Perturbative QCD: status and opportunities

John Campbell, Fermilab

$\ln \, \text{Q}^2$

The landscape

- Making the bulk of LHC predictions is "simplified" by properties of QCD: asymptotic freedom and factorization.
- Collinear factorization works well (enough) for colliding protons.
- Perturbation theory is a powerful tool!

Higher orders

- Systematic improvement in the prediction at each order of perturbation theory:
 - better description (partons initiating hard process, radiation in final state)
 - reduced dependence on unphysical renormalization and factorization scales.
- But still hard work; primary emphasis on best bang-for-buck!

LO and NLO

- Any process can (in principle) be computed up to NLO using off-the-shelf tools
- For producing cross-sections, observables and events
 - Madgraph5/aMC@NLO, SHERPA, Herwig, ...
- Accessing all necessary matrix elements (further assembly required!)
 - OpenLoops, RECOLA, GoSam, NLOX, ...
- All thanks to advances in understanding multiple elements of the calculation
 - importance of recursion (recycling)
 - universal and efficient methods to handle infrared singularities (subtraction)
 - knowledge of analytic behavior of amplitudes (unitarity methods)
 - structure of one-loop integrals
 - efficient phase-space integration
 -
- Of course, all of the above applies not just to hadron-hadron colliders.

Beyond NLO

- Two main areas requiring attention:
 - calculation of multi-loop diagrams beyond 2→2 topology
 - cancellation of infrared singularities: multiple strategies currently in use, all computationally challenging, no clear consensus on best approach

Example of infrared complications: X+jet @ NNLO

"Pure virtual", e.g. 2-loop diagrams (Born topology)

"Real-virtual", 1-loop with an additional parton

"Real-real", two additional partons

NNLO progress

NNLO: hot topics and prospects

- Pushing beyond the current 2→2 frontier desirable for many reasons:
 - Higgs: ttH and Higgs+2 jets
 - Precision SM: 3 jets, W/Z/photon + 2 jets
- Requires deeper understanding of two-loop amplitudes: analytic structure, new (elliptic) integrals, numerical techniques for handling integrals.

numerical evaluation of planar 2-loop W+4 parton amplitudes

Hartanto, Badger, Bronnum-Hansen, Peraro (2019)

NNLO: hot topics and prospects

- Pushing beyond the current 2→2 frontier desirable for many reasons:
 - Higgs: ttH and Higgs+2 jets
 - Precision SM: 3 jets, W/Z/photon + 2 jets
- Requires deeper understanding of two-loop amplitudes: analytic structure, new (elliptic) integrals, numerical techniques for handling integrals.

$$\mathcal{H}_{1}^{(2,0)} = \sum_{S_{\mathcal{T}_{1}}} \left\{ -\kappa \frac{[45]^{2}}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} I_{123;45} + \kappa^{2} \frac{1}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} \left[5 \, s_{12} s_{23} + s_{12} s_{34} + \frac{\operatorname{tr}_{+}^{2}(1245)}{s_{12} s_{45}} \right] \right\}$$

$$\mathcal{H}_{13}^{(2,1)} = \sum_{S_{\mathcal{T}_{13}}} \left\{ \kappa \frac{[15]^{2}}{\langle 23 \rangle \langle 34 \rangle \langle 42 \rangle} \left[I_{234;15} + I_{243;15} - I_{324;15} - 4 \, I_{345;12} - 4 \, I_{354;12} - 4 \, I_{435;12} \right] - 6 \, \kappa^{2} \left[\frac{s_{23} \, \operatorname{tr}_{-}(1345)}{s_{34} \, \langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} - \frac{3}{2} \frac{[12]^{2}}{\langle 34 \rangle \langle 45 \rangle \langle 53 \rangle} \right] \right\},$$

full analytic 5-parton +++++ amplitude

rich, (2019)

Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zola (2019)

What does it mean?

 The increasing availability of calculations at NNLO is essential to properly describe much of the data taken at the LHC.

Precision

- Much-reduced scale dependence yields percent-level theory uncertainties that can be competitive with experimental ones
 - new opportunities for measurements and constraints
 - at this level, often need to consider electroweak effects as well (especially in tails of distributions)

Ellis, Williams, JC (2016)

Differential jet cross-sections

Gehrmann-de Ridder, Gehrmann, Glover, Huss, Pires (2019)

boost of dijet system $y_b = \frac{1}{2} |y_1+y_2|$

- Smaller uncertainties, better agreement with data (especially low boost)
- At large boost (and jet p_T) disagreement an opportunity to refine high-x PDF

PDF studies

 Need tools able to compute NNLO predictions for multiple PDFs, precisely enough to see differences, both for assessing compatibility and eventually for global fitting.

Higher-order uncertainty in fits

- Attempt to capture uncertainty in fits due to missing higher orders (scale uncertainty)
 - so far only to NLO where all calculations are readily available.
 - general formalism worked out, also applicable to nuclear & higher-twist corrections

Abdul Khalek, Ball, Carrazza, Forte, Giani, Kassabov, Nocera, Pearson, Rojo, Rottoli, Ubiali, Voisey, Wilson / NNPDF (2019)

Not just fixed order

- W and Z p_T spectrum important for PDF determination, W mass (also H for BSM effects)
- State-of-the-art combines NNLO fixed order with N3LL large-log resummation

Bizon, Chen, Gehrmann-de Ridder, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli (2018) Bizon, Gehrmann-de Ridder, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Walker (2019)

Beyond NNLO

- Only a handful of N³LO results, focussed on Higgs production
 - inclusive cross-sections for gluon fusion and VBF
 - W and Z production notably absent!
- Aside from experimental considerations, pure theoretical interest
 - first order at which all parton channels are computed to at least NLO
 - how does series converge?
- Latest results: completely-differential calculation of Higgs production at N³LO

Cieri, Chen, Gehrmann, Glover, Huss (2018)

- excellent agreement with earlier (threshold expansion) calculation
 Dulat, Mistlberger, Pelloni (2018)
- Open question: how does perturbative stability look after fiducial cuts?

Steps towards the EIC

- N³LO jet production in DIS in the lab frame Currie, Gehrmann, Glover, Huss, Niehues, Vogt (2017)
 - overlapping uncertainty bands, factor two smaller uncertainties, better description even in regions with lower accuracy or susceptible to large logs.

NNLO calculations for DIS

 NNLO corrections to DIS jet and dijet production in the Breit frame

Currie, Gehrmann, Huss, Niehues (2017)

- inclusive jet: substantial corrections at low Q² and p_T, up to 60%, much improved description of data
- Corresponding results for eventshape distributions

Gehrmann, Huss, Mo, Niehues (2019)

In general up to 20% corrections, non-uniform, decreased scale uncertainty but small overlap with NLO

Non-perturbative effects

- Description of data requires the addition of power corrections to account for parton-hadron transition.
- Dispersive model (also used at LEP) shifts differential distribution:

$$\frac{\mathrm{d}\sigma^{\mathrm{hadron}}(F)}{\mathrm{d}F} = \frac{\mathrm{d}\sigma^{\mathrm{parton}}(F - a_F P)}{\mathrm{d}F}$$

and mean values correspondingly:

$$\langle F \rangle = \langle F \rangle^{\text{pert.}} + a_F P_{\text{r}}$$

(universal P, a_F varies by event shape)

- Precision QCD studies now possible through reanalyses of HERA data
 - opportunity for EIC

Extraction of α_s from HERA data

- Demonstration for APPLfast project
 Britzger et al (2019)
 - uses perturbative input from NNLO (NNLOJET) to produce interpolation tables for a posteriori PDF analyses

Single-inclusive production at an EIC

- Need predictions for single-inclusive hadron production: no lepton observed.
- However, when inclusive of the lepton, must also account for configurations resulting from quasi-real photon (lepton travels down the beam pipe).
 - can capture through Weizsacker-Williams approach (lepton structure function)
 Hinderer, Schlegel, Vogelsang (2015)
- Recently used to compute NNLO predictions for EIC

Abelof, Boughezal, Liu, Petriello (2016)

hard

Summary

- Perturbation theory at NLO a workhorse of the LHC.
- Many calculations at NNLO (even N³LO) have emerged over the last 5-10 years that are suited to precision studies:
 - describe data over a wider kinematic range;
 - exhibit uncertainties smaller than, or at least competitive with, data.
- Turning complex calculations into tools for data analysis still a challenge
 - new tools making better use of CPU resources, interpolation techniques
- Some attention from the LHC precision community turning to topics closer to EIC
 - variety of calculations for DIS in particular
- Areas ripe for cross-fertilization:
 - inclusion of higher-order corrections in Monte Carlo tools
 - extraction of PDFs at higher perturbative orders, "ultimate" LHC precision
 - understanding remaining non-perturbative effects, e.g. in event shapes