Diego

IRIS-HEP Innovative Algorithms Highlights

Parallel tracking contributions to MkFit


- Develop track finding/fitting implementations that work efficiently on many-core architectures (vectorized and parallelized algorithms):
- 4x faster track building w/ similar physics performance in realistic benchmark comparisons

ML on FPGAs contributions to HLS4ML/FastML


 identifying specific use cases and operational scenarios for use of FPGA-based algorithms in experiment software trigger, event reconstruction or analysis algorithms

https://arxiv.org/pdf/1904.08986.pdf

Tracking contributions to ACTS

- Development of the Kalman Filter
- Porting ACTS seeding code to run on GPUs
- Developing connections with other experiments (e.g. Belle-2, JLAB) who may be interested in using ACTS

ML4Jets establishing and curating common metrics and data sets

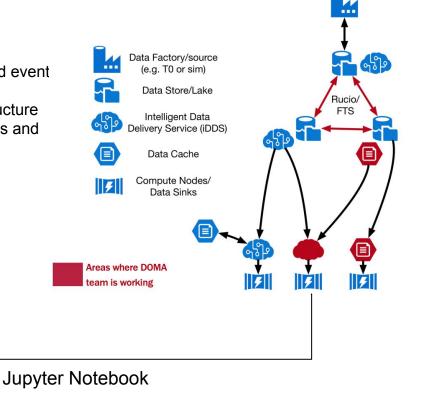
- Aim to connect with diverse segments of machine learning community. Strong connections with theoretical community interested in jet physics
- Tree Neural network approach demonstrated on reference dataset
 <u>https://arxiv.org/pdf/1902.09914.pdf</u>

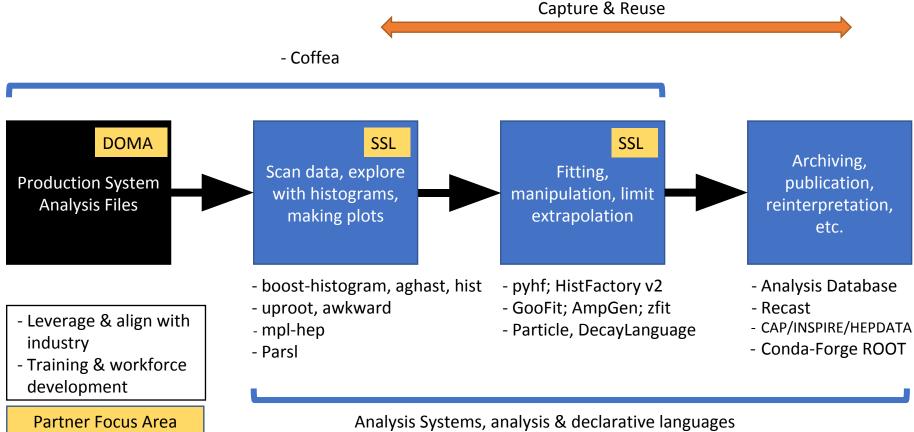
	AUC	Acc	1/	#Param		
			single	mean	median	
CNN [16]	0.981	0.930	914 ± 14	995 ± 15	975 ± 18	610
ResNeXt [30]	0.984	0.936	1122 ± 47	$1270{\pm}28$	$1286{\pm}31$	1.46M
TopoDNN [18]	0.972	0.916	295±5	382 ± 5	378 ± 8	591
Multi-body N-subjettiness 6 [24]	0.979	0.922	792 ± 18	798 ± 12	808±13	573
Multi-body N-subjettiness 8 [24]	0.981	0.929	867+15	918 ± 20	926 ± 18	581
TreeNiN [43]	0.982	0.933	1025 ± 11	1202 ± 23	1188 ± 24	341
P-CNN	0.980	0.930	732 ± 24	845 ± 13	834 ± 14	348
ParticleNet [47]	0.985	0.938	1298 ± 46	$1412{\pm}45$	1393 ± 41	4981
LBN [19]	0.981	0.931	836±17	859 ± 67	966 ± 20	7051
LoLa [22]	0.980	0.929	722 ± 17	768 ± 11	765 ± 11	1273
Energy Flow Polynomials [21]	0.980	0.932	384			13
Energy Flow Network [23]	0.979	0.927	633 ± 31	729 ± 13	726 ± 11	821
Particle Flow Network [23]	0.982	0.932	891 ± 18	$1063{\pm}21$	$1052{\pm}29$	821
GoaT	0.985	0.939	1368 ± 140		1549 ± 208	351

Prototype Phase – Used in analysis by early adopters

DOMA (Data Organization, Management, Access)

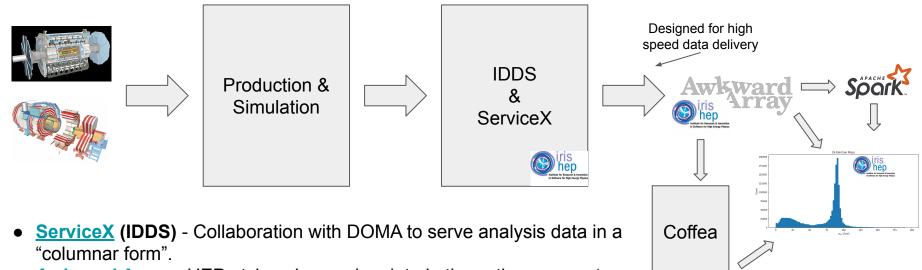
Fundamental R&D related to the central challenges of organizing, managing, and providing access to exabytes of data from processing systems of various kinds.


- Data Organization: Improve how HEP data is serialized and stored.
- Data Access: Develop capabilities to deliver filtered and transformed event streams to users and analysis systems.
- Data Management: Improve and deploy distributed storage infrastructure spanning multiple physical sites. Improve inter-site transfer protocols and authorization.


ServiceX / Intelligent Data Delivery

Low-latency delivery of numpy-friendly data transformed from experiment custom formats enabling the use of community supported data science tools. (joint effort with Analysis Systems)

	<pre>d6 = tvestBataset('localds://wcl5_biter.301106.PowheepytBlanev0se(_ADULOCTEQUL5_zee.werge.DA00_STDHD.es000 _32776_32132_r600e_r6204_p2343_t50954300632_00'')</pre>									
IN [7]:	<pre>leptons_per_event_st = dt \ .stlett'ismdos st(.stlett'ismdos st(.stlett'ismdos ls((iendos et e.pht()), ls[1].stlettismd .staloardOrray(('Hi .staloardOrray(('Hi .staloardOrray()('Hi .staloardOrray()('H .s</pre>	(Is[0]-Sels elect(lembs w m: m.phl) wrt', "mlem	<pre>ct(lambda e) is e: e.e()),1 ()), ls[1].sel rta', "slerbi"</pre>	e.pt()), 15[8] s[1].Select[1s sct[lambds m: . "mlas", "yaw	<pre>.select(lambda m: n.s n.s()))')</pre>	<pre>t()), Is[: 'Humbi'</pre>	<pre>().Select(lambda m . 'mum')))</pre>			
1631 #1	leptors_per_event - mait le	stars.jer.j	14.10							
	Files that were returned: ['file:///c:\/users\/gords t', 'pandes_tree1s']	\/pocuments	///func-adl-ca	che/weerbbebb	acfabcb7ae7	0007189090	TT/ABALYIII_BEL.FO			
n (18):	<pre>v_usrtiler - apont_method:.numerts.com/row.fog.trtats.ll leptos.per_rvet(1:1200; 1. leptos.per_event(1:1200;), postoro_per_rvet(1:1200;), Soutoro_per_rvet(1:1200;),</pre>									
(17)	<pre>x_particles = v_particles[v_particles.com/s >= 1] diserticles = v_particles[i, 0] = v_particles[i, 1]</pre>									
n (20):	<pre>plt.figure(figuize=(12, 4)) plt.Mist(clperticle:mack/ms plt.Mist(clperticle:mack/ms plt.Mistel('Sourt') plt.Mistel('Count') plt.show()</pre>		180, range-(0	(,200))						
			Di-Elect	on Mass						
	201001									
	375808									
	2000									
	10000									
			- 61							
	3 20000									
	7.000									
	30000-		- 24							


Analysis Systems Data Flow and Projects

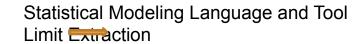
(underlying framework)

Analysis Systems - Data Query

- <u>Awkward Array</u> HEP-style column-wise data in the python ecosystem for manipulating the data
- <u>Coffea</u> column-oriented framework for analysis (developed initially at FNAL in the US CMS context)
 - Builds on top of other backends allowing execution on Spark- or HTCondor-based resources.

Full chain to make a Z mass peak in electron data!

Analysis Systems

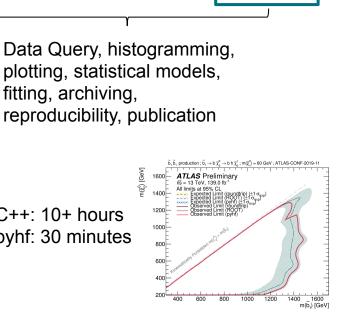

Develop sustainable analysis tools to extend the physics reach of the HL-LHC experiments.

- create greater functionality to enable new techniques,
- reducing time-to-insight and physics,

∂ifferentiable

 \mathscr{L} ikelihoods

- ·lowering the barriers for smaller teams, and
- streamlining analysis preservation, reproducibility, and reuse.

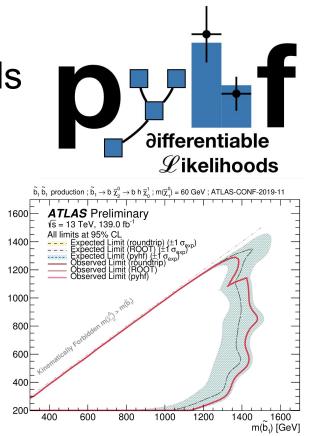

Rewritten from C++ in Python to use TensorFlow or PyTorch as back end.

GPU acceleration comes for "free"

C++: 10+ hours pyhf: 30 minutes

Experiment's Production

System



Just released and being incorporated into Analyses Now

Built into SciKit-HEP, a suite of packages that are being adopted by the community

Analysis Systems - Statistical Models

- Build statistical models from binned distributions
 and data
 - Common last step in analysis to statistically characterize discovery or determine limits
- Already used by ATLAS
- Python library published in the native Python ecosystem.
- Leverages open source libraries as backends for efficient vectorized computation
 - NumPy, TensorFlow, PyTorch
 - Allows external experts do the "heavy lift" of implementing hardware acceleration (on GPUs, TPUS), not physicists.
- Enhances reproducibility of statistical model
 - Allows publications to include full likelihood data on <u>HEPData</u>.

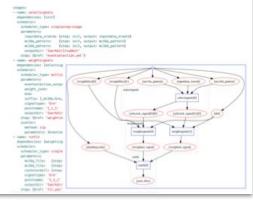
 $m(\widetilde{\chi}_2^0)$ [GeV]

(ATL-PHYS-PUB-2019-029)

Shown to reproduce results but faster! **ROOT:** 10+ hours **pyhf:** < 30 minutes

Preservation & Reinterpretation

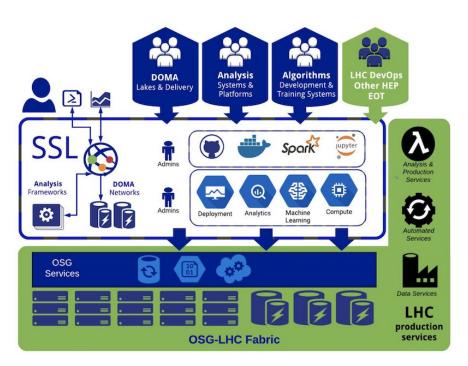
The field is at a tipping point, DIANA/DASPOS/IRIS-HEP contributions have been transformational.


Archiving Real ATLAS Analyses

Using Industry Standard Software Packaging to archive analysis:

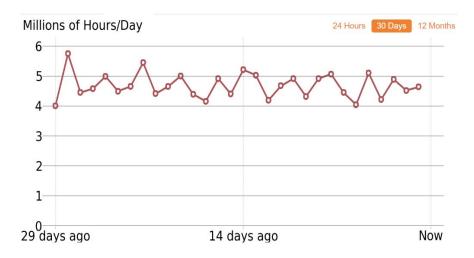
- Linux Containers ("Docker")
- Integrated into existing analysis infratructure (revision control, continous intergration, grid computing)

Plain-text JSON formats to capture commands and workflows Close coordination with CERN Analysis Preservation / Reuse Projects


The solutions adopted by the high-energy physics community to foster reproducible research are examples of best practices that could be embraced more widely. This first experience suggests that reproducibility requires going beyond openness.

Scalable Systems Laboratory (SSL)

Goal: Provide the Institute and the HL-LHC experiments with scalable platforms needed for development in context, perform facilities and systems R&D


- Provides access to infrastructure and environments
- Organizes software and resources for scalability testing
- Does foundational systems R&D on accelerated services
- Provides the integration path to the OSG-LHC production infrastructure

Open Science Grid - LHC

The OSG is a consortium dedicated to the advancement of all of open science via the practice of Distributed High Throughput Computing, and the advancement of its state of the art.

• IRIS-HEP supports LHC operations and development of the consortium.

- Work to separate local site hardware and software support by moving services into containers.
- Transitioning security service to use tokens

Particle physicists all over the world depend on these services and scheduling of processing hours (~10,000)

Intellectual Hub - Building Community & Vision

Sponsorship and/or (co-)organization (HSF, etc.) of relevant community workshops and

LANK JANUARY 2029 LANK JANUARY 2029 https://indico.physics.lbl.gov/indico/event/712/

Full list: https://iris-hep.org/events.html

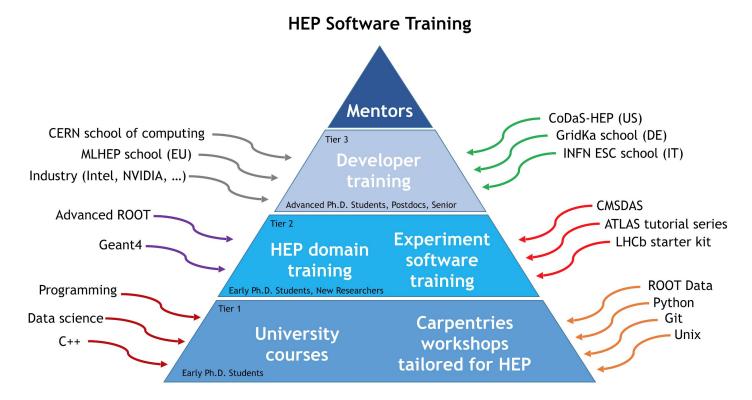
https://indico.cern.ch/event/813325/

PyHEP Workshop Series

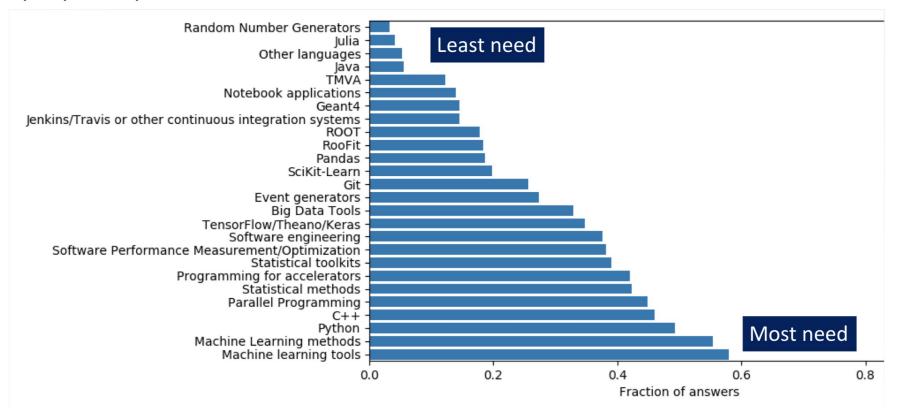
PyHEP is a series of workshops started in 2018 to discuss and promote the usage of Python in the HEP community at large. It has been supported by <u>DIANA/HEP</u>, and now <u>IRIS-HEP</u>, in collaboration with <u>HSF</u>.

<u>PyHEP 2020</u> will soon be announced: 11-13 July, 2020 in Austin, TX, partially overlapping with the <u>SciPy 2020</u> conference, also in Austin, TX

This is not just a "programming language" issue, it is a key place where HEP can explore how to interact with, learn from, contribute to, and perhaps lead areas in the larger scientific, data science and ML communities. (Including use of open data, experimentalist - theorist interactions, etc.)


A consistent message from our students and postdocs who transition to industry and other fields is that we teach them great skills, but they are limited initially by only knowing HEP-only tools.

A growing community: 38 participants at PyHEP 2018, 55 participants at PyHEP 2019, aiming for 80-100 participants at PyHEP 2020


Training and Education - Sustainability/Scalability

This is a general framework for training, but from the NSF we have funds from both IRIS-HEP (OAC-1836650) and a separate project FIRST-HEP (OAC-1829707, OAC-1829729, <u>http://first-hep.org</u>) which are working towards implementing this model.

Training Survey

In early 2019, we did a survey of training needs (<u>link for results summary</u>), 334 people responded!

Inspirations

https://carpentries.org

About The Carpentries Curricula

- Data Carpentry: Ecology
- Data Carpentry: Genomics
- Data Carpentry: Geospatial
- Data Carpentry: Social Sciences
- Library Carpentry
- Software Carpentry (All Workshops)
- Software Carpentry (Plotting and Programming in Python)
- Software Carpentry (Programming with Python)
- Software Carpentry (Programming with R)
- Software Carpentry (R for Reproducible Scientific Analysis)

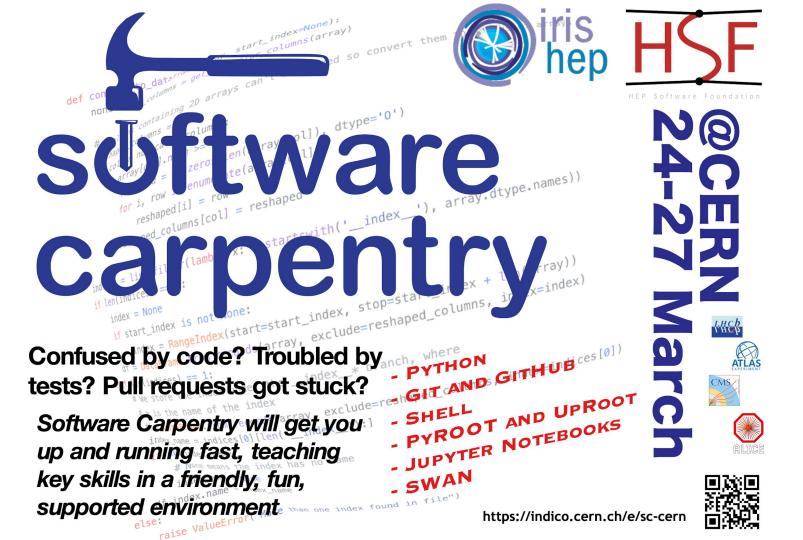
Key insight: thinking of training as a community building exercise. And not only for the "student" participants, but also for the "instructors".

https://lhcb.github.io/starterkit/

Training, Education and Outreach Events

Upcoming events:

- 27-29 Nov, 2019 Software Carpentry at CERN
 - CERN, Geneva, Switzerland
 - Indico page


Past events:

- 9-21 Aug, 2019 ATLAS Software Carpentries Training
 - Lawrence Berkeley National Laboratory
 - Indico page
- 22-26 Jul, 2019 Computational and Data Science for High Energy Physics (CoDaS-HEP) 2019 School
 - Princeton University
 - Webpage
- 10 Jun, 2019 FIRST-HEP/ATLAS Software Training
 - Argonne National Laboratory
 - Indico page

- 3-4 Jun, 2019 An introduction to programming for STEM teachers
 - University of Puerto Rico at Mayaguez
 - Indico page
- 24-26 Apr, 2019 Machine Learning Hackathon for UPRM Students
 - University of Puerto Rico at Mayaguez
 - Indico page
- 1-2 Apr, 2019 Software Carpentry Workshop
 - Fermi National Accelerator Laboratory
 - Indico page

In collaboration with FIRST-HEP (<u>http://first-hep.org</u>), the Carpentries (<u>https://carpentries.org</u>) and others

Summary

- IRIS-HEP was funded on September 1st, 2018
 - \circ \quad We are approaching the end of the design phase
 - Projects in all phases (design, prototype, and production) exist.
 - We are fully staffed, ~30 FTE's
 - Full description of projects available on our website, http://iris-hep.org
- Community Impact
 - \circ \quad Software is being adopted by others, in some cases dramatically.
 - Facilities work in SSL and OSG is leading the international field
- Community Outreach
 - We've reached almost 1000 people with our workshops, and another 300 with our training efforts
 - We continue to organize Blueprint workshops to build community consensus.
- Next
 - Start "Execution Phase" September 2020
 - Work on integrating projects in prototype stage into coherent and scalable software for the community
 - The "Snowmass Process-2021" provides an opportunity for us to update the Community White Paper/Roadmap.

