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Outline

1. Theory introduction: understanding the “zoo” of UPDFs

2. Single J/ψ and Υ production

3. Associated production: Υ+D and double J/ψ

4. Progress towards NLO

This talk is NOT about:

◮ Saturation and higher-twist effects

◮ Exclusive production

◮ Small-x resummation in PDF evolution
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From collinear to kT -factorization
Process:

p(P1) + p(P2) → J/ψ(p+, p−,pT ) +X,

where: Pµ1 = P+n
µ
−/2, P

µ
2 = P−n

µ
+/2, p± = p0 ± p3 = n±p. Rapidity:

y = ln(p+/p−)/2. Introduce x± = p±/P± , then:

dσ =

1∫

x+

dz+
z+

f̃i

(
x+
z+
, µ2
F

) 1∫

x−

dz−
z−

f̃j

(
x−
z−

, µ2
F

)

Hi,j(z+, z−, αs(µ
2
R), . . .),

where f̃i(x, µ
2) = xfi(x, µ

2), up to power-suppressed corrections in
µ2 ≃ µ2

F ≃ µ2
R ∼ p2T .

◮ Regge limit for H: z± ≪ 1 .

◮ Leading twist kT -factorization (for this talk): Understanding
higher-order corrections to H using properties of QCD
amplitudes in Regge limit.

◮ There are important small-x effects in PDF evolution, due to
ln(1/z)-corrections in DGLAP splitting functions [Catani,
Hautmann, 94’;...; R.Ball et.al. 2017; ...], but we do not consider
them.
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From collinear to kT -factorization
From known all-order results in Regge limit (see below), the following
factorization structure can be deduced:

Hi,j =
∑

m,n

∫
dx1
x1

d2qT1

π
C

(m)
ik (αn1

s (z+/x1)
n2 lnn3(x1/z+),qT1)×

∫
dx2
x2

d2qT2

π
C

(n)
lj (α

n′
1
s (z−/x2)

n′
2 lnn

′
3(x2/z−),qT2)×

H
(m,n)
kl (αm1

s xm2
1 xm3

2 ,qT1,qT2, . . .).

◮ Logarithms ln(1/z±) are factorized to all orders; characteristic
qT -dependence comes with them

◮ Convolution in transverse momenta qT1,2 ⇒ kT -factorization or
High-Energy factorization

◮ Different from TMD-factorization, because NOT limited to the
region pT ≪ µ.

◮ There could be several types of process-dependent coefficient
functions H(m,n), functions C(m) are universal.

◮ Perturbative expansion for H is assumed to be well-behaved
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Leading twist kT -factorization

Substituting Hi,j to factorization formula we get:

dσ =
∑

m,n

∫
dx1
x1

d2qT1

π
Φ

(m)
i (x1,q

2
T1, µ

2)×

∫
dx2
x2

d2qT2

π
Φ

(n)
j (x2,q

2
T2, µ

2)×H
(m,n)
ij

(
x+
x1
,
x−
x2
,qT1,2, . . .

)

,

where the unintegrated PDF (UPDF):

Φ
(n)
i (x,q2

T , µ
2) =

1∫

x

dz

z
f̃j

(x

z
, µ2

)

× C
(n)
ij (z,qT ).
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What is known about kT -factorization?
Expansion for Cik(z) at z ≪ 1, schematically:

z0 ×
∑

n1



































LL, [BFKL, 76’; 78’]

(αsln(1/z))
n1 +

NLL, [Fadin, Lipatov

98’; Fadin et.al. 2015]

αs × (αsln(1/z))
n1 +

NNLL [Fadin, 2019;...];

N = 4 SYM [Caron-Huot,

2018;...]

α2
s × (αsln(1/z))

n1 + . . .



































+

+ z1 ×
∑

n2















NLP-LL, [Bartels, Ermolaev,

Ryskin 95’; ...]

(αsln
2(1/z))n2 +

NLP-NLL, [Fadin,Sherman 77’;

Lipatov, Vyazovsky 2001; ...]

(αsln(1/z))
n2 + . . .















+

+ z2 × {. . .}+

+ . . .

Convergence: Assuming f(x) ∼ x−λ:
1∫

x

dz
z f

(
x
z

)
× zn lnm(1/z) ≃

x≪1

m! x−λ

(n+λ)m+1

Power corrections (z → 1) are
important! At fixed order in αs:

1

(1− z)+
≃

∞∑

k=0

zk, ln(1−z) =
∞∑

k=1

−zk
k
,

How to include z → 1 effects? ⇒ “zoo” of UPDFs
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“Zoo” of phenomenological UPDFs
Welcome to the TMDlib/TMDplotter “Zoo”:
http://tmdplotter.desy.de/ ! All approaches so-far are at LO in
αs for H ⇒ LL or NLL for UPDFs. W.r.t. power corrections they can
be classified as:

◮ BFKL-based – doubly-logarithmic: ignore power corrections,
resum αs(µ

2) ln(1/z) ln(q2
T /µ

2) using LL BFKL equation:
(Collins-Ellis-Catani-Hautmann-)Blümlein approach [Collins,
Ellis, 91’; Blümlein, 94’; Catani-Hautmann 94’; M.N. 2019].

◮ CSS-compatible: include power corrections, resum
αs ln

2(q2
T /µ

2) to LL and NLL consistently with
Collins-Soper-Sterman small-pT resummation formalism (for
color-singlet!):Kimber-Martin-Ryskin(-Watt) approach [Kimber,
Martin, Ryskin 2001; Watt, Martin, Ryskin 2003; 2009]

◮ Intermediate: partially include power corrections and ln(1/z)
resummation: CCFM equation, Parton-Branching method [Jung,
Hautmann et.al. 2018;...],...

Important constraint: doubly-asymptotic limit

x→ 0, µ2 → ∞, qT ≪ µ is universal in the BFKL, KMRW/CSS

and PB fromalisms (at least at LL).
7 / 46



Gluon UPDF
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◮ Region qT < 1 GeV is non-perturbative. No dedicated fits of qT -dependence for gluon have
been done.

◮ Non-perturbative effects propagate up to qT ∼ 2 − 3 GeV due to evolution.

◮ Region 2 − 3 GeV < qT ≪ µ – different approaches agree at µ2 → ∞, x → 0 due to DL
constraint. KMRW is very close to PB.

◮ Region qT > µ – PB UPDF has an (unnaturally) soft tail ⇒ strong scale-dependence for
multiscale observables
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How to compute coefficient function? Parton

Reggeization Approach (PRA)

◮ Lipatov’s EFT [Lipatov, 95’] allows to compute
LP Regge limits for QCD amplitudes directly
⇒ Φ and H are connected by off-shell t-channel
“partons” (Reggeons!). This factorization in

gauge-invariant! (See also [A. van Hameren,
P. Kotko, K. Kutak et.al] and KaTie code!)

◮ LP: LL, NLL – only single Reggeized gluon

(R) exchanges contribute to amplitude.

◮ LP: N2LL – EFT diagrams with several
Reggeized gluons: can be recast into same
factorized form but possibly with different
H(n,m) and Φ(n).

◮ NLP: LL – NLP operator can be understood as
effective t-channel exchange (e.g. [Penin, 2019])

◮ NLP: NLL – Reggeized quarks (Q)
contribute [Fadin, Sherman 77’; Lipatov,
Vyazovsky 2001]
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Single inclusive quarkonium
production in kT -factorization.
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Inclusive heavy quarkonium production
Framework: kT -factorization (Lipatov’s EFT) + NRQCD
factorization at LO in αs.
Reggeized-gluon-initiated subprocesses [Kniehl, Vasin, Saleev
2006] (for 3S1 and 3PJ -quarkonia):

R(q1) +R(q2) → cc̄
[
3S

(1)
1

]

+ g(k),

R(q1) +R(q2) → cc̄
[
1S

(8)
0 , 3P

(1,8)
J , 3S

(8)
1

]

,

where qµ1,2 = x1,2P
µ
1,2 + qµT1,2. Off-shell amplitude R +R→ c+ c̄ in

Lipatov’s EFT coincides with amplitude obtained using “non-sense”
polarization prescription εµ(qT ) → qµT /|qT |, but it is the only
“safe” one.
Reggeized-quark-initiated subprocesses(NLP, numerically small
but important at low energies):

Q(q1) +Q(q2) → cc̄
[
3S

(8)
1

]

,

C(q1) + C(q2) → cc̄
[
3S

(1)
1 , 3S

(8)
1 , 1S

(8)
0 , 3P

(1,8)
J

]

,

where Q – light Reggeized quark and C – heavy Reggeized quark
[Lipatov, Vyazovsky, 2001]. 11 / 46



Comparison to NLO CPM
Numerical results at NLO of CPM provided by B. Kniehl and M.
Butenschön.

3S1
H1L

3S1
H8L

1S0
H8L

CT14-NLO-NF3
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pT HGeVL
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3.5
HLO kTL�HNLO CPML

S-wave, S =7 TeV, ÈyÈ<0.2, mc=1.5 GeV

◮ Solid lines – KMRW UPDF, dashed lines – Blümlein UPDF

◮ Spectra for P -wave states from NLO CPM turn negative at pT ≃ 7
GeV. In LO PRA cross-section is always positive

◮ Large corrections for 3S
(1)
1 are predicted at high pT . Other S-states ∼

compatible with NLO of CPM 12 / 46



Example LDME fit (LDMEs used in double- J/ψ

calculation)
Framework: LO KMR(W) UPDF [MSTW-08 LO PDF], included

pT -shift in cascade decays, included LL fragmentation for 3S
(8)
1 at

high pT , mc = 1.5 GeV.
LDME, GeV3

〈

OJ/ψ[3S
(1)
1 ]

〉

= 1.16

M
J/ψ
0 = 3.61× 10−2

〈

OJ/ψ[3S
(8)
1 ]

〉

= 1.25× 10−3

〈

Oψ′
[3S

(1)
1 ]

〉

= 0.76

Mψ′

0 = 2.19 × 10−2
〈

Oψ′
[3S

(8)
1 ]

〉

= 3.41 × 10−4

〈

Oχc0 [3P
(1)
0 ]

〉

/m2
c = 4.77 × 10−2

〈

Oχc0 [3S
(8)
1 ]

〉

= 5.29 × 10−4

where MH
0 =

〈

OH[3S
(8)
0 ]

〉

+

R
m2

c

〈

OH[3P
(8)
0 ]

〉

.

Only LHC data with pT > 10 GeV
where fitted. χ2/d.o.f.≃ 1.
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Review of some recent results on single production
NRQCD factorization:

◮ [M.N., Saleev, Shipilova 2012; 2013] Global fits for prompt J/ψ,
ψ(2S), χcJ , Υ(nS) and χbJ hadroproduction in KMR(W) framework

◮ [M.N., Kniehl, Saleev 2016] ψ(2S) and Υ(3S) re-considered.
Polarization predictions – transverse polarization for ψ(2S) at high pT .

◮ [Baranov, Lipatov, Malyshev 2016;...;2019] Similar framework, but
taking into account soft-gluon and decay-photon recoils in
amplitude-based approach. Similar hierarchy of CO LDMEs found.
Conclusion that (Electric-dipole?!) soft-gluon effects cure polarization
problem is questionable! (Our reply coming soon...)

kT -factorization + other factorization approaches for quarkonium:

◮ [Cheung, Vogt 2018] Improved Color Evaporation Model.
De-polarization at high-pT is found! Mechanism – requires
investigation.

◮ [Babiarz, Pasechnik, Schäfer, Szczurek 2019] Light-front wavefunction
approach for ηc-production. Results reasonably stable w.r.t. choice of
LFWF.
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Going to low energies

RHIC (
√
S = 200 GeV):

Planned JINR NICA (
√
S = 24

GeV; PRA vs. CPM LDMEs; vs.
NLO CPM [Kniehl, Butenschön]):

Polarization (PRA vs. CPM LDMEs; vs. NLO CPM):
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Υ(1S) +D associated production.

Based on [Phys. Rev. D 99, 096021 (2019)]
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Associated production: Υ(1S) +D, experiment

See [Karpishkov, M.N., Saleev 2019]. In the experimental paper
[LHCb 2016] this process was considered as sensitive to DPS.
Arguments:

◮ Significant cross-section ∼ 100 pb was measured at
√
S = 7 and 8

TeV, Rexp. = σexp.(Υ +D)/σexp.(Υ) ∼ 8%, while SPS LO
(color-singlet) CPM calculation [Berezhnoy, Likhoded 2015]
predicted RLO CPM ∼ (0.2− 0.4)%. ⇒ SPS production is strongly
suppressed by αs?

◮ Various measured kinematic distributions where found to be
consistent with phase-space distributions for un-correlated
production of Υ and D ⇒ no sign of kinematic correlations from
common SPS production subprocess?

⇒ DPS?
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Associated production: Υ(1S) +D, LO PRA

◮ LO Subprocesses (O(α3
s)):

R + R → Υ(3S, 2S, 1S)(→ Υ(1S)) + g(→ D)

R + R → χb(2P, 1P )(→ Υ(1S)) + g(→ D)

bb̄
[
3S

(1)
1 , 3S

(8)
1 , 3P

(1)
J

]

-states

are taken into account.

◮ LO scale-dependent FF
[Kniehl, Kramer, Schienbein,
Spiesberger 2006] fitted on
LEP data is used to describe
g → D transition.

◮ Υ LDMEs from our fit of 2013
has been used.

Diagrams of Lipatov’s EFT:
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Ratio (g → D vs. c→ D
fragmentation):

σD0

dir.[R + R → bb̄[3S
(1+8)
1

] + g]

σD0
dir.

[R + R → bb̄[3S
(1+8)
1 ] + c + c̄]

≃ 2.6 ÷ 2.5,

⇒ gluon fragmentation is the
dominating mechanism

18 / 46



Associated production: Υ(1S) +D, results

Total cross-section:
Υ(1S)D0 , pb Υ(1S)D+ , pb

Direct: 51 20

Υ[3S
(1)
1 ] 37 15

Υ[3S
(8)
1

] 14 5

Feed-down 40 16

Total CS, LO PRA 91
+48
−41

36
+19
−16

Total CS, exp. 155 ± 28 82 ± 24

Radiative corrections lead to
significant SPS CS ∼ 1/2 exp. CS.
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Prompt J/ψ pair production.

Based on [Phys. Rev. Lett. 123, 162002 (2019)]
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J/ψ pair production: (Selected) theory results
◮ The total cross-section is dominated by double-3S

(1)
1 contribution

[Kartvelishvili, Esakiya 83’; Humpert, Mery 83’; Qiao 2002]
◮ The CO-states contribute, [Barger et.al. 96’] proposed

double-J/ψ production as a test of CO mechanism. Relativistic

corrections to 23S
(1)
1 and 23S

(8)
1 -channels where also considered

[Li, et.al. 2013].
◮ The full calculation in the LO of CPM, including all CO states

and feed-down, was done by [He, Kniehl 2015]. The double-CO
contributions are very important at large-Mψψ and ∆Yψψ .

◮ The Double Parton Scattering (DPS) contributes to the same
kinematic region [Lansberg, et.al. 2015] ! But DPS contribution is
flat or decreasing with ∆Yψψ .

◮ The full NLO corrections in CPM for double-3S
(1)
1 channel has

been calculated by [Sun, et.al. 2016].
◮ The CS-model computation in non-gauge-invariant
kT -factorization with CCFM-based UPDFs [Baranov, et.al. 2015]
fails to describe data.

◮ And more...
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J/ψ pair production: Experimental data

◮ First measurements of 2J/ψ by LHCb (pp @ 7 TeV) [LHCb 2012;

2017]. The pψT -spectrum at 2 < yψ < 4.5 agrees reasonably with
LO CPM+NRQCD [He, Kniehl 2015] with LDMEs fitted for
inclusive single-J/ψ hadroproduction.

◮ Total cross-section measurements by D0 (pp̄ @ 1.96 TeV) [D0
2014] are also reproduced in LO CPM + NRQCD.

◮ We will concentrate on CMS (pp @ 7 TeV) [CMS 2014] and
ATLAS (pp @ 8 TeV) [ATLAS 2017] measurements which

provide a rich set of spectra vs.: Mψψ, ∆Yψψ , pψψT and pψT, lead..
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Description in Collinear Parton Model
◮ The Mψψ-spectrum (CMS-data, Full LO vs. 23S

(1)
1 NLO CPM):
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◮ The ∆Yψψ-spectrum (CMS-data, Full LO vs. 23S
(1)
1 NLO CPM):
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Fixed-order contributions in PRA
We have calculated contributions of all diagrams at O(α4

s) (LO) to all
direct and feed-down partonic channels in PRA:

R+(q1) +R−(q2) → cc̄[m] + cc̄[n],

with m,n = 2S+1L
(c)
J .

The dominant asymptotics at large Mψψ (∆Yψψ) is provided by
diagrams with t-channel (Reggeized) gluon exchange between
cc̄-states. Partonic channels can be classified according to the order in
αs in which the t-channel gluon exchange first occur:

(b) (c)(a)

R
+

R
−

R
+

R
−

R
−

R
+

R
−

R
+

R
−

(d)

(b) LT : m,n = 1S
(8)
0 , 3S

(8)
1 , 3P

(1,8)
J ,

(c) NLT: m = 3S
(1)
1 and n = 1S

(8)
0 , 3S

(8)
1 , 3P

(1,8)
J ,

(d) NNLT : m,n = 3S
(1)
1 .
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∆Yψψ spectrum, CMS
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Yellow band and black dashed line – LO PRA.
Unfortunately, ATLAS provides only fiducial ∆Yψψ-spectrum which is
hard to compare with our predictions.
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Mψψ spectra, CMS and ATLAS
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The pψψT - spectra, CMS and ATLAS
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◮ Solid line – KMR(W) UPDF,

◮ Dashed line – Blümlein
UPDF,

◮ Dash-dotted line –
CCFM-based Jung-Hautmann
UPDF (the result from PB
UPDF will be similar).
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The pψT, lead. spectra from ATLAS
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BFKL-resummation contribution
Overall agreement of LO PRA calculation with data is quite
reasonable, except large O(10 − 100) deficit at large Mψψ and ∆Yψψ .
But radiative corrections to LT and NLT contributions could be
significant!

BFKL

R
+(k1T )

R
−(k2T )

R
−(qT )

R
+(−q′

T
)

R
−(k2T )

R
+(k1T )

R
−(qT )

R
+(−q′

T
)

m(p1T )

n(p2T ) n(p2T )

m(p1T )

◮ We resum higher-order corrections
∼ (αs∆Yψψ)

n to LT-channels using
LLA BFKL Green’s function with
suitable BLM-type
renormalization-scale setting
[Brodsky, et.al., 99’] to take into
account large running-coupling
effects.

◮ Resummation is performed for ∆Yψψ
and Mψψ-spectra. For other spectra
effect is negligible.

◮ The LO R+R− → cc̄[n]
impact-factors are well-known
[Kniehl, Vasin, Saleev 2006].
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NLT contribution
◮ Since

〈

OJ/ψ[3S
(1)
1 ]

〉

∼ (102 − 103)×
〈

OJ/ψ [3L
(8)
J ]

〉

, the NLT

contribution could be numerically significant.

◮ The
R+ +R− → cc̄

[
3S

(1)
1

]

+ g (1)

amplitude does not have any singularities for Eg → 0 or

kTg → 0 since M
(

R+ +R− → cc̄
[
3S

(1)
1

])

= 0.

◮ There is no rapidity divergence for integration over rapidity of
gluon in (1), so no double-counting with BFKL resummation or
UPDF.

◮ So we can construct gauge-invariant and IR-finite large-∆Yψψ
asymptotics for O(α5

s) NLT squared amplitudes by replacing
ordinary t-channel gluon with Reggeized one in the diagram (c).

(b) (c)(a)

R
+

R
−

R
+

R
−

R
−

R
+

R
−

R
+

R
−

(d)
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Combined effect on Mψψ and ∆Yψψ spectra
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◮ Effect of BFKL-resummation is significant, up to a factor of two.
◮ Large O(100) K-factors are found in some NLT channels in the

last ∆Yψψ-bin. The effect on direct production is +45%, but after
addition of feeddown the overall effect of NLT-contributions
reduces to +16% (the thick red line).

◮ Apparent growth of CMS cross-section with ∆Yψψ is a complete
mystery. One needs enormous Pomeron intercept
(> αLL BFKL

P ???) to fit this.
◮ Effects in ATLAS Mψψ spectra are roughly the same (see

corresponding plots on slide 15).
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New idea: Pomeron contribution

In [Shao, Zhang 2016; Lansberg et.al. 2019] the loop-induced
contribution with two-gluon exchange in t-channel was discussed:

g + g → cc̄
[
3S

(1)
1

]

+ cc̄
[
3S

(1)
1

]

.

Which is IR-finite, of LP at large ∆Y and enhanced by two 3S
(1)
1

LDMES!

◮ It is a LO approximation to the Pomeron exchange amplitude.

◮ We can write-down a simple asymptotic expression for this
amplitude with two Reggeized gluons in t-channel.

◮ Additional gluon emissions can be added to this exchange, by
solving Bartels-Kwiecinski-Praszalowicz equation, leading to a
growing cross-section
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Loop corrections in Lipatov’s EFT.

Based on [Nucl.Phys., B946, 114715 (2019)]
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NLO calculations: Why to bother?

◮ To show the self-consistency of the approach. The statement is,
that most of corrections which determine the shape of various
multiscale kinematic distributions are already included, so NLO
corrections must be small.

◮ For quarkonium physics another motivation is that at NLO in
PRA, the process:

R+R→ g → cc̄
[
3S

(1)
1

]

+ 2g,

appears, which is by factor p2T “stronger” than LO process

R+R → cc̄
[
3S

(1)
1

]

+ g. In CPM, the corresponding

“fragmentation-type” process:

g + g → g + g(→ cc̄
[
3S

(1)
1

]

+ 2g),

contributes only at NNLO.
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Eikonal denominators in the induced vertices
A closer look at R±g-interaction [Lipatov 95’; 97’; Bondarenko,
Zubkov 2018]:

Sint. =

∫

dx
i

gs
tr
[

R+(x)∂
2
⊥∂−

(

Wx+ [A−]−W †
x+

[A−]
)

+ (+ ↔ −)
]

,

where ∂± = 2∂/∂x∓, x± = x± = (n±x) = x0 ± x3, fields R± satisfy

MRK constraint ∂∓R±(x) = 0 and

Wx∓ [x±,xT , A±] = P exp




−igs
2

x∓∫

−∞

dx′∓A±(x±, x
′
∓,xT )





=
(
1 + igs∂

−1
± A±

)−1
,

so that ∂−1
± → −i/(k± + iε) in the Feynman rules.

⇒ multiple induced vertices with light-cone (Eikonal) denominators
appear. Pole prescription is fixed by Hermitian form of
R±g-interaction.
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Rapidity divergences and regularization
Due to the presence of the 1/q±-factors in the induced vertices, loop
integrals in EFT contain the light-cone (Rapidity) divergences:

Π
(1)
ab =

p ↓
q ↓

+

−
= g2sCAδab

∫
ddq

(2π)D

(
p2
T (n+n−)

)2

q2(p− q)2q+q−

The regularization by explicit cutoff in rapidity was proposed by
Lipatov [Lipatov, 1995] (q± =

√

q2 + q2
T e

±y, p+ = p− = 0):

∫
dq+dq−

q+q−
=

y2∫

y1

dy

∫
dq2

q2 + q2
T

,

then

Π
(1)
ab ∼ δabp

2
T × CAg

2
s

∫
p2
Td

D−2qT

q2
T (pT − qT )2

︸ ︷︷ ︸

ω(1)(p2
T
)−one−loop Regge trajectory

×(y2−y1)+finite terms
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Covariant regularization

To regularize RDs covariantly one have to “tilt” Wilson lines from the
light-cone [Hentschinski, Sabio Vera, Chachamis et.al. 2012-2013;
Collins 2011]:

S
(reg.)
int. =

∫

dx
i

gs
tr
[

R+(x)∂
2
⊥∂̃−

(

Wx̃+

[

Ã−

]

−W †
x̃+

[

Ã−

])

+ (+ ↔ −)
]

,

where x̃± = x± + r · x∓ with 0 < r ≪ 1, and modify the kinematic

constraint [M.N. 2019]:

∂̃∓R±(x) = 0,

⇔ p̃∓ = p∓ + r · p± for R± (Necessary to regularize R+R+ → R−R−

Green’s function at one loop!).
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Rapidity divergences at one loop
Only log-divergence ∼ log r (Blue cells in the table) is related with
Reggeization of particles in t-channel.
Integrals which do not have log-divergence before expansion in ǫ may
still contain the power-like dependence on r:

◮ r−ǫ → 0 for r → 0 and ǫ < 0.

◮ r+ǫ → ∞ for r → 0 and ǫ < 0 – weak-power divergence (Pink
cells in the table)

◮ r−1+ǫ → ∞ – power divergence. (Red)

(# LC prop.) \ (# quadr. prop.) 1 2 3 4

1 A[−] B[−] C[−] ...
2 A[+−] B[+−] C[+−] ...
3 ... ... ... ...

The weak-power and power-divergences cancel between Feynman
diagrams describing one region in rapidity, so only log-divergences are
left.
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State of the art
◮ LO BFKL kernel comes-out as rapidity-divergent part of
R+R+ → R−R− Green’s function [Bartels, Lipatov, Vacca 2012]

◮ Known QCD results for one-loop impact-factors of gluon and
quark with one scale of virtuality are reproduced [Hentschinski,
Sabio Vera, Chachamis et.al. 2012-2013]

◮ Two-loop Regge trajectory of a gluon is reproduced
[Hentschinski, Sabio Vera, Chachamis et.al. 2013]

◮ Consistency of Reggeized quark formalism is verified at one loop
on example of the process γγ → qq̄ [M.N., Saleev 2017]

◮ New one-loop impact-factors O(q) +R+(q1) → g(q + q1) (with
O(x) = tr[GµνG

µν ]) and γ⋆(q) +Q(q1) → q(q + q1) with
additional scale Q2 = −q2 besides q21 = −q2

1T are computed [M.N.
2019] and consistency of Regge limits of one-loop amplitudes:

g(P ) +O(q) → g(P − q1) + g(q + q1),

γ(P ) + γ⋆(q) → q(P − q1) + q̄(q + q1),

between EFT and QCD is checked.
◮ NLO BFKL is in progress...
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Contributions in the EFT, gluon case
One-Reggeon contribution (negative signature, Re+Im parts @ 1 loop,
log r-divergences cancel):

�

✂●
✭✶✮
✰

✁

✌
✭✶✮
✄

✰✂

☎

�

✰✂

✆✭✶✮

Two-Reggeon contribution (positive signature, does not contribute due
to color):

q ✦ ❆✰

P ✦
❆�

❧ ✧ ✧ q✶ ✁ ❧

✂
✄ ✄

✁ ✁
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✄ ✄
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The one-Reggeon contribution reproduces QCD result
exactly. 40 / 46



Contributions in the EFT, photon case
One-Reggeon contribution (positive signature, Re+Im parts @ 1 loop,
log r-divergences cancel):

�

✁
✭✶✮
✰

✂

✁
✭✶✮
✄

☎

✆

�

☎
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Two-Reggeon contribution (negative signature, Im part @ 1 loop):

P →

q →
A+

A
−

l ↑ ↑ q1 − l

+ +

− −

A+
+ +

=

+ +

(1)

+ + +

(2)

−

+

−

+
+

(3)

Sum of one- and two-Reggeon contributions reproduces
QCD result exactly.
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Subtraction problem for real NLO
corrections.
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Example

The (over-)subtraction problem is a common disease of NLO
calculations in BFKL-related formalisms (NLO BFKL, forward
hadron produciton in CGC, etc.). Let’s consider an example: a
forward-jet production in a fusion of one collinear (large-x) and one
Reggeized (small-x) gluon. At LO

g(p+) +R(q−,qT1) → g(p+, q−,kT1 = qT1),

at NLO:

g(p+) +R(q−,qT1) → g(k+1 , zq−,kT1) + g(k+2 , (1 − z)q−,kT2),

where z ≪ 1 or 1− z ≪ 1 (gluons are identical!) corresponds to the
Regge limit.
Asymptotic expression for the squared amplitude in Regge limit
should be subtracted from NLO amplitude, because emissions with
z ≪ 1 are already taken into account in UPDF. Typically the LP
asymptotic expression is subtracted, often leading to negative
cross-section at NLO.
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Example
The reason is, that LP asy. expression (dashed blue line) is a very
poor approximation to exact squared amplitude (red line) outside
Regge limits :
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Here kT1 = zqT1 + ∆, kT2 = (1 − z)qT1 − ∆, |∆| ≪ |qT1| – final-state collinear limit. 44 / 46



Quasi-Eikonal approximations

This problem is another manifestation of importance of
power-suppressed corrections.
It was noticed in several approaches(e.g. in HEJ-approach [J.
Andersen, et.al.]) that minor kinematic improvements to the LP
BFKL amplitudes lead to dramatic improvement of their agreement
with exact amplitudes.
Minimal version of such improvement is just to relax the standard
BFKL approximation for the t-channel propagator:

−1

q2
T

→ 1

tQE
, tQE = −q2

T − zk2
T

1− z
,

Result of such Quasi-Eikonal approximation is shown by magenta line
in the previous plot.
This approximation should be applied not only to the subtraction
term, but also iterated to all orders, to produce the UPDF. This
turns out to be technically similar to above-mentioned DL/Blümlein
approach.
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Conclusions
◮ kT -factorization is most suitable for doubly-asymptotic limit
x→ 0, Q2 → ∞. Outside this limit different approaches diverge.

◮ Fits for single J/ψ and Υ production look quite reasonable, work
over wide range of energies

◮ As a phenomenological tool – produces lot of interesting results
for challenging (multiscale, differential) observables.

◮ For Υ+D– production, the SPS mechanism is not as much
supressed as it was in LO CPM

◮ Reasonable description of all distributions for double-J/ψ, except
of large Mψψ and ∆Y was found. Significant SPS contributions
in latter regions where identified

◮ Development of NLO formalism is in progress. Single J/ψ
(electro-)production is on top of the list of processes to consider,
but similar problems with P -wave contributions as in CPM are
to be expected

Thank you for your attention!
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