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LHCb	experiment	intro

Physics	channels
▌ flavour	physics,
▌ Electro-Weak,
▌ high	PT,
▌ Lepton-Flavour	Violation.

2019-21 Upgrade	challenges:
▌ order	of	magnitude higher	signal	yield,
▌ Increased	pile-up,
▌ upgrade	detector	hardware,
▌ change	in	the data	analysis	paradigm	
(real-time	analysis,	RTA).
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Real	Time	Analysis	Project

RTA	develops	and	maintains	the	real-time	
processing	of	LHCb's data	for	Run	3	and	beyond.	
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Project	work	packages:

▌ Data	structures
▌ Event	Reconstruction
▌ Event	Selection
▌ Align	&	Calibration
▌ Data	QA
▌ Hardware	Accelerators



Event	Reconstruction

Reduce	dimensionality	of	raw	event	
by	analyzing	and	combining	
information	from	subdetectors :

▌ VELO
▌ Tracker
▌ RIng CHerenkov
▌ Calorimeter
▌ Muon	Chambers
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Tracking	Machine	Learning	(ML)	challenge
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https://indico.cern.ch/event/813759/



Particle	Identification	(PID)
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Combine	information	from	sub	detectors	
for	identifying	type	of	a	track	or	particle

▌ Ring	Cherenkov	(RICH)
▌ Electromagnetic	Calorimeter
▌ Hadron	Calorimeter
▌ Muon	Chambers
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MC	data	from	LHCb	
reconstruction:31K	events	
in	current	dataset.

Region	around	track	
centres	(depending	on	
momentum	range)	
translated	into	polar	
coordinate	64	x	64	binary	
pixel	images.

Labelled	images	used	to	
train	CNN.	 Prediction

CNN

RICH	PID	using	convolutional	neural	networks
Michele	Blago,	Daniel	Campora,	Chris	Jones



Deep	Learning	on	LHCb	Calorimetry
Blaise	Delaney,	Joao	Coelho
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▌ Purpose	of	LHCb	calorimeter	system:	trigger	on	e,	γ,	hadrons	+	measure	
energy	and	position	from	particle	showers
▌ Broadly	speaking,	can	think	of	such	tasks	as	clustering,	regression	and	
classification
▌ Develop	algorithms	that	can	deal	with	realistic	calorimeter	geometry
▌ Use	Graph-Neural	Network	based	approach



Event	Selection	challenges
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LHCb	will	have	O(1000)	individual	selections	(filters)	in	HLT2	in	Run	3,	and	many	of	
these	will	be	ML-based

▌ Reproducibility	of	the	model	training
▌ Interpretability	of	trained	models:

› How	can	we	ensure	they’re	inclusive	enough	to	select	things	we	haven’t	
thought	about	but	selective	enough	to	fit	in	the	rate	constraints?

› How	big	is	the	overlap?
▌ ML	frameworks:	support	and	transition	from	research	to	production



Generic	RTA	challenges
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▌ Inference	speed	vs	accuracy	of	ML	models	for	CPU	&	GPU
▌ Model	conversion	from	CPU	to	GPU
▌ Pipeline	for	porting	trained	ML	models	to	C++	stack
▌ ML	model	uncertainty	estimation	and	interpretability
▌ Data	acquisition	quality	certification	and	anomaly	detection
▌ New	way	of	triggering	on	holistic	event	information	https://arxiv.org/abs/1808.00711



Fast	Simulation

Number	of	events	to	be	simulated	scales	
with	the	luminosity,	and	that	the	
simulation	time	scales	with	pile-up,	the	
CPU	requirements	will	scale	accordingly.	
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Fast	simulation:

▌ ReDecay:	only	the	signal	part	is	simulated,	
while	the	same	underlying	event(s)	are	re-used	
several	times
▌ RICHless:	the	Cherenkov	photons	and	their	
computationally	expensive	propagation	in	the	
RICH	detectors	are	not	simulated
▌ TrackerOnly:	only	the	tracking	detectors	are	
simulated
▌ ParticleGun:	only	signal	or	a	small	number	of	
particles	are	simulated
▌ Shower library,	https://bit.ly/2TPM0MG
▌ Generative	models:	use	NN-based	simulation



LHCb	PID	Simulation

▌ The	LHCb	PID	response	makes	use	of	information	from	several	subdetectors,	
namely	the	RICH	detectors,	the	calorimeters	and	the	muon	detectors
▌ Simulation	of	the	subdetectors	devoted	to	PID	is	non-trivial	– computing	the	
detector	response	requires	modelling	of	particle	kinematics,	detector	
occupancy	and	experimental	conditions	(alignments,	temperature	etc.)
▌ Simulation	of	the	detector	response	using	Geant is	the	most	time-consuming	
stage	of	the	full	LHCb	MC	– time	taken	scales	linearly	with	particle	multiplicity

Andrey	Ustyuzhanin 12



Typical	simulation	workflow
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Fast	Calorimetry	Simulation

▌ LHCb-like	calorimeter	30x30
▌ 5	conditional	parameters	per	
particle	(3D	momentum,	2D	
coordinate)
▌ Electrons	from	particle	gun	shot	
at	1x1	cm	square	at	the	center	of	
the	calorimeter	face
▌ Approach:	use	GANs
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Quality	assessment	and	open	questions

▌ Visual	similarity	of	raw	features	does	not	guarantee	the	similarity	of	higher-level	
characteristics
▌ How	can	we	make	sure	tails	of	distribution	are	reproduced	carefully	enough?
▌ How	can	we	estimate	statistic	and	systematic	uncertainty	of	such	a	model?
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Very	fast	RICH	simulation

Bypass	all	accurate	simulation	steps	from	
Cherenkov	light	generation	up	to	the	
high-level	likelihood	parameters	(DLLs)	
Learn	the	distribution	of	DLLs	for	given	
track	parameters	and	sample	from	it,	
P(DLLs	|	<track	params>)

Derkach	et	al,	NIMA	2019	(01)	031
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▌ Number	of	input	features:	

› track	momentum,	pseudorapidity (+2)	

› total	number	of	tracks	in	that	event	(+1)	
▌ Number	of	output	features:	5	DLLs	
▌ Training	on	real	data	(calibration	channels)	
▌ using	sPlot technique1	to	extract	signal	
distributions	
▌ loss	function	is	weighted
some	of	the	weights	are	negative	



Comparison

Andrey	Ustyuzhanin 17

How	to	evaluate?	test	in	a	physics	analysis	environment.



Design	optimisation
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LHCb	Upgrade	II	targets	Run	5&6:	1.5e34	cm-2c-2 instantaneous	luminosity

Requires	extensive	R&D	studies	for	U2	LHCb	ECAL	including	module	technology,	model	
configuration,	readout	properties,	timing	property,	installation	geometry
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ML	in	the	Optimization	Cycle

▌ Machine	Learning	provides	a	set	of	tools	and	methods	which	allow	
effective	fit	of	multi-dimensional	data	to	non-parametric	(generic)	functions

› allows	quick	turn	over	for	the	optimization	cycle,	when	parameters	are	
changed

› eliminates	manual	work	for	re-tuning	simulation	and	reconstruction
▌ ML	model	may	be	suboptimal	comparing	to	“the	best”	solution

› however	it	catches	main	features,	that	is	usually	good	enough	to	
estimate	physics	performance	and	give	feedback	to	ongoing	detector	
R&D
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Optimisation	Challenges

▌ Many	parameters	to	optimize	simultaneously

› E.g.	granularity	distribution	in	LHCb	U2	ECAL
▌ Trade	off	between	physics	performance	and	costs	

› not	obvious	measure	of	success

› non-differentiable	optimization	loss	function
▌ Relatively	long	single	iteration
▌ ML	provides	special	methods	developed	for	such	use	cases	(e.g.	Bayesian	optimization)
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Other
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▌ For	offline	analysis:	batch	scheduling	system	support	for	TensorFlow,	GPUs,	multi-core	
training	and	inference
▌ Unsupervised	algorithms	e.g.	Data	Quality	and	for	the	new	physics	search	
(https://arxiv.org/abs/1811.10276 )
▌ Efficient	sampling	algorithms
▌ Training	with	noisy	labels	(next	slide)



ML	on	background-contaminated	data
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https://arxiv.org/abs/physics/0402083,	sWeights	intro	
https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_122.pdf



Conclusion
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▌ LHCb	has	Ambitious	Physics	goals	for	Run3-6
▌ Long	road	aided	with	technical/infrastructure	development
▌ There	is	plenty	of	space	for	ML	to	shine,	but	it	requires	tailoring	of	generic	methods	to	
LHCb	specifics


