AEgIS phase2

Work program

Ruggero Caravita (AEgIS Physics Coordinator)
Summary of the letter to the SPSC – addendum to the AEgIS proposal

Physics channels

<table>
<thead>
<tr>
<th>#</th>
<th>Physics channel</th>
<th>source</th>
<th>method</th>
<th>Physics reach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Antihydrogen</td>
<td>4r</td>
<td>Ps* on static p in 1T trap</td>
<td>β temperature</td>
</tr>
<tr>
<td>2</td>
<td>Antihydrogen</td>
<td>4r</td>
<td>Cs excited to Cs* within e−; Ps* interacts with downstream p</td>
<td>H^* beam formation</td>
</tr>
<tr>
<td>3</td>
<td>Antihydrogen</td>
<td>beam</td>
<td>Cs* in upstream trap; p in middle trap; e− in downstream trap</td>
<td>H^* beam formation</td>
</tr>
<tr>
<td>4</td>
<td>Antihydrogen</td>
<td>beam</td>
<td>Pulsed extraction from 1T trap, Ps* via delayed e− injection</td>
<td>Multitarget beam detector</td>
</tr>
<tr>
<td>5</td>
<td>Antihydrogen</td>
<td>beam</td>
<td>H− and p upstream of e−; 4e emission of pulsed formed Ps*; Ps* charge exchange</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Antiprotonic cesium</td>
<td>beam</td>
<td>Cs− trapped upstream of trapped p in IT trap</td>
<td>Test of gravity detector</td>
</tr>
<tr>
<td>7</td>
<td>Protonium</td>
<td>4r</td>
<td>H− / p co-trapped</td>
<td>Fluorescence x-rays (SDE): 100 eV / few keV</td>
</tr>
<tr>
<td>8</td>
<td>Protonium</td>
<td>beam</td>
<td>H− trapped; p extracted from 3T trap</td>
<td>Test of deltoletrometer prototype gravity detector</td>
</tr>
<tr>
<td>9</td>
<td>Positronium</td>
<td>beam</td>
<td>Pulsed implantation at 0T</td>
<td>Metastable beam</td>
</tr>
<tr>
<td>10</td>
<td>Positronium</td>
<td>4r</td>
<td>Cs−Cs* when within e−</td>
<td>Pulsed formation of colder Cs* (alternative method)</td>
</tr>
<tr>
<td>11</td>
<td>Positronium</td>
<td>beam</td>
<td>Cs− upstream of e−</td>
<td>Test of deltoletrometer prototype gravity detector</td>
</tr>
<tr>
<td>12</td>
<td>Positronium</td>
<td>2r</td>
<td>Pulsed implantation</td>
<td>Laser-cooling of Cs− in B=0.1T (1T magnet)</td>
</tr>
<tr>
<td>13</td>
<td>Positronium</td>
<td>beam</td>
<td>Pulsed implantation, laser-cooled 2sPs in Ps test station</td>
<td>2s-3s hyperfine spectroscopy</td>
</tr>
</tbody>
</table>

Technical challenges

<table>
<thead>
<tr>
<th>#</th>
<th>Physics channel</th>
<th>source type</th>
<th>method</th>
<th>Challenge(s)</th>
<th>Electrode configuration</th>
<th>Minimal Bfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Antihydrogen</td>
<td>4r</td>
<td>Ps* on static p in 1T trap</td>
<td>β temperature</td>
<td>One β well (harmonic) close to Ps converter</td>
<td>IT</td>
</tr>
<tr>
<td>2</td>
<td>Antihydrogen</td>
<td>4r</td>
<td>Cs excited to Cs* within e−; Ps* interacts with downstream p</td>
<td>β temperature</td>
<td>2 opposite sign wells (harmonic)</td>
<td>IT</td>
</tr>
<tr>
<td>3</td>
<td>Antihydrogen</td>
<td>beam</td>
<td>Cs− in upstream trap; p in middle trap; e− in downstream trap</td>
<td>$Cs^−$ formation; β temperature</td>
<td>3 wells ↔ ↔</td>
<td>IT</td>
</tr>
<tr>
<td>4</td>
<td>Antihydrogen</td>
<td>beam</td>
<td>Pulsed extraction from 1T trap, Ps* via delayed e− injection</td>
<td>$Cs^−$ formation; β temperature</td>
<td>Decay (potential 0.17)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Antihydrogen</td>
<td>beam</td>
<td>H− and p upstream of e−; 4e emission of pulsed formed Ps*; Ps* charge exchange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Antiprotonic cesium</td>
<td>beam</td>
<td>Cs− trapped upstream of trapped p in IT trap</td>
<td>Ps^+ formation; β temperature</td>
<td>2 opposite sign wells</td>
<td>IT</td>
</tr>
<tr>
<td>7</td>
<td>Antiprotonic cesium</td>
<td>beam</td>
<td>Cs− trapped upstream of trapped p in IT trap</td>
<td>Ps^+ formation; β temperature</td>
<td>2 opposite sign wells</td>
<td>IT</td>
</tr>
<tr>
<td>8</td>
<td>Protonium</td>
<td>4r</td>
<td>H− / p co-trapped</td>
<td>Raze, Ps lifetime</td>
<td>1 well</td>
<td>IT</td>
</tr>
<tr>
<td>9</td>
<td>Protonium</td>
<td>beam</td>
<td>H− trapped; p extracted from 3T trap</td>
<td>Ps^+ formation on 3T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Protonium</td>
<td>beam</td>
<td>Cs− upstream of e−</td>
<td>Ps^+ formation on 3T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Protonium</td>
<td>2r</td>
<td>Pulsed implantation</td>
<td>TPs (40 keV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Protonium</td>
<td>beam</td>
<td>2sPs</td>
<td>Laser cooling</td>
<td>Not in magnet</td>
<td></td>
</tr>
</tbody>
</table>

Prospects towards gravity

<table>
<thead>
<tr>
<th>System</th>
<th>Grating size</th>
<th>Goal</th>
<th>Statistics required</th>
<th>Expected beam time to reach sensitivity goal</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>H^* or H</td>
<td>100 μm</td>
<td>5 g</td>
<td>5000 detected H^*</td>
<td>Integration time \approx 5000 h at 0.1 Hz production rate</td>
<td>4r source at 10 K</td>
</tr>
<tr>
<td>Pn^*</td>
<td>6 μm</td>
<td>0.5 g</td>
<td>4000 detected Pn^*</td>
<td>Integration time \approx 500 h</td>
<td>at 100 K</td>
</tr>
<tr>
<td>Cs(β^*</td>
<td>6 μm</td>
<td>0.5 g</td>
<td>10 detected Csβ^*</td>
<td>Integration time \approx 60 hours, assuming 100 s overall cycle for loading/mixing/cooling/mixing and 107 H− with p. Limited by H− availability.</td>
<td>at 100 K</td>
</tr>
<tr>
<td>Ps*</td>
<td>6 μm</td>
<td>0.5 g</td>
<td>5000 detected Ps*</td>
<td>\approx 25 Cs$^+$ into 30 ms/100 s assuming 100 s cycles on 105 Ps* and stacking of 10 AD β cycles.</td>
<td>at 100 K (10 K not better due to magnetron motion)</td>
</tr>
</tbody>
</table>

Physics channels

<table>
<thead>
<tr>
<th>#</th>
<th>Physics channel</th>
<th>source</th>
<th>method</th>
<th>Physics reach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Antihydrogen</td>
<td>4r</td>
<td>Ps* on static p in 1T trap</td>
<td>β temperature</td>
</tr>
<tr>
<td>2</td>
<td>Antihydrogen</td>
<td>4r</td>
<td>Cs excited to Cs* within e−; Ps* interacts with downstream p</td>
<td>H^* beam formation</td>
</tr>
<tr>
<td>3</td>
<td>Antihydrogen</td>
<td>beam</td>
<td>Cs* in upstream trap; p in middle trap; e− in downstream trap</td>
<td>H^* beam formation</td>
</tr>
<tr>
<td>4</td>
<td>Antihydrogen</td>
<td>beam</td>
<td>Pulsed extraction from 1T trap, Ps* via delayed e− injection</td>
<td>H^* beam formation</td>
</tr>
<tr>
<td>5</td>
<td>Antihydrogen</td>
<td>beam</td>
<td>H− and p upstream of e−; 4e emission of pulsed formed Ps*; Ps* charge exchange</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Antiprotonic cesium</td>
<td>beam</td>
<td>Cs− trapped upstream of trapped p in IT trap</td>
<td>Test of gravity detector</td>
</tr>
<tr>
<td>7</td>
<td>Protonium</td>
<td>4r</td>
<td>H− / p co-trapped</td>
<td>Fluorescence x-rays (SDE): 100 eV / few keV</td>
</tr>
<tr>
<td>8</td>
<td>Protonium</td>
<td>beam</td>
<td>H− trapped; p extracted from 3T trap</td>
<td>Test of deltoletrometer prototype gravity detector</td>
</tr>
<tr>
<td>9</td>
<td>Positronium</td>
<td>beam</td>
<td>Pulsed implantation at 0T</td>
<td>Metastable beam</td>
</tr>
<tr>
<td>10</td>
<td>Positronium</td>
<td>4r</td>
<td>Cs−Cs* when within e−</td>
<td>Pulsed formation of colder Cs* (alternative method)</td>
</tr>
<tr>
<td>11</td>
<td>Positronium</td>
<td>beam</td>
<td>Cs− upstream of e−</td>
<td>Test of deltoletrometer prototype gravity detector</td>
</tr>
<tr>
<td>12</td>
<td>Positronium</td>
<td>2r</td>
<td>Pulsed implantation</td>
<td>Laser-cooling of Cs− in B=0.1T (1T magnet)</td>
</tr>
<tr>
<td>13</td>
<td>Positronium</td>
<td>beam</td>
<td>Pulsed implantation, laser-cooled 2sPs in Ps test station</td>
<td>2s-3s hyperfine spectroscopy</td>
</tr>
</tbody>
</table>
Summary of the letter to the SPSC – addendum to the AEgis proposal

Physics channels

Gravity on antihydrogen beam via pulsed charge exchange
- Installation and test of new trap electrodes
- Connection to the ELENA beamline
- Improvement of the Hbar source flux
- Development of pulsed Hbar beam via process #2 / #4
- Interaction of Hbar with gratings
- Proof-of-concept inertial sensing with pulsed Hbar

Complementary R&D and alternative methods
- Ps* cooling in B = 0
- Deflectometer development and test with Ps* development
- Development of 235 Ps beam
- Development of light grating interferometer and test with 235 Ps
- Installation and test of internal Cs source and Cs trapping
- Cs(pbar) and protonium formation
- Interaction of Pn* and Cs(pbar)* with gratings
- Inertial sensing with Pn* and Cs(pbar)*
- Fluorescence spectroscopy of Cs(pbar), Pn
- Transport/trapping of Pn* to downstream B=0 region

C2 - cooling in Paul trap
- C2 trapping and cooling in Penning trap
- Sympathetic cooling of pbar with C2
- Reduction of pbar plasma temperatures to O(10K)
- Demonstration of Hbar production via process #1 / #3
- De-excitation of Hbar
- Transport of Hbar/Hbar* in a B=0 magnetic field region
- Development of pulsed Hbar beam via process #1 / #3

| Cs(pbar)* | 6 µm | 0.5 g | 10 detected Cs | 10 minute C&D, 10 cycles, stacking of 10 A&D (pbar) cycles, Integration time ~ 10 minutes, Limited by Cs availability.
| Ps* |
Work program – proof-of-concept gravity measurement on an antihydrogen beam via pulsed charge-exchange

1. Setting up the stage for ELENA
 1. Positron system removal for beam line installation Seba + Benji
 2. Development of the energy degrader for 100 keV antiprotons TBD (*Nicola M.?)

 Goal/Milestone: getting x10 pbars from ELENA

2. New pbar trap design
 1. Simulation and optimization for scientific goals Ruggero
 2. Design and build a new trap with high ideality Stefan + Rob
 3. Proper RF noise filtering TBD (*Leonardo R.?)
 4. Commissioning and optimization with electrons TBD (Gianni?)

 Goal/Milestone: holding x10 pbars to state-of-the-art pbar temperature (T<15K)

3. New Ps target+holder for collinear charge-exchange (Ps* on-axis excitation)
 1. Simulation of through-plasma e+ implantation TBD (Francesco G.?)
 2. Design and build a new small target and holder on-axis Seba + Stefan
 3. Commission and optimization of Rydberg laser excitation efficiency TBD

 Goal/Milestone: increase the Hbar formation probability by x10

4. Upgraded Hbar detection
 1. Design and installation of field-ionization grids Rob + Stefan
 2. Compensation of FACT thermal drifts Stefan
 3. FACT calibration system Stefan
 4. Active MPPC veto TBD (Oline)
 5. Maintainance/upgrade of scintillators TBD (Pv group? Gianni?)
 6. Review/upgrade of DAQ system Francesco P.
 7. Review/upgrade of data analysis tools TBD (Bs group?)

 Goal/Milestone: unambiguous Hbar detection (possibly early-time)

5. Trap electronics work
 1. Repair of triggerable pulsers TBD (Vittorio?)
 2. Consolidation of e-gun filament TBD
 3. Consolidation of high voltage system Luca P.

6. Control system work
 1. Definition of a language for automatic Excel files production Ruggero + Michael
 2. Slicing of existing procedure in logical sub-blocks Ruggero
 3. High-level user interface Michael

 Goal/Milestone: easy hands-on experiment interface for common usage

7. Laser system work
 1. Recover EKSPLA beam energies Antoine + Ruggero
 2. 1700nm automation and diagnostics (spectrum, imaging) TBD
 3. Sharing of master clock to laser FPGA TBD
 4. Fiber for inner region illumination TBD

 Goal/Milestone: full automation and diagnostics of the laser

8. Active magnetic shimming (> 2021)
 1. Magnetic field homogeneity survey at room temperature (Hall probes)
 2. Design of the shimming coils and feedback (active magnetic shielding)
 3. Magnetic field homogeneity survey and compensation at cold (NMR probes)

 Goal/Milestone: demonstrate a magnetic field homogeneity for measuring gravity with Rydberg atoms

 1. Detector design for high spatial resolution TBD (Hovard/Heidi?)
 2. Deflectometer design and build TBD (PSI?)
 3. Design of the optical alignment system TBD

 Goal/Milestone: demonstrate inertial sensitivity

First responsible people are all > PhD
* marks new people
Work program – complementary R&Ds and alternative methods

1. **R&D positronium**
 1. Ps cooling in B = 0
 2. Development of 2s5 Ps beam
 3. Deflectometer development and test with Ps/Ps*
 Long term goal: gravity on positronium
 TBD (Christian?)
 Ruggero
 Lisa

2. **R&D antiprotonic systems**
 1. Installation of internal Cs source and Cs- trapping
 2. Cs(pbar)* formation and Pn* formation
 Long term goal: gravity/spectroscopy with antiprotonic systems
 TBD (Saiva + Daniel?)
 TBD

3. **R&D sympathetic cooling with anions**
 1. C2- in the ground state
 2. C2- trapping and cooling in a Penning trap
 Long term goal: sympathetic cooling of pbars with anions
 Emmanuel?
 TBD

4. **R&D antihydrogen**
 1. Consolidation of TL cooling
 2. Reduction of pbar plasma temperature to o(10K)
 3. De-excitation of Rydberg hydrogen
 4. Antihydrogen production a la ATRAP
 Long term goal: improvement of hbar production
 TBD (Chloe? Tim/Lilli?)
 TBD

First responsible people can be PhD, and PhDs involved in the exp. are encouraged to take responsibility of a work package

LAC
- Lyman alpha
- Cesium oven

Still need input from:

*Krakow? *Warsaw
*India

INR?

*PSI

Oslo+Bergen?

INFN Brescia

INFN Pavia

SMI?
> request vote for approval <