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LHCb experiment intro

Physics channels

flavour physics,
Electro-Wealk,

high PT,

Lepton-Flavour Violation.

2019-21 Upgrade challenges:

order of magnitude higher signal yield,

Increased pile-up,

upgrade detector hardware,

change in the data analysis paradigm
(real-time analysis, RTA).
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Real Time Analysis Project

LHCb Upgrade Trigger Diagram

30 MHz inelastic event rate
(full rate event building)

RTA develops and maintains the real-time

processing of LHCb's data for Run 3 and beyond. :Software High Level Trigger

§ L i

Full event reconstruction, inclusive and
exclusive kinematic/ geometric selections

LHCb 2015 Trigger Diagram

l z bunch crossing r
Project work packages:

~ <> >

LO Hardware Trigger : 1 MHz

Data structures readout, high Ex/Pr signatures datactor Callbration and alignment
. 450 l(Hz 400 kHz 150 kHz
Event Reconstruction L uiwe el

Event Selection

Align & Calibration | |
Data QA . Buffer events to disk, perform online .

detector calibration and alignment
Hardware Accelerators

Add offline precision particle identification
and track quality information to selections

Output full event information for inclusive
triggers, trigger candidates and related
primary vertices for exclusive triggers

Full offline-like event selection, mixture
of inclusive and exclusive triggers

> {J

10GB/ s to storage
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Event Reconstruction

Reduce dimensionality of raw event
by analyzing and combining
information from subdetectors :

VELO

Tracker

RIng CHerenkov
Calorimeter
Muon Chambers
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Tracking Machine Learning (ML) challenge

Search kaggle Competitions Datasets Kernels Discussion Learn =+« Signn

( ! ) Featured Predictio.n-Compe ion
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\\ 7 TH vl 8 .
High Energy Physics partlcle tra};kmg in CE P = . Prize Money

"I/ CERN - 516 teams - a month to go'(a month 10 go'until merger deadline)

Overview Data Kernels Discussion Leaderboard Rules

QJverview

Description _ _ o
To explore what our universe is made of, scientists

Bunch of p Bunchof p Evaluation at CERN are colliding protons, essentially
E— recreating mini big bangs, and meticulously
Prizes observing these collisions with intricate silicon
About The Sponsors detectors.
While orchestrating the collisions and
Timeline

observations is already a massive scientific

accomplishment, analyzing the enormous
amounts of data produced from the experiments

https://indi(:o'ce rn.ch/eve nt/813759/ is becoming an overwhelming challenge.
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Particle Identification (PID)

innermost layer » outermost layer

tracking electromagnetic hadronic muon
system  calorimeter calorimeter system

photons»
Combine information from sub detectors dectrons
for identifying type of a track or particle | ————
Ring Cherenkov (RICH) muons
Electromagnetic Calorimeter protons
: Kaons
Hadron Calorimeter P
plons
Muon Chambers : 5‘%;
neutrons
KY

C. Lippmann — 2003
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RICH PID using convolutional neural networks

Michele Blago, Daniel Campora, Chris Jones

Polar coordinates

MC data from LHCb
reconstruction:31K events ™
in current dataset.

Region around track
centres (depending on
momentum range)
translated into polar
coordinate 64 x 64 binary s
pixel images.

rrected local y

Labelled images used to o ¥ AT ‘
train CNN. Pion- -Prediction
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Deep Learning on LHCb Calorimetry

Blaise Delaney, Joao Coelho

Purpose of LHCb calorimeter system: trigger on e, y, hadrons + measure
energy and position from particle showers

Broadly speaking, can think of such tasks as clustering, regression and
classification

Develop algorithms that can deal with realistic calorimeter geometry

Use Graph-Neural Network based approach

Outer section :
W o
2688 channels
SEEEEENEEEENEEEEENENEEEEEn -
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Event Selection challenges

LHCb will have O(1000) individual selections (filters) in HLT2 in Run 3, and many of
these will be ML-based

Reproducibility of the model training
Interpretability of trained models:

> How can we ensure they’re inclusive enough to select things we haven’t
thought about but selective enough to fit in the rate constraints?

> How big is the overlap?
ML frameworks: support and transition from research to production
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Generic RTA challenges

Inference speed vs accuracy of ML models for CPU & GPU

Model conversion from CPU to GPU

Pipeline for porting trained ML models to C++ stack

ML model uncertainty estimation and interpretability

Data acquisition quality certification and anomaly detection

New way of triggering on holistic event information https://arxiv.org/abs/1808.00711
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Fast Simulation

Number of events to be simulated scales
with the luminosity, and that the
simulation time scales with pile-up, the
CPU requirements will scale accordingly.
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Fast simulation:

ReDecay: only the signal part is simulated,
while the same underlying event(s) are re-used
several times

RICHIess: the Cherenkov photons and their
computationally expensive propagation in the
RICH detectors are not simulated

TrackerOnly: only the tracking detectors are

simulated

ParticleGun: only signal or a small number of

particles are simulated
Shower library, https://bit.ly/2TPMOMG

Generative models: use NN-based simulation
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LHCb PID Simulation

The LHCb PID response makes use of information from several subdetectors,
namely the RICH detectors, the calorimeters and the muon detectors

Simulation of the subdetectors devoted to PID is non-trivial — computing the
detector response requires modelling of particle kinematics, detector
occupancy and experimental conditions (alignments, temperature etc.)

Simulation of the detector response using Geant is the most time-consuming
stage of the full LHCb MC — time taken scales linearly with particle multiplicity

Andrey Ustyuzhanin
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Typical simulation workflow

‘Fundamental’ Particle-detector Raw read-out High-level
physics Interactions signal representation

T - I - e - e -

 One may imagine any part of this chain to be replaced by GAN
* Here we demonstrate two approaches:

ervioe B cun I8 ot B o
—
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Fast Calorimetry Simulation

LHCb-like calorimeter 30x30

5 conditional parameters per
particle (3D momentum, 2D
coordinate)

Electrons from particle gun shot
at 1x1 cm square at the center of
the calorimeter face

Approach: use GANs

Andrey Ustyuzhanin
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— Upsampling 2x + Conv + BN + RelLU

cxHxw  — output tensor size (w/o batch size)

— Conv s2 + LeakyReLU (gray = fixed)
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Quality assessment
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Visual similarity of raw features does not guarantee the similarity of higher-level

characteristics

How can we make sure tails of distribution are reproduced carefully enough?
How can we estimate statistic and systematic uncertainty of such a model?

Andrey Ustyuzhanin
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Very fast RICH simulation

_ _ Number of input features:
Bypass all accurate simulation steps from

Cherenkov light generation up to the ) track momentum, pseudorapidity (+2)
high-level likelihood parameters (DLLs)
Learn the distribution of DLLs for given
track parameters and sample from it,
P(DLLs | <track params>)

> total number of tracks in that event (+1)
Number of output features: 5 DLLs
Training on real data (calibration channels)
using sPlot techniquel to extract signal
distributions
loss function is weighted
some of the weights are negative

Derkach et al, NIMA 2019 (01) 031
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How to evaluate? test in a physics analysis environment.
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Design optimisation

2015 2016 201/ 2018 2019 2020 2021

LH(

Injectors Run 2
PHASE 1

2022 2023 2024 2025 2026 2027 2028

LH(
Run 3 Run 4
Injectors
o—— PHASE 2
2029 2030 2031 2032 2033 2034 2035

LHC

Injectors

Expression of Interest

LHCb Upgrade Il targets Run 5&6: 1.5e34 cmc? instantaneous luminosity

Requires extensive R&D studies for U2 LHCb ECAL including module technology, model
configuration, readout properties, timing property, installation geometry

Andrey Ustyuzhanin 18



Optimization Cycle

calorimeter |

Q geometry

calorimeter <l optimization
| procedure
\technology ) f

propagator to [ calorimeter ' [physics signalJ /Z

reference
background

Bottlenecks: sample

» calorimeter simulation is computationally intensive

shower development
photons transport

p
reference }/" calorimeter
signal sample »

” RECO
k algorithm

FE response RECO
AVAPNYAR
calorimeter . calorimeter quality
SIM response | RECO metrics
beam &

bench tests

» direct beam and bench tests hard to directly include into simulation

stack

» RECO algorithm needs tuning for the particular module technology/

geometry/configuration

» multi-parametric optimization may be expensive

https://bit.ly/2NMe4Nv
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ML in the Optimization Cycle

Machine Learning provides a set of tools and methods which allow
effective fit of multi-dimensional data to non-parametric (generic) functions

> allows quick turn over for the optimization cycle, when parameters are
changed

) eliminates manual work for re-tuning simulation and reconstruction
ML model may be suboptimal comparing to “the best” solution

> however it catches main features, that is usually good enough to

estimate physics performance and give feedback to ongoing detector
R&D

Andrey Ustyuzhanin
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Optimisation Challenges

Many parameters to optimize simultaneously

> E.g. granularity distribution in LHCb U2 ECAL
Trade off between physics performance and costs

> not obvious measure of success

> non-differentiable optimization loss function
Relatively long single iteration
ML provides special methods developed for such use cases (e.g. Bayesian optimization)
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Other

For offline analysis: batch scheduling system support for TensorFlow, GPUs, multi-core
training and inference

Unsupervised algorithms e.g. Data Quality and for the new physics search
(https://arxiv.org/abs/1811.10276 )

Efficient sampling algorithms

Training with noisy labels (next slide)
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ML on background-contaminated data

Classification with label noise

your favorite | |
classifier ; our
COrru ptEd label noise methOdS
d ata Set: Pmbabllmes? constrained MSE on t | d
nOiSy Iabels ' Maxirpum Likelihpf)d \ ra I n.e
HEP c?&se: signal vs bac:ground | samples ‘ on noise probabilities | CI ass |ﬁ er
invariant mass fit |

https://arxiv.org/abs/physics/0402083, sWeights intro
https://ml4physicalsciences.github.io/files/NeurlPS ML4PS 2019 122.pdf
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Conclusion

LHCb has Ambitious Physics goals for Run3-6
Long road aided with technical/infrastructure development

There is plenty of space for ML to shine, but it requires tailoring of generic methods to
LHCb specifics
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