
GPU Usage Status & 
Plans in ATLAS

Attila Krasznahorkay,
on behalf of a lot of people



Accelerators in ATLAS

● ATLAS does not use any accelerators in central production (yet)
○ Individual physics analysers may use GPU assisted deep learning tools and similar methods, but 

nothing is done in an “organised” way just yet

● The last round of evaluation for using GPUs was done during LHC’s Long 
Shutdown 1 (2013-2015)

○ Evaluating practically just CUDA at that time
○ Back then the conclusion was not to invest manpower into re-writing a significant amount of our 

software for GPUs

● What changed since?
○ At many computing centres we will start getting GPUs whether we explicitly asked for them or not 😛
○ Our build system and event data model improved a lot
○ Hopefully the programming models improved as well 😉

2

https://iopscience.iop.org/article/10.1088/1742-6596/898/3/032003


The (Evolving) Computing Landscape

● Is a complicated one…
○ We are clearly moving towards a very 

heterogeneous environment for the 
foreseeable future

● Many different accelerators are on the 
market

○ NVidia GPUs are the most readily available in 
general, and also used in Summit and 
Perlmutter

○ AMD GPUs are not used too widely in 
comparison, but will be in Frontier

○ Intel GPUs are used even less at the moment, 
but will get center stage in Aurora

○ FPGAs are getting more and more attention, 
but they come with even more 
questionmarks… 3

https://www.olcf.ornl.gov/summit/
https://www.nersc.gov/systems/perlmutter/
https://www.olcf.ornl.gov/frontier/
https://www.cray.com/customers/argonne-national-laboratory
https://www.cray.com/customers/argonne-national-laboratory
https://www.olcf.ornl.gov/frontier/
https://www.intel.com/
https://www.amd.com/
https://www.nvidia.com/


ATLAS’s Priorities

● We “mostly” need to write custom code
○ Machine learning is used very successfully in identifying and calibrating reconstructed objects since 

a long time. But the inference used there is not a big CPU user in our data processing.

● We want to be able to write our code once
○ And run that single source on as many different hardware backends as possible
○ This is necessary because of the large size of our code (O(4M) lines of C++)

■ We really don’t want to introduce any code duplication…

● The single source should be able to run “reasonably” on CPU-only hosts as well
○ For the foreseeable future most of our nodes will still not have any accelerators attached to them

● Be able to use “as high level C++” as possible in the code
○ Most of our algorithms are implemented on top of quite high level concepts / objects. The more this 

can be kept for the accelerated code, the better.

4



Task Scheduling in AthenaMT

● Athena (Gaudi) uses TBB to execute 
algorithms on multiple CPU threads in 
parallel

○ The framework’s scheduler takes care of 
creating TBB tasks that execute algorithms, 
at the “right times”

● The goal, of course, is to fully utilise 
all CPU cores assigned to the job, but 
not to use more

○ So any offloading needs to thoughtfully 
integrate into this infrastructure

5

TBB 
Thread 1

TBB 
Thread 2

TBB 
Thread 3

TBB 
Thread 4

Alg. 1

Alg. 2

Alg. 3

Alg. 2

Alg. 3

Alg. 1

Alg. 3

Alg. 1

Alg. 2

Alg. 1

Alg. 2

Alg. 3

https://github.com/intel/tbb


Reconstruction Emulation

● During the development of GaudiHive snapshots were taken of the behaviour of 
ATLAS reconstruction jobs

○ Recording how algorithms depended on each others’ data products, and how long each of them took 
to run on a reference host

○ The data is still kept in GaudiHive/data/atlas in GraphML + JSON files

● This information was used extensively in the development of the algorithm 
scheduling code of Gaudi not that long ago

○ And now I taught my project how to construct asynchronous test jobs using it 6

https://gitlab.cern.ch/gaudi/Gaudi/tree/master/GaudiHive/data/atlas
http://graphml.graphdrawing.org/
http://www.json.org/
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDATests/share/CPUGPUCrunch_mcreco_jobOptions.py


Reconstruction Emulation Results

● Did a number of tests… 
○ As reference ran jobs with only using the 

sort of CPU crunching that was developed 
previously

○ As a validation I exchanged some of the 
algorithms to run my CPU/GPU crunching 
code, but running only on the CPU

■ Checking that I’d get the same results 
as in the first case

○ Finally configured 3 of the CPU intensive 
reconstruction algorithms to run on the 
(NVidia) GPU instead

■ Applying also an additional multiplier 
to the number of FPOPS that they’d 
have to execute on the GPU

7

Setup Time [s]

50 events, 8 threads, CPU-only 
algorithms 68.3 ± 0.47

50 events, 8 threads, 3 
“critical-path” CPU/GPU algorithms, 
run only on CPUs

68.1 ± 0.66

50 events, 8 threads, 3 
“critical-path” algorithms offloaded 
with ideal FPOPS

54.5 ± 0.47

50 events, 8 threads, 3 “critical 
path” algorithms offloaded with 10x 
FPOPS

151.2 ± 27.2

50 event, 8 threads, 4 “heavy 
non-critical-path” algorithms 
offloaded with ideal FPOPS

49.5 ± 1.51

50 events, 8 threads, 4 “heavy 
non-critical-path” algorithms 
offloaded with 3x FPOPS

70.3 ± 10.0



Reconstruction Emulation Results

● Did a number of tests… 
○ As reference ran jobs with only using the 

sort of CPU crunching that was developed 
previously

○ As a validation I exchanged some of the 
algorithms to run my CPU/GPU crunching 
code, but running only on the CPU

■ Checking that I’d get the same results 
as in the first case

○ Finally configured 3 of the CPU intensive 
reconstruction algorithms to run on the 
GPU instead

■ Applying also an additional multiplier 
to the number of FPOPS that they’d 
have to execute on the GPU

8

Setup Time [s]

50 events, 8 threads, CPU-only 
algorithms 68.3 ± 0.47

50 events, 8 threads, 3 
“critical-path” CPU/GPU algorithms, 
run only on CPUs

68.1 ± 0.66

50 events, 8 threads, 3 
“critical-path” algorithms offloaded 
with ideal FPOPS

54.5 ± 0.47

50 events, 8 threads, 3 “critical 
path” algorithms offloaded with 10x 
FPOPS

151.2 ± 27.2

50 event, 8 threads, 4 “heavy 
non-critical-path” algorithms 
offloaded with ideal FPOPS

49.5 ± 1.51

50 events, 8 threads, 4 “heavy 
non-critical-path” algorithms 
offloaded with 3x FPOPS

70.3 ± 10.0

Some takeaways:
● One has to be very careful with offloading algorithms that many 

other algorithms depend on
○ Making these too slow can cause big issues for the job

● Algorithms off of the “critical path” can handle being executed 
less efficiently on an accelerator, but not by much

● My ASync::SchedulerSvc code is clearly not scheduling 
asynchronous algorithms as efficiently as it should at the 
moment

○ As it turns out, that is very important to do, otherwise the job is not 
able to fill its CPU/GPU resources efficiently.



CUDA, oneAPI, ...

● All performance results shown previously are using CUDA
● We implemented the same tests using oneAPI, and the built-in “Gen 9” GPU of a 

test machine as well
○ Unfortunately, as expected, it provides significantly lower performance in these synthetic examples 
☹

● We are providing feedback to the oneAPI development team about the issues that 
we encountered

9



ACTS, FastCaloSim, etc.

● Investigations are going on in multiple other areas as well
○ In exactly the ones that were discussed yesterday to some extent, using GPUs in Monte-Carlo event 

generation and fast-simulations

● People are also looking at converting multiple real-life algorithms to run on GPUs
○ Algorithms developed during LS1 for the trigger are being ported to our current Athena/CUDA setup

■ Using simple techniques for now, as used in our Control/AthenaExamples/AthExCUDA 
“package”

○ The two other examples the most work is going into recently is certain operations in ACTS, and 
much of the ATLAS FastCaloSim code

○ Hopefully we will be able to provide more information about these to the wider audience in the 
coming months…

10

https://gitlab.cern.ch/atlas/athena/tree/master/Control/AthenaExamples/AthExCUDA
https://gitlab.cern.ch/acts/acts-core


Summary

● ATLAS is now putting effort into heterogeneous computing as well
○ We created new sub-groups in the offline and trigger software areas specifically for this

● Recently most of the developments / investigations went into framework- / 
core-level code

○ Trying to evaluate multiple programming methods for implementing custom algorithms on 
accelerators

● Hopefully soon we will be able to show many more results 😉

11



http://home.cern 

12

http://home.cern

