

A Quantum Graph Neural Network Approach to Particle Track Reconstruction

CERN openlab Technical Workshop

Cenk Tüysüz

Middle East Technical University, Ankara, Turkey

22 / 01 / 2020

Outline

- Particle Track Reconstruction and TrackML Challenge
- Hep.TrkX Graph Neural Network approach
- Quantum Graph Neural Network approach

High Luminosity LHC

High Luminosity upgrade of LHC brings many computational challenges.

CERN Tin CERN

Particle Track Reconstruction

Particle Track Reconstruction becomes much harder!

	Run -1	Run -2	Run -3
μ	21	40	150-200?
Tracks	~280	~600	~7-10k

 μ : Average number of interactions per bunch crossing

H. Gray, Track reconstruction in the ATLAS experiment, 2016.

https://agberger.kph.uni-mainz.de/technologies/track-reconstruction/

TrackML Challenge

A Public Machine Learning Challenge for Particle Tracking

Fear Frac High E Cl Overvie	tured Prediction kML Pal Energy Phys ERN 651 tea w Data N	Competition rticle Tracking Ch sics particle tracking in ms a year ago lotebooks Discussion Lear	derboard Rules	\$25,000 Prize Money Join Competition				
	mp	s.//www.kayyie.coi		overview				
#	∆pub	Team Name	Notebook	Team Members	Score 🔞	Entries	Last	
1	_	Top Quarks		?	0.92182	10	1y	
2	—	outrunner			0.90302	9	1y	
3	_	Sergey Gorbunov		-	0.89353	6	1y	

CERN CERN

Hep.TrkX GNN

Novel deep learning methods for track reconstruction

Steven Farrell^{1,*}, Paolo Calafiura¹, Mayur Mudigonda¹, Prabhat¹, Dustin Anderson², Jean-Roch Vlimant², Stephan Zheng², Josh Bendavid², Maria Spiropulu², Giuseppe Cerati³, Lindsey Gray³, Jim Kowalkowski³, Panagiotis Spentzouris³, and Aristeidis Tsaris³

¹Lawrence Berkeley National Laboratory ²California Institute of Technology ³Fermi National Accelerator Laboratory

https://arxiv.org/abs/1810.06111

Hep.TrkX GNN

Promising Results

7

Quantum Computing

Quantum computing allows a new way of computation for certain problems including;

- Prime number factorization
- Solving Linear Equations
- Machine Learning!

Credit: IBM Research

A Quantum Classifier

Hierarchical quantum classifiers

Edward Grant^{1,2}, Marcello Benedetti^{1,3}, Shuxiang Cao^{4,5}, Andrew Hallam^{6,7}, Joshua Lockhart¹, Vid Stojevic⁸, Andrew G. Green⁶ and Simone Severini¹

Table 3. Bina	y classification accur	racy on the MNIST da	taset			
Classifier	Unitaries	Rotations	ls > 4	ls even	0 or 1	2 or 7
TTN	Simple	Real	65.59 ± 0.57	72.17 ± 0.89	92.12 ± 2.17	68.07 ± 2.42
TTN	General	Real	74.89 ± 0.95	83.13 ± 1.08	99.79 ± 0.02	97.64 ± 1.60
MERA	General	Real	75.20 ± 1.51	82.83 ± 1.19	99.84 ± 0.06	98.02 ± 1.40
Hybrid	General	Real	76.30 ± 1.04	83.53 ± 0.21	99.87 ± 0.02	98.07 ± 1.46
TTN	Simple	Complex	70.90 ± 0.73	80.12 ± 0.64	99.37 ± 0.12	94.09 ± 3.37
TTN	General	Complex	77.56 ± 0.45	83.53 ± 0.69	99.77 ± 0.02	97.63 ± 1.48
MERA	General	Complex	79.10 ± 0.90	$\textbf{84.85} \pm 0.20$	99.74 ± 0.02	98.86 ± 0.07
Hybrid	General	Complex	78.36 ± 0.45	84.38 ± 0.28	99.78 ± 0.02	98.46 ± 0.19
Logistic	N/A	N/A	70.70 ± 0.01	81.72 ± 0.01	99.53 ± 0.01	96.17 ± 0.01
1						

Mean test accuracy and one standard deviation are reported for TTN, MERA, and hybrid classifiers with five different random initial parameter settings using two different types of unitary parametrization. Hybrid classifiers consist of pre-training a TTN classifier and that transforming it into a MERA classifier by training additional unitaries. Bold values indicate the best result for each classification task

Plotting the Data

Cylindrical Symmetry → Cylindrical Coordinates

Blue: After preprocessing with Hep.TrkX methods

Red: Ground Truth

1/16 of an event

Cenk Tüysüz

A Quantum Classifier

How does it work?

Quantum Networks

QuantumEdgeNetwork

Quantum Networks

QuantumNodeNetwork

 $q0_0$

Training the Network

Taking Gradients of a Q. Circuit

Gradient taking operation can be composed as 2 Quantum Circuits.

Pennylane is a software that supports automatic differentiation of quantum circuits.

15

Training Results of the QGNN

Training set: 1450 subgraphs, Validation set: 150 subgraphs, using ADAM, binary cross entropy, Ir = 0.01, shots =1000

Cenk Tüysüz

Applications outside Physics

- Particle and flight path trajectories need similar analysis
- Huge increase of complexity and amount of data expected (e.g. autonomous flying, drones, ...)

knowledge exchange for smart decisions

Aiming for:

- Reduction of carbon footprint
- Improvement of flight safety
 - Prediction of dangerous situations
 - Emergency situations recommendations
- Improvement of cost & efficiency

Conclusion

First results are promising. With this approach we are optimistic to get better results.

There are things to explore;

- More layers(iterations)
- More hidden features(qubits)
- Different Quantum Networks/Architectures

Contributors

C. Tüysüz¹, F. Carminati², B. Demirköz¹, D. Dobos³, F. Fracas², K. Novotny,³ K. Potamianos^{3,4}, S. Vallecorsa², J.R. Vlimant⁵

¹Middle East Technical University, Ankara, Turkey, ²CERN, Geneva, Switzerland, ³gluoNNet, Geneva, Switzerland, ⁴DESY, Hamburg, Germany, ⁵California Institute of Technology, Pasadena, California, USA

QUESTIONS?

ctuysuz@cern.ch github.com/cnktysz/heptrkx-quantum

Backup Slides

Cenk Tüysüz

21

Preprocessing

Following cuts are applied to the TrackML data:

- P_t > 1.0 GeV
- $\Delta \emptyset / \Delta r < 0.006$
- z_o < 100
- -5 > η > 5

Plot from: https://github.com/HEPTrkX/heptrkx-gnn-tracking

Cenk Tüysüz

Quantum Gates

Simple Gates : single parameter, rotation on a plane $\left[\cos(\frac{\theta}{2})\right]$

$$|0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \rightarrow \text{Apply } \mathsf{R}_{\mathsf{y}}(\theta) \rightarrow \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

General Gates:

CERN Openlab

multiple parameters, rotation on the whole bloch sphere

$$|0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \rightarrow \text{Apply } U_3(\theta, \emptyset, \lambda) \rightarrow \begin{bmatrix} \cos(\frac{\theta}{2}) \\ e^{i\emptyset}\sin(\frac{\theta}{2}) \end{bmatrix}$$

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

$$TPR = \frac{TP}{TP + FN}$$

False Positive Rate (FPR) is defined as follows:

AUC cont'd

True Positive (TP):	False Positive (FP):
Reality: A wolf threatened.	Reality: No wolf threatened.
Shepherd said: "Wolf."	Shepherd said: "Wolf."
• Outcome: Shepherd is a hero.	 Outcome: Villagers are angry at shepherd for waking them up.
	-r.
False Negative (FN):	True Negative (TN):
False Negative (FN):Reality: A wolf threatened.	True Negative (TN): Reality: No wolf threatened.
False Negative (FN): • Reality: A wolf threatened. • Shepherd said: "No wolf."	True Negative (TN): • Reality: No wolf threatened. • Shepherd said: "No wolf."

