Excited quarkonia states in pp and p-Pb collisions

Biswarup Paul Quarkonia As Tools 2020 Centre Paul Langevin, Aussois, France 12-18th January 2020

Istituto Nazionale di Fisica Nucleare

• Quarkonium production:

pp collisions:

- \rightarrow Reference process to understand the pA and A-A collisions
- \rightarrow Useful to investigate production mechanisms (CEM, NRQCD ...)

p-Pb collisions:

Cold nuclear matter (CNM) effects:

- → Initial state effects: Gluon shadowing, gluon saturation
- \rightarrow Coherent parton energy loss
- → Final state effects: comovers absorption ..

LHC experiments

- Acceptance of J/ ψ measurements by the four LHC experiments as a function of $p_{\rm T}$ and rapidity
- For the mid rapidity detectors (as the ALICE central barrel, ATLAS and CMS) only one half of the acceptance is shown
 - For Y family, all experiments have acceptance down to zero $p_{\rm T}$

Biswarup Paul

$\psi(2S)$ production in pp collisions

- CGC+NRQCD [Phys. Rev. Lett. 113 (2014) 192301] for prompt $\psi(2S)$ at low p_T
- FONLL for $\psi(2S)$ from B decay
- No dependence of $\psi(2S)/J/\psi$ ratio on \sqrt{s}
- No change in shape of the $\psi(2S)/J/\psi$ as a function of p_T

Multiplicity dependence of quarkonia in pp collisions

- Underlying physics:
- Multi-parton interaction (MPI)
- Interplay between hard and soft QCD process
- Linear increase of quarkonia yield with multiplicity at ALICE (forward-y)
- No strong energy and quarkonia states dependence observed at ALICE
- $\Upsilon(2S)/\Upsilon(1S)$ has no multiplicity dependence at ALICE (forward-y) while decreasing trend at CMS (mid-y)

Nuclear modification factor of $\psi(2S)$ at $\sqrt{s_{NN}} = 8.16$ TeV

- $\psi(2S)$ suppression is stronger than the J/ ψ one, especially at backward rapidity
- No strong y and $p_{\rm T}$ dependence of $\psi(2S) R_{\rm pPb}$
- Theoretical predictions based on shadowing and energy loss can not describe the stronger $\psi(2S)$ suppression
- Models including final-state effects reproduce $\psi(2S)$ behaviour at both forward and backward rapidity

Biswarup Paul

Quarkonia As Tools 2020

 $R_{\rm pPb}^{\rm J/\psi} = \frac{Y_{\rm pPb}^{\rm J/\psi}}{\langle T_{\rm rev} \setminus \sigma^{\rm J/\psi}}$

 $\Upsilon(nS) R_{pPb}$ vs y_{cms} at $\sqrt{s_{NN}} = 8.16$ TeV

- $\Upsilon(1S)$ and $\Upsilon(2S) R_{pPb}$ agree within 0.80 both at forward and backward rapidity
- The shadowing contribution and most of the theory uncertainties cancel out in the ratio
- The shape of the theoretical calculation is, hence, mainly driven by the interactions with the comoving particles, which affect mostly the $\Upsilon(2S)$ and $\Upsilon(3S)$ in the backward rapidity region

Biswarup Paul

Conclusions

- → CGC + NRQCD describes the low p_T region of charmonium cross section
 [Our phenomenology paper: Comparison of NRQCD+FONLL calculation with charmonium results in pp collisions from ALICE, ATLAS, CMS and LHCb: J. Phys. G: Nucl. Part. Phys. 42 (2015) 065101]
- \rightarrow The quarkonium production increases linearly as a function of multiplicity in different rapidity region
- \rightarrow $\psi(2S)$ shows a stronger suppression than J/ ψ , final-state effects needed to explain the $\psi(2S)$ behaviour
- → Similar $\Upsilon(1S)$ and $\Upsilon(2S)$ suppression at backward and forward-*y*
- \rightarrow Model based on shadowing and comover interaction describe the $\Upsilon(2S)$ result

Thank you

CNM

Biswarup Paul

$\psi(2S) Q_{\text{pPb}}$ vs centrality at $\sqrt{s_{\text{NN}}} = 8.16$ TeV

- The $\psi(2S)$ suppression is stronger than J/ ψ one, especially at backward rapidity
- At forward rapidity the Q_{pPb} of $\psi(2S)$ follows the same trend as J/ ψ while at backward rapidity trend is different
- At backward rapidity, final-state effects needed to explain the $\psi(2S)$ behaviour. Some discrepancies between the data and the model in the peripheral region

Biswarup Paul

A Large Ion Collider Experiment

 \rightarrow Quarkonia in ALICE are measured in two rapidity ranges:

 \rightarrow Acceptance coverage in both y regions is down to zero $p_{\rm T}$

Central barrel: $J/\psi \rightarrow e^+e^- (|y| < 0.9)$

Electrons tracked using ITS and TPC Particle identification: TPC (+TOF)

Forward muon arm: $J/\psi \rightarrow \mu^+\mu^-$ (2.5 < y < 4)

Muons identified and tracked in the muon spectrometer

 $\psi(2S)$ and $\Upsilon(nS)$ in pp collisions at $\sqrt{s} = 13$ TeV

Biswarup Paul