

Quarkonia in AA with LHCb Results and prospects

- I. Quarkonia in AA collisions : which ones and what for
- II. LHCb and quarkonia
- III.LHCb upgrades and quarkonia

RESUITS AND DIOSDECTS

Benjamin Audurier*

Quarkonia as Tools 2020 - Centre Paul Langevin, Aussois - 17 Jan. 2020

Quarkonia in AA collisions: which ones and what for

- * Hadronic quarkonia:
 - → Produced mainly via gluon fusion at the LHC energy.
 - → High mass → short formation time → ideal prob for the QGP.

Leading production diagram of QQ pair at LHC

- See other presentation given this morning for details.
- Orthodoxe phenomenological picture in AA collisions :

+ energy loss + nPDFS ...

Color screening mechanism

(re)combination

* Some observables of hadronic quarkonia:

- * Some observables of hadronic quarkonia:
 - → Nuclear modification factor R_{AA}
 - Need good coverage in p_T from zero to high p_T
 - Need good mass resolution to separate the states
 - prompt/non-prompt separation

- * Some observables of hadronic quarkonia:
 - → Nuclear modification factor R_{AA}
 - Need good coverage in p_T from zero to high p_T
 - Need good mass resolution to separate the states
 - prompt/non-prompt separation
 - → Flow measurements
 - Good charged particle reconstructions (cumulants method) or good detector resolution (event plane like method)

- * Some observables of hadronic quarkonia:
 - → Nuclear modification factor R_{AA}
 - Need good coverage in p_T from zero to high p_T
 - Need good mass resolution to separate the states
 - prompt/non-prompt separation
 - Flow measurements
 - Good charged particle reconstructions (cumulants method) or good detector resolution (event plane like method)
 - Correlations with N_{ch}
 - Charged particle estimator acceptance is important

- * Some observables of hadronic quarkonia:
 - → Nuclear modification factor R_{AA}
 - Need good coverage in p_T from zero to high p_T
 - Need good mass resolution to separate the states
 - prompt/non-prompt separation
 - → Flow measurements
 - Good charged particle reconstructions (cumulants method) or good detector resolution (event plane like method)
 - Correlations with N_{ch}
 - Charged particle estimator acceptance is important
 - Correlation with other probes

Ultra-peripheral collision

- * Quarkonia production in UPC probe nPDFs/GPDs with quasi-real photon
 - See Tuesday's talks for nice discussions

- * Quarkonia production in UPC probe nPDFs/GPDs with quasi-real photon
 - See Tuesday's talks for nice discussions

Experimental characteristics:

- clean signal with low activity in the detector
- very low $p_T \propto 1/r_{target}$

- * Quarkonia production in UPC probe nPDFs/GPDs with quasi-real photon
 - See Tuesday's talks for nice discussions
- * Good momentum resolution at low-p_T = good control on the background contributions

Peripheral collision

Peripheral collision

- * Very-low p_T excess measured by ALICE at LHC
 - → Mostly likely photo-production \rightarrow good p_T resolution

Peripheral collision

- Phys. Rev. D 96, 056014 (2017) FIG. 1: The b-dependence photon flux distribution for the different form factors of the lead nuclei.

10

b [fm]

10

- * Very-low p_T excess measured by ALICE at LHC
 - → Mostly likely photo-production \rightarrow good p_T resolution
- * Prob for the **photon flux** and **the geometry** of the collisions

Phys. Rev. Lett. 123, 132302

Peripheral collision

Phys. Rev. D 96, 056014 (2017) FIG. 1: The b-dependence photon flux distribution for the different form factors of the lead nuclei.

- * Very-low p_T excess measured by ALICE at LHC
 - → Mostly likely photo-production \rightarrow good p_T resolution
- * Prob for the **photon flux** and **the geometry** of the collisions
- * Open-question : Could it be useful for QGP studies ?

LHCb and quarkonia

The LHCb detector

10.1142/S0217751X15300227

The LHCb detector

10.1142/S0217751X15300227

Can operate both in pp/pPb/PbPb and fixed-target!

Fixed-target mode: unique at LHC!

- Injecting gas in the LHCb VErtex LOcator (VELO) tank.
- Noble gas only: He, Ne, Ar
- Gas pressure: 10-7 to 10-6 mbar

Expectations from pPb results

Zdecay

VELO saturation → loss of tracking efficiency

Studies in PbPb <u>limited to 60%</u> less central collisions.

VELO saturation → loss of tracking efficiency

Studies in PbPb limited to 60% less central collisions.

VELO saturation → loss of tracking efficiency

Studies in PbPb limited to 60% less central collisions.

Analysis ongoing, stay tuned!

VELO saturation → loss of tracking efficiency

Status in PbPb UPC

- * Preliminary results for coherent J/ψ production measured by LHCb
- * Coherent charmonium production analysis ongoing in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5$ TeV
 - ► Factor 20 increase in statistics compared to previous
 UPC results

LHCb upgrades

LHCb upgrades

LHCb detector: season 3 (2021)

New Tracking system: New pixel VELO Silicon upstream detector (UT) Scintillating tracking fibre (SciFi) ECAL HCAL **Side View** M3 M4 M5 5m Magnet Tracker 20m 10m 15m New RICH optics and photodetectors

[CERN-LHCC-2012-007]

New electronics for muon and calorimeter systems

- * Upgrade based on pp collision requirements :
 - Collision rate at 40 MHz.
 - → Pile-up factor μ ≈ 5
- * Replace the entire tracking system.
- * Full software trigger.
 - Remove L0 triggers.
 - Read out the full detector at 40 MHz.

Run 3 prospects for heavy-ion physics with LHCb

Run 3 prospects for heavy-ion physics with LHCb

Run 3 prospects for heavy-ion physics with LHCb

- * No significant saturation of the new LHCb detectors up to 30%!
- * Two proposals for a new tracker (see next slides):
 - →in 2024 → reach event more central collisions!
 - →In 2030 → no more limitations!

LHCb fixed-target program evolution

Projection of ~1 year data taking in « parasite » mode

Int. Lumi.		80 pb-1
Sys.error of J/Ψ xsection		~3%
J/Ψ	yield	28 M
D^0	yield	280 M
Λ_c	yield	2.8 M
Ψ'	yield	280 k
$\Upsilon(1S)$	yield	24 k
$DY \mu^+\mu$	- yield	24 k

- * SMOG 2 (TDR): Standalone gas storage cell covering $z \in [-500;-300]$ mm:
 - → **Up to x100 higher gas density** with same gas flow of current SMOG.
 - → Gas feed system measures the gas density with few % accuracy.
 - → Possibility to run in parallel of pp collisions and inject non noble Gaz.

Installation ongoing, to be operational from the start of LHC Run 3.

* LHCb is a very versatile detector

- Large variety of datasets with unique fixed-target program at LHC.
- ► LHCb is a quarkonia friendly detector as proven by many precise results in pp and pPb collisions!

Collider mode samples

* LHCb is a very versatile detector

- Large variety of datasets with unique fixed-target program at LHC.
- → LHCb is a quarkonia friendly detector as proven by many precise results in pp and pPb collisions!
- * LHCb AA physics program is expanding
 - → Two new datasets to explore : PbPb@5 TeV and PbNe@86 GeV.
 - Quarkonia measurements ongoing!
 - → A full UPC physics program to look at with high precision.

Collider mode samples

* LHCb is a very versatile detector

- Large variety of datasets with unique fixed-target program at LHC.
- → LHCb is a quarkonia friendly detector as proven by many precise results in pp and pPb collisions!
- * LHCb AA physics program is expanding
 - → Two new datasets to explore: PbPb@5 TeV and PbNe@86 GeV.
 - Quarkonia measurements ongoing!
 - → A full UPC physics program to look at with high precision.
- * LHCb's future is bright for QGP studies
 - → New detector with new tracking/PID system driven by pp physics.
 - **→** Improved fixed-target program with SMOG 2.
 - → Better performances expected for Run 3 in high-multiplicity collisions.

Collider mode samples

* LHCb is a very versatile detector

- Large variety of datasets with unique fixed-target program at LHC.
- ► LHCb is a quarkonia friendly detector as proven by many precise results in pp and pPb collisions!
- * LHCb AA physics progra
 Inputs / suggestions always welcome

 Two new datasets to expressions always welcome
 - Quarkonia measurements ongoing!
 - → A full UPC physics program to look at with high precision.
- * LHCb's future is bright for QGP studies
 - → New detector with new tracking/PID system driven by pp physics.
 - **¬** Improved fixed-target program with SMOG 2.
 - → Better performances expected for Run 3 in high-multiplicity collisions.

Collider mode samples

Back-up

LHCb upgrades

Phase I in a nutshell

- * Sub detectors considering timing:
 - Before the magnet:
 - VELO, RICH1
 - → After the magnet :
 - TORCH, RICH2, ECAL

LHCb-INT-2019-006

February 11, 2019

LHCb-INT-2019-008

April 4, 2019

Magnet Tracking Station

- * Proposal for tracking station inside the magnet.
 - Triangular Extruded Scintillating Bars
 - → Increase coverage of low-p_T tracks.
 - Physics motivations : access to converted photons.
- * Proposing the installation of a small prototype inside the magnet during LS3.

THE DESCRIPTION OF THE DESCRIPTI

fraction momentum x

Extended coverage

MIGHTY Tracker

LHCb-INT-2019-007

- * MIGHTY tracker: biggest silicon tracker built by LHCb.
 - Upgrade 1b: Inner Tracker + Scifi.
 - DMAPs technology for silicon sensors.
 - Upgrade II: New mighty silicon tracker covering larger area.
 - Rebuild of SciFi + reuse IT.
- * Hybrid technology detector, many challenges!
- * First estimations show no limitation in centrality reach with the complete MIGHTY.

