LHC-Fixed-Target Quarkonium Physics Case

L. Massacrier Laboratoire de Physique des deux infinis Irène Joliot Curie (IJCLab)

Quarkonia as tools, 12-18 Jan 2020, Aussois, France

□ Advantages of the fixed-target mode versus the collider mode

- □ Physics motivation for a fixed-target programme at the LHC
- □ Physics motivation: Spin and 3D nucleon structure
- □ A selection of projections for the FT@LHC spin physics case
 - Probing the quark Sivers effect with Drell-Yan
 - Probing the gluon Sivers effect with
 - Open Heavy Flavours
 - Vector quarkonium
 - C-even quarkonium
 - Quarkonium associated production
 - > Access to linearly polarized partons in unpolarised protons
 - Exclusive quarkonium photoproduction to probe the GPDs

Advantages of the fixed-target mode versus the collider mode

□ Several unique assets of the fixed-target mode w.r.t to the collider mode:

> Accessing the high Feynman- x_F domain ($x_F = p_z/p_{zmax} = x_1-x_2$)

→ Entire CM forward hemisphere (y_{CM} > 0) within 0° < θ_{lab} < 1° (high multiplicities → large detector occupancy)
→ Backward physics (y_{CM} < 0) : larger angle in the laboratory frame (lower detector occupancy) : access to parton with momentum fraction x₂ → 1 in the target (ie. x_F → -1)

Advantages of the fixed-target mode versus the collider mode

Target-species versatility :

- Change the target type in a reduced amount of time
- Study the atomic-number dependence of nuclear effects
- Isospin studies with deuteron and ³He targets

> Target polarisation (depending on the technology used) :

- The only way to make spin physics at the LHC complex
- Access to single-spin asymmetries for several probes at large-x, where they are the largest
- Polarised neutron studies with D^, ${}^{3}\text{He}^{\uparrow}$

> Outstanding luminosities :

- Thanks to high target density and large LHC beam luminosity
- Without affecting the LHC performances (parasitic mode with respect to the collider mode)

Advantages of the fixed-target mode versus the collider mode

Probe a different energy range with the same accelerator :

- Same $\sqrt{s_{NN}}$ for pH, pd, pA systems (115 GeV) \rightarrow interesting for R_{pA} measurements
- Same $\sqrt{s_{NN}}$ for PbH, Pbd, PbA systems (72 GeV) \rightarrow in between top SPS and RHIC energies

Physics motivations for a fixed-target programme at the LHC (focus on quarkonium, Open HF and Drell-Yan observables)

□ Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- \succ DY to probe the nucleon and nuclear structure \rightarrow important impact on (anti)quarks PDFs and nPDFs at large-x
- > Open Heavy flavour to search for intrinsic charm in the proton at large-x \rightarrow useful for HE neutrino and CR physics
- > Open HF, Quarkonia and associated production to probe the gluon distribution at large-x

Study Heavy-ion collisions between SPS and RHIC energies toward large rapidities (see B. Audurier talk)
Advance our understanding of the dynamics and spin of gluons inside (un)polarised nucleons

Physics motivations : Spin and 3D nucleon structure

Unraveling the nucleon spin

 \succ OAM of quark and gluon still largely unknown \rightarrow need observable sensitive to parton position and momentum

- Indirect info on OAM via Single Transverse Spin Asymmetry measurements in hard-scattering processes with transv. polarised hadrons
- Two formalisms to treat STSA : Collinear Twist-3 formalism (CT3) and Transverse-Momentum-Dependent factorization (TMD)
- FT@LHC : high luminosity, highly polarized target, access to large-x → best suited for inclusive set of A_N measurements (including Open-HF and Quarkonia whose STSA are poorly known)
- Access to linearly polarised gluons in unpolarized nucleons: « Boer-Mulders » effect for gluons (using pseudo-scalar quarkonium production, associated quarkonium production)
- > Importance of complementary measurements in pH (w.r.t lepto-induced reaction) since TMD are not universal

Implementations and luminosities (relevant for the spin physics case)

LHCb-like detector (with gas-jet or storage cell options)

		proton beam ($\sqrt{s_{NN}} = 115 \text{ GeV}$)				
Target			L	$\sigma_{\rm inel.}$	Inel. rate	∫L
			$[cm^{-2} s^{-1}]$	[mb]	[kHz]	[pb ⁻¹]
Internal gas target	Gas-Jet	H^{\uparrow}	4.3×10^{30}	39	168	43
		H ₂	1.0×10^{33}	39	40000	1×10^{4}
		\mathbf{D}^{\uparrow}	4.3×10^{30}	72	309	43
		³ He [†]	3.4×10^{32}	117	40000	3.4×10^3
		Xe	3.1×10^{31}	1300	40000	310
	Storage Cell	H^{\uparrow}	0.92×10^{33}	39	35880	9.2×10^{3}
		H_2	1.0×10^{33}	39	40000	1×10 ⁴
		\mathbf{D}^{\uparrow}	5.6×10^{32}	72	40000	5.6×10^{3}
		³ He [↑]	1.3×10^{33}	117	40000	13×10^{3}
		Xe	3.1×10^{31}	1300	40000	310

Assuming LHCb runs the full year in fixed target mode The storage cell is considered to be 1m long. Maximum readout rate considered: 40MHz in pp ALICE-like detector (with gas-jet or pol. solid target options)

Target			proton beam ($\sqrt{s_{NN}} = 115 \text{ GeV}$)				
			L	$\sigma_{inel.}$	Inel.	∫L	
					rate		
			$[cm^{-2} s^{-1}]$	[mb]	[kHz]	[pb ⁻¹]	
	Gas-Jet	H^{\uparrow}	4.3×10^{30}	39	168	43	
		H ₂	2.6×10^{31}	39	1000	260	
Internal gas target		\mathbf{D}^{\uparrow}	4.3×10^{30}	72	309	43	
		³ He [↑]	8.5×10^{30}	117	1000	85	
		Xe	7.7×10^{29}	1300	1000	7.7	
	Storage Cell	H^{\uparrow}	2.6×10^{31}	39	1000	260	
		H ₂	2.6×10^{31}	39	1000	260	
		\mathbf{D}^{\uparrow}	1.4×10^{31}	72	1000	140	
		³ He [†]	8.5×10^{30}	117	1000	85	
		Xe	7.7×10^{29}	1300	1000	7.7	
Beam	E1039	NH_3^{\uparrow}	2.4×10^{30}	420	1000	24	
splitting		ND_3^{\uparrow}	1.9×10^{30}	519	1000	19	

Assuming ALICE runs the full year in fixed target mode Proton flux considered for beam splitting option : ~ 5×10^8 p/s Maximum readout rate considered 1MHz in pp/pA collisions A selection of projections for the FT@LHC spin physics case (Drell-Yan, Open Heavy Flavour and Quarkonia)

Most of the material from the AFTER review : <u>https://arxiv.org/abs/1807.00603</u> See also papers dedicated to the simulations performed by the AFTER@LHC study group: <u>Adv.High Energy Phys. 2015 (2015) 986348</u> <u>Few Body Syst. 58 (2017) no.4, 139</u> <u>Few Body Syst. 58 (2017) no.5, 148</u> <u>Phys.Lett. B793 (2019) 33-40</u> Quark Sivers effect: correlation between the quark transverse momentum k_T and the proton spin

□ Can be probed with Drell-Yan process (unique tool theoretically well understood) □ Large STSA expected at high x_F for DY in polarised collisions at FT@LHC energies

$$A_N = \frac{1}{\mathcal{P}_{\text{eff}}} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

 $\mathcal{P}_{\mathrm{eff}}$: effective polarization

 $\sigma^{\uparrow[\downarrow]}$: cross section of particle produced with the target spin polarised upward (downward)

M. Anselmo, ECT*, Feb. 2013 (Courtesy U. d'Alessio)

Important prediction shared by both CT3 and TMD formalisms : sign change of asymmetry between SIDIS and DY processes

$$f_{1T}^{\perp q}(x, k_T^2)_{\text{DY}} = -f_{1T}^{\perp q}(x, k_T^2)_{\text{SIDIS}}$$

Probing the quark Sivers effect with Drell-Yan

Experiment	colliding systems	beam energy [GeV]	√s [GeV]	x^{\uparrow}	\mathcal{L} [cm ⁻² s ⁻¹]	$\mathcal{P}_{\mathrm{eff}}$	\mathcal{F} [cm ⁻² s ⁻¹]
AFTER@LHCb: $z = 0$		71.21529	2/322	0.05 ÷ 0.95	22	100000	22
AFTER@LHCb: $z = -0.4$ m	pH^{\uparrow}	7000	115	$0.02 \div 0.95$	0.92×10^{33}	80%	6.0×10^{32}
AFTER@LHCb: $z = -1.5$ m				$0.01 \div 0.15$			
AFTER@LHCb: $z = 0$		1.50.011	25222	$0.05 \div 0.95$	abai steer	10000000	and the second
AFTER@LHCb: $z = -0.4$ m	p ³ He [↑]	7000	115	$0.02 \div 0.95$	3.7×10^{33}	23%	5.9×10^{32}
AFTER@LHCb: $z = -1.5$ m				$0.01 \div 0.15$			
AFTER@LHCb: $z = 0$				$0.05 \div 0.95$			
AFTER@LHCb: $z = -0.4$ m	pD^{\uparrow}	7000	115	$0.02 \div 0.95$	1.1×10^{33}	78%	1.3×10^{33}
AFTER@LHCb: $z = -1.5$ m				$0.01 \div 0.15$			
AFTER@ALICE _{μ} : $z = 0$				0.1 ÷ 0.7			
AFTER@ALICE _{μ} : $z = -4.7$ m	pH^{\uparrow}	7000	115	0.08 ÷ 0.35	2.5×10^{31}	80%	1.6×10^{31}
AFTER@ALICE _{CB} : $z = -4.7$ m				0.4 ÷ 0.95			
COMPASS (CEDN)(2051	$\pi^{-}\mathrm{NH}_{3}^{\uparrow}$	100	10	0.05 : 0.55	2×10^{33}	16%	6.8×10^{32}
COMPASS (CERN)[295]	π^{-6} LiD	190	19	$0.03 \div 0.33$	3.6×10^{33}	22%	1.2×10^{33}
PHENIX/STAR (RHIC) [296]	$p^{\uparrow}p^{\uparrow}$	collider	510	$0.05 \div 0.1$	2×10^{32}	50%	5.0×10^{31}
E1039 (FNAL) [297]	pNH_3^{\uparrow}	120	15	$0.1 \div 0.45$	4×10^{35}	15%	1.5×10^{35}
E1027 (FNAL) [292]	$p^{\uparrow}H_2$	120	15	0.35 ÷ 0.9	2×10^{35}	60%	7.2×10^{34}
NICA (JINR) [298]	$p^{\uparrow}p$	collider	26	0.1 ÷ 0.8	1×10^{32}	70%	4.9×10^{31}
fsPHENIX (RHIC) [299]	$p^{\uparrow}p^{\uparrow}$	collider	200	0.1 ÷ 0.5	8×10^{31}	60%	$2.9 imes 10^{31}$
fsPHENIX (RHIC) [299]	$p^{\uparrow}p^{\uparrow}$	collider	510	$0.05 \div 0.6$	6×10^{32}	50%	1.5×10^{32}
PANDA (GSI) [300]	$ar{p}H^{\uparrow}$	15	5.5	$0.2 \div 0.4$	2×10^{32}	20%	8.0×10^{30}

□ First measurement of DY A_N by COMPASS
□ FT@LHC : reach higher precision and perform measurements over a wide range of x₂ and masses
→ towards accurate measurement of the Sivers function and confirmation/falsification of the sign change

$$\mathcal{F} = P_{eff}^2 \times \mathcal{L} \times \sum_i A_i$$

LHC-Fixed-Target Quarkonium physics case - Laure Massacrier

Probing the quark Sivers effect with Drell-Yan

DY production with an «LHCb-like» detector

□ Comparison with theoretical predictions from AD'AM (Adv. High Energy Phys. 2015 (2015) 475040) and EIKV (Phys. Rev. D89 (2014) 074013), both based on fits of SIDIS data for $x \le 0.3$

High statistics of FT@LHC mandatory to discriminate between the theoretical approaches especially at large rapidity
Test of TMD factorization and constrain on 3-parton correlation functions

 \Box Also access to Sivers functions in the neutron thanks to polarized He target \rightarrow isospin dependence of Sivers functions

Gluon Sivers effect: correlation between the gluon transverse momentum k_T and the proton spin

No analogous process to DY to probe the gluon content, being both experimentally clean and theoretically well-controlled
Large yields in FT@LHC for several gluon sensitive probes (Open HF, quarkonia ~ 10⁶ Y and 10⁹ J/Ψ per year)
Gluon TMDs more « universal », gluon Sivers functions can be reduced to 2 independent ones

with Open Heavy Flavours

□ « LHCb-like detector », precision at percent level on D^0A_N for $p_T \le 5$ GeV/c

Probing the gluon Sivers effect with vector quarkonium production

 \Box Measurement of bottomonium A_N statistically doable with FT@LHC

□ Large charmonium yields → precise access to gluon content of the proton over a much wider x-range than at RHIC
□ Several possible explanations for current A_N measurements compatible with zero (gluon Sivers function might be zero, J/Ψ production mechanism via colour-octet transitions...) → new precise measurements needed

 \Box Y(nS) production with an « LHCb-like » detector

Probing the gluon Sivers effect with vector quarkonium production

- J/Ψ and Ψ(2S) production with an « LHCb-like » detector, compared to PHENIX data
- $\hfill \label{eq:large}$ Large integrated luminosity needed for $\Psi(2S)\,A_N$
- Comparison with 2 models :
 - Generalised parton model (GPM)
 - Color Gauge invariant version of GPM model(CGI)

Probing the gluon Sivers effect with C-even quarkonium production

- □ Feasibility of the study of χ_c ($p_T \ge 2$ GeV/c) states and $\eta_c (p_T \ge 6$ GeV/c) already demonstrated by LHCb in busy collider environement
- \Box Benefit at lower energy from the reduced combinatorial background \rightarrow help access to lower p_T
- □ Similar yields expected as for vector quarkonia (but smaller branching ratio and efficiencies)

 $\hfill\square$ STSA of η_c gives access to tri-gluon correlation functions

 \Box Study as a function of $p_T \rightarrow$ transverse momentum dependence of the gluon Sivers function

Probing the gluon Sivers effect with associated quarkonium production

□ Allow to probe TMD evolution mechanism by tuning the mass of the final state $(J/\psi + J/\psi, J/\psi + \chi, Y(nS) + \chi)$ □ Thanks to large lumi in FT@LHC, large yearly double J/ψ yield (~ 300 to 1500)

□ LHCb-like detector

- \blacktriangleright Integrated di- J/ ψ A_N of the order of few percent
- > $A_N(k_T)$: access for the first time to the k_T dependence of the gluon Sivers TMD up to $k_T \sim 4$ GeV

Access to the linearly polarised partons in unpolarised proton

« Boer-Mulders » effect: correlation between the parton transverse momentum k_T and its spin

 \Box For quarks, encoded in $h_1^{\perp q}$, sign change expected in SIDIS and DY

□ For gluons, encoded in the distribution of linearly polarised gluons $h_1^{\perp g} \rightarrow$ no experimental extraction performed so far □ Can be investigated with, for instance:

> (pseudo)scalar quarkonium production \rightarrow low-p_T spectra affected differently by $h_1^{\perp g}$

 \rightarrow FT@LHC: Better access to low-p_T thanks to boost, though challenging

Process	expected yield	<i>x</i> ² range	<i>M</i> [GeV]	q_T modulation
η_c [69, 70]	<i>O</i> (10 ⁶)	$0.02 \div 0.5$	<i>O</i> (3)	$0 \div 80\%$
$\chi_{c0}(1P)$ [69]	<i>O</i> (10 ⁴)	$0.02 \div 0.5$	<i>O</i> (3)	$0 \div 80\%$
$\chi_{c2}(1P)$ [69]	<i>O</i> (10 ⁶)	$0.02 \div 0.5$	<i>O</i> (3)	< 1%
$\chi_{b0}(nP)$ [69]	<i>O</i> (10 ²)	$0.1 \div 1$	O (10)	$0 \div 60\%$
$\chi_{b2}(nP)$ [69]	<i>O</i> (10 ³)	$0.1 \div 1$	<i>O</i> (10)	< 1%

Modulation of the transverse momentum spectrum induced by $h_1^{\perp g}$

> $J/\Psi + \chi$, $J/\Psi + J/\Psi \rightarrow$ final states with different inv. mass (test of TMD evolution)

Process	expected yield	<i>x</i> ² range	<i>M</i> [GeV]	$\cos 2\phi$ modulation	$\cos 4\phi$ modulation
$J/\psi + \gamma [71]$	$1000 \div 2000$	$0.1 \div 0.6$	<i>O</i> (10)	$0 \div 5\%$	$0 \div 2\%$
$J/\psi + J/\psi [348]$	300 ÷ 1500	$0.1 \div 0.8$	8 ÷ 12	$0 \div 8\%$	$0 \div 20\%$

Azimuthal modulations of the spectrum induced by $h_1^{\perp_g}$

Exclusive quarkonium photoproduction to probe the GPDs

- □ Exclusive photoproduction studied in « UPC » probes the internal structure of hadrons in terms of GPDs → related to the OAM carried by quarks and gluons via Ji's sum rule
- Exclusive J/Ψ production sensitive to gluon GPDs, STSA sensitive to yet unknown GPD E_g (importance piece of spin sum rule)
- \Box Enough precision at FT@LHC to perform a first extraction of E_g

Conclusion

- A fixed-target programme at the LHC will provide a unique playground to explore the connection between the TMD and CT3 approaches, in particular in the gluon sector where the study of quarkonia can play an important role
- A fixed-target programme at the LHC will open the way for a full three dimensional mapping of the parton momentum, and in turn, for more insights on the orbital angular momentum of the quarks and gluons

□ Since LHC beams are not polarised, it is a unique opportunity to perform a spin physics programme at the LHC!

BACKUP

Open-HF and quarkonia to constrain high-x nuclear gluon distributions

- LHCb-like detector, pXe collisions
- Extremely promising first projections using Bayesian reweighting
- Assume that other nuclear effects are under control : different observables are thus needed
- Unique constraints on gluon nPDFs at high-x and low scales

Drell-Yan process to probe the nucleon structure at large-x

LHCb-like detector, pp collisions

Extension of the measurement to larger x₂ w.r.t existing Fermilab data (suffering from limited statistical precision at kinematic boundaries)

Impact on quark PDFs evaluated with Bayesian reweighting

Drell-Yan process to probe the nucleon structure at large-x

LHCb-like detector, pp collisions

Extension of the measurement to larger x₂ w.r.t existing Fermilab data (suffering from limited statistical precision at kinematic boundaries)

- Impact on quark PDFs evaluated with Bayesian reweighting
- Knowledge of valence quarks distribution considerably improved for x > 0.4 (esp. for u quark)

Drell-Yan process to probe the nuclear structure at large-x

- LHCb-like detector, pXe collisions
- Unique acceptance compared to existing DY pA data (E866 & E772 @Fermilab)
- $\hfill\square$ Same coverage in pp and pA
- \Box Large yields up to $x_2 \rightarrow 1$

- Decrease of the nuclear PDF uncertainties
- Significant impact for u and d quark nPDFs at large x

Open-HF at large-x to study intrinsic charm in the proton

□ LHCb-like detector, pp colisions

Experimental precision in this p_T/y range should provide strong constraints on intrinsic charm model

Probing the gluon Sivers effect with Open HF

Probing the gluon Sivers effect with Open HF

Probing the quark Sivers effect with Drell-Yan

