N\

o) ATLAS

GPU Usage Status &
Plans in ATLAS

Attila Krasznahorkay,
on behalf of a lot of people

Accelerators in ATLAS

e ATLAS does not use any accelerators in central production (yet)
o Individual physics analysers may use GPU assisted deep learning tools and similar methods, but
nothing is done in an “organised” way just yet
e The last round of evaluation for using GPUs was done during LHC'’s Long

Shutdown 1 (2013-2015)

o Evaluating practically just CUDA at that time
o Back then the conclusion was not to invest manpower into re-writing a significant amount of our
software for GPUs

e \What changed since?

o At many computing centres we will start getting GPUs whether we explicitly asked for them or not (&
o Our build system and event data model improved a lot
o Hopefully the programming models improved as well (=

https://iopscience.iop.org/article/10.1088/1742-6596/898/3/032003

The (Evolving) Computing Landscape

e |s acomplicated one...
<D o We are clearly moving towards a very
heterogeneous environment for the
foreseeable future

Many different lerat th
nVI DIA ¢ m::]kyetl erent accelerators are on tne

o NVidia GPUs are the most readily available in
general, and also used in Summit and

Ll N"ZLh BRI Perimutter
e ——— AM D o AMD GPUs are not used too widely in
comparison, but will be in Frontier

o Intel GPUs are used even less at the moment,
but will get center stage in Aurora

o FPGAs are getting more and more attention,
but they come with even more
questionmarks... 3

https://www.olcf.ornl.gov/summit/
https://www.nersc.gov/systems/perlmutter/
https://www.olcf.ornl.gov/frontier/
https://www.cray.com/customers/argonne-national-laboratory
https://www.cray.com/customers/argonne-national-laboratory
https://www.olcf.ornl.gov/frontier/
https://www.intel.com/
https://www.amd.com/
https://www.nvidia.com/

ATLAS'’s Priorities

We “mostly” need to write custom code
o Machine learning is used very successfully in identifying and calibrating reconstructed objects since
a long time. But the inference used there is not a big CPU user in our data processing.
We want to be able to write our code once
o And run that single source on as many different hardware backends as possible
o This is necessary because of the large size of our code (O(4M) lines of C++)
m We really don’t want to introduce any code duplication...
The single source should be able to run “reasonably” on CPU-only hosts as well
o For the foreseeable future most of our nodes will still not have any accelerators attached to them

Be able to use “as high level C++” as possible in the code

o Most of our algorithms are implemented on top of quite high level concepts / objects. The more this
can be kept for the accelerated code, the better.

Task Scheduling in AthenaMT

TBB
Thread 1

TBB
Thread 2

)

Alg. 2

———/

Alg. 1

TBB
Thread 3

TBB
Thread 4

Alg. 1

Athena (Gaudi) uses TBB to execute
algorithms on multiple CPU threads in

parallel

o The framework’s scheduler takes care of
creating TBB tasks that execute algorithms,
at the “right times”

The goal, of course, is to fully utilise
all CPU cores assigned to the job, but

not to use more

o So any offloading needs to thoughtfully
integrate into this infrastructure

https://github.com/intel/tbb

Reconstruction Emulation

e During the development of GaudiHive snapshots were taken of the behaviour of

ATLAS reconstruction jobs
o Recording how algorithms depended on each others’ data products, and how long each of them took

to run on a reference host
o The data is still kept in GaudiHive/data/atlas in GraphML + JSON files

e This information was used extensively in the development of the algorithm

scheduling code of Gaudi not that long ago
o And now | taught my project how to construct asynchronous test jobs using it 6

https://gitlab.cern.ch/gaudi/Gaudi/tree/master/GaudiHive/data/atlas
http://graphml.graphdrawing.org/
http://www.json.org/
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDATests/share/CPUGPUCrunch_mcreco_jobOptions.py

Reconstruction Emulation Results

Setup

50 events, 8 threads, CPU-only
algorithms

50 events, 8 threads, 3

“critical-path” CPU/GPU algorithms,

run only on CPUs

50 events, 8 threads, 3
“critical-path” algorithms offloaded
with ideal FPOPS

50 events, 8 threads, 3 “critical
path” algorithms offloaded with 10x
FPOPS

50 event, 8 threads, 4 “heavy
non-critical-path” algorithms
offloaded with ideal FPOPS

50 events, 8 threads, 4 “heavy
non-critical-path” algorithms
offloaded with 3x FPOPS

Time [s]

68.3 + 0.47

68.1 + 0.66

54.5 + 0.47

151.2+27.2

49.5 + 1.51

70.3+10.0

e Did a number of tests...

@)

As reference ran jobs with only using the
sort of CPU crunching that was developed
previously
As a validation | exchanged some of the
algorithms to run my CPU/GPU crunching
code, but running only on the CPU
m Checking that I'd get the same results
as in the first case
Finally configured 3 of the CPU intensive
reconstruction algorithms to run on the
(NVidia) GPU instead
m Applying also an additional multiplier
to the number of FPOPS that they’'d
have to execute on the GPU

Reconstruction Emulation Results

Setup Time [s] e Did a niimher of tests

50 events, 8 threac ly using the

algorithms Some takeaways: s developed

S0events, 8threaq ¢ (Qne has to be very careful with offloading algorithms that many

critical-path” CPU . ome of the

run only on CPUs other algorithms depend on _

50 ovente. 8 thread o Making these too slow can cause big issues for the job U crunching

“C_riti?app;thv agorf ® Algorithms off of the “critical path” can handle being executed CPU

with ideal FPOPS less efficiently on an accelerator, but not by much same results

50 events, 8thread ® My ASync::SchedulerSvc code is clearly not scheduling

e BB 6l asynchronous algorithms as efficiently as it should at the U intensive
moment n on the

ﬁgneﬁf.ﬁia?tlﬁai o As it turns out, that is very important to do, otherwise the job is not

offloaded Wi‘fh idea able to fill its CPU/GPU resources efficiently. nal multiplier

that they’d
50 events, 8 thread

non-critical-path” algorithms 70.3+10.0 have to execute on the GPU
offloaded with 3x FPOPS 8

CUDA, oneAPI, ...

e All performance results shown previously are using CUDA
e We implemented the same tests using oneAPI, and the built-in “Gen 9” GPU of a

test machine as well
o Unfortunately, as expected, it provides significantly lower performance in these synthetic examples

o0
)

e \We are providing feedback to the oneAPI development team about the issues that
we encountered

ACTS, FastCaloSim, etc.

e Investigations are going on in multiple other areas as well

o In exactly the ones that were discussed yesterday to some extent, using GPUs in Monte-Carlo event
generation and fast-simulations

e People are also looking at converting multiple real-life algorithms to run on GPUs

o Algorithms developed during LS1 for the trigger are being ported to our current Athena/CUDA setup

m Using simple techniques for now, as used in our Control/AthenaExamples/AthExCUDA
“package”

The two other examples the most work is going into recently is certain operations in ACTS, and
much of the ATLAS FastCaloSim code

Hopefully we will be able to provide more information about these to the wider audience in the
coming months...

10

https://gitlab.cern.ch/atlas/athena/tree/master/Control/AthenaExamples/AthExCUDA
https://gitlab.cern.ch/acts/acts-core

Summary

ATLAS is now putting effort into heterogeneous computing as well

o We created new sub-groups in the offline and trigger software areas specifically for this
Recently most of the developments / investigations went into framework- /
core-level code

o Trying to evaluate multiple programming methods for implementing custom algorithms on
accelerators

Hopefully soon we will be able to show many more results (&

11

Cﬁw
\
N/ A

http://home.cern

http://home.cern

