

Quarkonia As Tools 2020 Centre Paul Langevin Exclusive double quarkonium production & Generalized TMDs of gluons

Shohini Bhattacharya Temple University USA

Outline

- Generalized TMDs (GTMDs)
- Wigner Functions
- Observables for GTMDs : The state of art
- Summary

<u>Generalized Transverse Momentum-dependent Distributions</u>

• GTMD matrix element – a graphical depiction :

• **GTMD correlator – definition :**

• Parameterization of correlator through GTMDs : $X^q(x,\xi,\vec{k}_{\perp}^2,\vec{\Delta}_{\perp}^2,\vec{k}_{\perp}\cdot\vec{\Delta}_{\perp})$

x : "average" longitudinal momentum fraction of quark

$$\xi = \frac{p^+ - p'^+}{p^+ + p'^+} = -\frac{\Delta^+}{2P^+}$$
: longitudinal momentum transfer to nucleon

Generalized Transverse Momentum-dependent Distributions

- Twist-2 projections : $\Gamma = \gamma^+ \quad \gamma^+ \gamma_5 \quad i\sigma^{j+}\gamma_5$
- Leading-twist chiral even case : (Meissner, Metz, Schlegel, 0906.5323)

$$W_{\lambda,\lambda'}^{q[\gamma^+]} = \frac{1}{2M} \bar{u}(p',\lambda') \left[\mathbf{F_{1,1}^q} + \frac{i\sigma^{i+}k_{\perp}^i}{P^+} \mathbf{F_{1,2}^q} + \frac{i\sigma^{i+}\Delta_{\perp}^i}{P^+} \mathbf{F_{1,3}^q} + \frac{i\sigma^{ij}k_{\perp}^i\Delta_{\perp}^j}{M^2} \mathbf{F_{1,4}^q} \right] u(p,\lambda)$$

$$W_{\lambda,\lambda'}^{q[\gamma^{+}\gamma_{5}]} = \frac{1}{2M}\bar{u}(p',\lambda') \left[-\frac{i\epsilon^{ij}k_{\perp}^{i}\Delta_{\perp}^{j}}{M^{2}}\boldsymbol{G}_{1,1}^{q} + \frac{i\sigma^{i+}\gamma_{5}k_{\perp}^{i}}{P^{+}}\boldsymbol{G}_{1,2}^{q} + \frac{i\sigma^{i+}\gamma_{5}\Delta_{\perp}^{i}}{P^{+}}\boldsymbol{G}_{1,3}^{q} + i\sigma^{+-}\gamma_{5}\boldsymbol{G}_{1,4}^{q} \right] u(p,\lambda)$$

- General results :
 - i. <u>16</u> leading-twist GTMDs for quarks
 - ii. <u>16</u> leading-twist GTMDs for gluons (Lorcé, Pasquini, 1307.4497)
 - iii. GTMDs are complex functions

Why are GTMDs interesting?

GTMDs as "Mother Functions"

GTMDs contain new physics (beyond TMDs & GPDs)

GTMDs as "Mother Functions"

GTMDs contain new physics (beyond TMDs & GPDs)

GTMDs as "Mother Functions"

model (Lorcé, Pasquini, 1106.0139)

GTMDs contain new physics (beyond TMDs & GPDs)

Wigner distributions

<u>Wigner distributions in NRQM</u> (Wigner, 1932)	Wigner distributions in parton physics (Belitsky, Ji, Yuan, 2003)				
□ Calculate from wave-functions :	Defined through F.T. of GTMD correlator :				
$W(x,k) = \int \frac{dx'}{2\pi} e^{-ikx'} \psi(x + \frac{x'}{2}) \psi^*(x - \frac{x'}{2})$	$W^{[\Gamma]}(x,\vec{k}_{\perp},\vec{b}_{\perp}) = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} e^{-i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}} W^{[\Gamma]}(x,\vec{k}_{\perp},\vec{\Delta}_{\perp}) \bigg _{\xi=0}$				
Connection with probability densities & observables :	 <u>Application</u>: Orbital Angular Momentum (OAM) 				
• Position-space probability : $ \psi(x) ^2 = \int dk W(x,k)$	• Other definitions for OAM available (Ji & Jaffe-Manohar definitions)				
• Momentum-space probability : $ \psi(k) ^2 = \int dx W(x,k)$	• Most intuitive definition via Wigner functions $< L_z^q > =$				
• Expectation value of observables : $< O > = \int dx \int dk \ O(x,k) W(x,k)$	$\int dx \int d^2 \vec{k}_{\perp} \int d^2 \vec{b}_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp}) \bigg _z W_L^{q[\gamma^+]}(x, \vec{k}_{\perp}, \vec{b}_{\perp})$				

GTMD & parton OAM (Lorcé, Pasquini, 2011/ Hatta, 2011)

$$L_{z} = \int dx \int d^{2}\vec{k}_{\perp} \int d^{2}\vec{b}_{\perp}(\vec{b}_{\perp} \times \vec{k}_{\perp}) \bigg|_{z} W_{L}^{[\gamma^{+}]}(x,\vec{k}_{\perp},\vec{b}_{\perp})$$
$$= -\int dx \int d^{2}\vec{k}_{\perp} \frac{\vec{k}_{\perp}^{2}}{M^{2}} Re. F_{1,4}(x,\vec{k}_{\perp}^{2}) \bigg|_{\xi=0}$$

i. Gauge-invariant extension :

ii. Same equation for gluons

First lattice calculation of $L_{\rm JM}$ vs. $L_{\rm Ji}$ (Engelhardt, 1701.01536)

- i. Figure shows $L_{JM}^{u-d}/L_{Ji}^{u-d}$
- ii. Significant numerical differences between $L_{\rm JM}$ & $L_{\rm Ji}$

First lattice calculation of $L_{\rm JM}$ vs. $L_{\rm Ji}$ (Engelhardt, 1701.01536)

i. Figure shows
$$L_{\rm JM}^{u-d}/L_{\rm Ji}^{u-d}$$

ii. Significant numerical differences between $L_{\rm JM}$ & $L_{\rm Ji}$

GTMDs related to strength of spin-orbit correlation (Lorce, Pasquini, 2011 / Lorce, 2014)

First lattice calculation of $L_{\rm JM}$ vs. $L_{\rm Ji}$ (Engelhardt, 1701.01536)

i. Figure shows
$$L_{\rm JM}^{u-d}/L_{\rm Ji}^{u-d}$$

ii. Significant numerical differences between $L_{\rm JM}$ & $L_{\rm Ji}$

GTMDs related to strength of spin-orbit correlation (Lorcé, Pasquini, 2011 / Lorcé, 2014)

Probe Sivers function through unpolarized target!

Observables for GTMDs

Exclusive Dijet Production in *lN/lA* collisions

Hatta, Xiao, Yuan, 1601.01585/ Altinoluk, Armesto, Beuf, Rezaeian, 1511.07452

• Parameterization of angular dependence of Wigner distribution :

 $W(x, \vec{k}_{\perp}, \vec{b}_{\perp}) \approx W_0(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|) + 2\cos 2\left(\phi_k - \phi_b\right) W_1(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|) \quad \longleftarrow \quad \text{``Elliptic Wigner Distribution''}$

• Cross-section : $d\sigma \approx d\sigma_0 + 2\cos 2(\phi_{P_\perp} - \phi_{\Delta_\perp})d\tilde{\sigma}$ Cosine angular modulation

Exclusive Dijet Production in Ultra-Peripheral *pA/AA* collisions Hagiwara, Hatta, Pasechnik, Tasevsky, Teryaev, 1706.01765

- Cross-section : $d\sigma \approx A^2 + 2\cos 2 (\phi_{q_{\perp}} \phi_{\Delta_{\perp}})AB$ Cosine angular modulation
- "A" & "B" related to azimuthally symmetric & elliptic components of Wigner function
- Independent transverse vectors $\vec{q}_{\perp} = \frac{1}{2}(\vec{q}_{2\perp} - \vec{q}_{1\perp})$ $\vec{\Delta}_{\perp} = -(\vec{q}_{1\perp} + \vec{q}_{2\perp})$

Exclusive Dijet Production in *lN* collisions Hatta, Nakagawa, Xiao, Yuan, Zhao, 1612.02445/ Ji, Yuan, Zhao, 1612.02438

Exclusive Double Drell - Yan Process

SB, Metz, Zhou, 1702.04387

Leading-order diagrams

Graph (a)

Graph (b)

Scattering Amplitude

$$\begin{aligned} \mathcal{T}^{\mu\nu}_{\lambda_{a},\lambda_{a}'} &= i\sum_{q,q'} e_{q}e_{q}'e^{2}\frac{1}{N_{c}}\int d^{2}\vec{k}_{a\perp}\int d^{2}\vec{k}_{b\perp}\delta^{(2)} \bigg(\frac{\Delta\vec{q}_{\perp}}{2}-\vec{k}_{a\perp}-\vec{k}_{b\perp}\bigg)\Phi^{q'q}_{\pi}(x_{b},\vec{k}_{b\perp}^{2}) \\ & \left[-i\varepsilon_{\perp}^{\mu\nu} \Big(\boldsymbol{W}^{\boldsymbol{q}\boldsymbol{q}'}_{\lambda_{a},\lambda_{a}'}(\boldsymbol{x}_{a},\vec{k}_{a\perp})-\boldsymbol{W}^{\boldsymbol{q}\boldsymbol{q}'}_{\lambda_{a},\lambda_{a}'}(-x_{a},-\vec{k}_{a\perp})\Big) \\ & -g^{\mu\nu}_{\perp} \Big(\boldsymbol{W}^{\boldsymbol{q}\boldsymbol{q}'}_{\lambda_{a},\lambda_{a}'}(\boldsymbol{x}_{a},\vec{k}_{a\perp})+\boldsymbol{W}^{\boldsymbol{q}\boldsymbol{q}'}_{\lambda_{a},\lambda_{a}'}(-x_{a},-\vec{k}_{a\perp})\Big)\bigg] \end{aligned}$$

• All of the GTMDs can be "disentangled" through suitable linear combination of Polarization Observables

- All of the GTMDs can be "disentangled" through suitable linear combination of Polarization Observables
- Generic GTMD: X = Re.(X) + i Im.(X)i. "Direct Access": Access $|X|^2$ ii. <u>Access real/imaginary parts</u>: Re.(X) / Im.(X)

• Re. $F_{1,1}$ & Re. $G_{1,4}$ treated as `key' candidates to get access to real and imaginary part of other GTMDs since they are presumably large : $(Re. F_{1,1}|_{\Delta=0} = f_1(x, \vec{k}_{\perp}^2)) \quad (Re. G_{1,4}|_{\Delta=0} = g_1(x, \vec{k}_{\perp}^2))$

Access through Interference

Process

 $N_a(p_a,\lambda_a) + N_b(p_b,\lambda_b)
ightarrow \eta_Q(q_1) + \eta_Q(q_2) + N_a(p_a^\prime,\lambda_a^\prime) + N_b(p_b^\prime,\lambda_b^\prime)$

Leading-order diagrams

Kinematics (TMD type)

$$s = (p_a + p_b)^2 \approx 2p_a^+ p_b^- = \text{large}$$
 $q_1^2 = q_2^2 = m_\eta^2$ $|\vec{q}_i \perp| << m_\eta$

$$\begin{aligned} \begin{array}{l} \hline \mathbf{Scattering Amplitude} & \boxed{\Delta \vec{q}_{\perp} = (\vec{q}_{\perp} - \vec{q}_{2\perp})} \\ \mathcal{T}_{\lambda_{a},\lambda_{a}'(\lambda_{b},\lambda_{b}')} &= -i A \int d^{2} \vec{k}_{a\perp} \int d^{2} \vec{k}_{b\perp} \delta^{(2)} \left(\frac{\Delta \vec{q}_{\perp}}{2} - \vec{k}_{a\perp} - \vec{k}_{b\perp} \right) \\ & \times \left[\mathbf{W}_{\lambda_{a},\lambda_{a}'}^{g} (\mathbf{x}_{a}, \vec{k}_{a\perp}) W_{\lambda_{b},\lambda_{b}'}^{g} (x_{b}, \vec{k}_{b\perp}) + W_{\lambda_{a},\lambda_{a}'}^{g} (-x_{a}, -\vec{k}_{a\perp}) W_{\lambda_{b},\lambda_{b}'}^{g} (-x_{b}, -\vec{k}_{b\perp}) \\ \hline \mathbf{R}_{a} \text{adial wavefunction of} \\ \mathcal{H}_{Q, \text{ at origin}} & + \widetilde{W}_{\lambda_{a},\lambda_{a}'}^{g} (\mathbf{x}_{a}, \vec{k}_{a\perp}) \widetilde{W}_{\lambda_{b},\lambda_{b}'}^{g} (x_{b}, \vec{k}_{b\perp}) + \widetilde{W}_{\lambda_{a},\lambda_{a}'}^{g} (-x_{a}, -\vec{k}_{a\perp}) \widetilde{W}_{\lambda_{b},\lambda_{b}'}^{g} (-x_{b}, -\vec{k}_{b\perp}) \\ \hline \mathbf{A} = \frac{g_{s}^{4} \vec{R}_{0}^{2}(0) s}{N_{c}(N_{c}^{2}-1) \pi m_{n}^{5}(1+\xi_{a})(1+\xi_{b})} \\ \hline \mathbf{Longitudinal parton momenta fixed} \\ x_{a} = \frac{(q_{1}^{+}-q_{2}^{+})}{2P_{a}^{+}} \quad x_{b} = \frac{(q_{1}^{-}-q_{2}^{-})}{2P_{b}^{-}} - \xi \leq x \leq \xi \quad \text{ERBL region} \end{aligned}$$

Polarization Observables

$$\tau_{UU} = \left(\frac{1}{2}\sum_{\lambda_{b},\lambda_{b}'}\frac{1}{2}\sum_{\lambda_{a},\lambda_{a}'}|\mathcal{T}_{\lambda_{a},\lambda_{a}';\lambda_{b},\lambda_{b}'}|^{2}\right)$$

$$\tau_{LU} = \left(\frac{1}{2}\sum_{\lambda_{b},\lambda_{b}'}\frac{1}{2}\sum_{\lambda_{a}'}\left(|\mathcal{T}_{+,\lambda_{a}';\lambda_{b},\lambda_{b}'}|^{2} - |\mathcal{T}_{-,\lambda_{a}';\lambda_{b},\lambda_{b}'}|^{2}\right)$$

$$\tau_{LL} = \left(\frac{1}{2}\sum_{\lambda_{b},\lambda_{b}'}\frac{1}{2}\left(\left(|\mathcal{T}_{+,+;\lambda_{b},\lambda_{b}'}|^{2} - |\mathcal{T}_{+,-;\lambda_{b},\lambda_{b}'}|^{2}\right) - \left(|\mathcal{T}_{-,+;\lambda_{b},\lambda_{b}'}|^{2} - |\mathcal{T}_{-,-;\lambda_{b},\lambda_{b}'}|^{2}\right)\right)$$
We sum / average over polarizations of Nucleon `b'

Accessing
$$F_{1,4}$$
 $(\vec{\Delta}_{a\perp} \neq 0, \vec{\Delta}_{b\perp} = 0)$ Assumed hierarchy of magnitude of GTMDs
 $F_{1,1} > G_{1,4} > others$ Direct Access $f_{1,1} > G_{1,4} > others$ $\frac{1}{4} (\tau_{UU} + \tau_{LL} - \tau_{XX} - \tau_{YY})$ $\approx \frac{1}{M^4} (\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j)^2 C [\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp})] C [\vec{\beta}_{\perp} \cdot \vec{p}_{a\perp} F_{1,4}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp})]$ $+ C [G_{1,4}(x_a, \vec{k}_{a\perp}) G_{1,4}(x_b, \vec{k}_{b\perp})] C [G_{1,4}^*(x_a, \vec{p}_{a\perp}) G_{1,4}^*(x_b, \vec{p}_{b\perp})]$

$$\begin{array}{ll} \hline \textbf{Convolution integral} & C\left[w(\vec{k}_{a\perp},\vec{k}_{b\perp})\,X\,Y\right] &=& \frac{2A}{\sqrt{1-\xi_a^2}\sqrt{1-\xi_b^2}}\int d^2\vec{k}_{a\perp}\int d^2\vec{k}_{b\perp}\,\delta^{(2)}\left(\frac{\Delta\vec{q}_{\perp}}{2}-\vec{k}_{a\perp}-\vec{k}_{b\perp}\right)\right) \\ & & \times w(\vec{k}_{a\perp},\vec{k}_{b\perp})\,X(x_a,\vec{k}_{a\perp})\,Y(x_b,\vec{k}_{b\perp}) \end{array}$$

$$\begin{array}{l} \hline \textbf{W} \textbf{eight factor} & \hline \vec{\beta}_{\perp} &=& \frac{\vec{\Delta}_{a\perp}^2\Delta\vec{q}_{\perp} - (\vec{\Delta}_{a\perp}\cdot\Delta\vec{q}_{\perp})\vec{\Delta}_{a\perp}}{\vec{\Delta}_{a\perp}^2-(\vec{\Delta}_{a\perp}\cdot\Delta\vec{q}_{\perp})^2} = \frac{\vec{\Delta}_{a\perp}\times(\Delta\vec{q}_{\perp}\times\vec{\Delta}_{a\perp})}{(\varepsilon_{\perp}^{ij}\Delta q_{\perp}^i\Delta_{a\perp}^j)^2} \end{array}$$

Accessing
$$G_{1,1}$$
 ($\vec{\Delta}_{a\perp} \neq 0, \vec{\Delta}_{b\perp} = 0$)
 Assumed hierarchy of magnitude of GTMDs

 F1,1 > G1,4 > others

 Image: the second state of the second

Access through Interference
$$(\vec{\Delta}_{a\perp} \neq 0, \vec{\Delta}_{b\perp} = 0)$$
Assumed hierarchy of magnitude of GTMDs $\frac{1}{2}(\tau_{UL} + \tau_{LU})$ $F_{1,1} > G_{1,4} > others$ $\approx 2[Im] \left\{ -\frac{1}{M^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) C \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$ $+ \frac{1}{M^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) C \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$ $\approx 2[Im] \left\{ -\frac{1}{M^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) C \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$ $\approx 2[Im] \left\{ -\frac{1}{M^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) C \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$ $\left\{ 2[Re] \left\{ -\frac{1}{M^2} \left(\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j \right) C \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$ This linear combination is sensitive to gluon Orbital Angular Momentum

Single-exclusive *NN* **scattering Boussarie, Hatta, Xiao, Yuan, 1807.08697**

• **Example : Result for** $\chi_1 \chi_1$ production

$$d\sigma \approx F(x_1, x_2) \left(\begin{matrix} G_1(\vec{K}_{\perp}, \vec{\Delta}_{\perp}) + \frac{\vec{K}_{\perp}^2}{2M^2} G_2(\vec{K}_{\perp}, \vec{\Delta}_{\perp}) \end{matrix} \right)^2$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

Gluon dPDF Unpol. gluon GTMD Linearly pol. gluon GTMD

Summary

- i. GTMDs have attracted considerable interest
 - "Mother distribution" character
 - Link to Wigner function
 - Direct link to parton OAM & spin-orbit correlations
- ii. GTMDs can be accessed in "exclusive" processes
 - <u>Gluon GTMDs</u> : Dijet production in UPCs might be most promising
 - **<u>Quark GTMDs</u>** : Double DY has low count rate. Can we do better?
- iii. Time to go 5-dimensional!

GTMDs $(x, \vec{k}_{\perp}, \Delta)$											
				U	L			Т			
	U F 1			, 1,1	$G_{1,}$	1	$H_{1,1}$	$H_{1,2}$;		
		L F 1,4			$G_{1,}$	4	$H_{1,7}$	6			
	T $F_{1,2}$ $F_{1,3}$			$F_{1,3}$	$G_{1,2}$	$G_{1,3}$	$egin{array}{c c} H_{1,3} \ H_{1,5} \ H_{1,5} \end{array}$	$egin{array}{c} H_{1,4}\ H_{1,6} \end{array}$	-		
$\Delta = 0$ TMDs (x, \vec{k}_{\perp})							∫ d GP	$k^2 \vec{k}_\perp$ Ds (x, z	Δ)		
	U		L	Т			U	L	Т		
U	f_1			h_1^\perp		U	H		$E_{ m T}$		
L		9] 1L	h_{11}^\perp	Ľ	L		$ ilde{H}$	$ ilde{E}_T$		
Т	f_{11}^{\perp}	<u> </u>)1T	$h_1 \ h$	\mathbf{T}	Т	E	$ ilde{E}$	$H_{ m T} \; ilde{H}_{ m T}$		