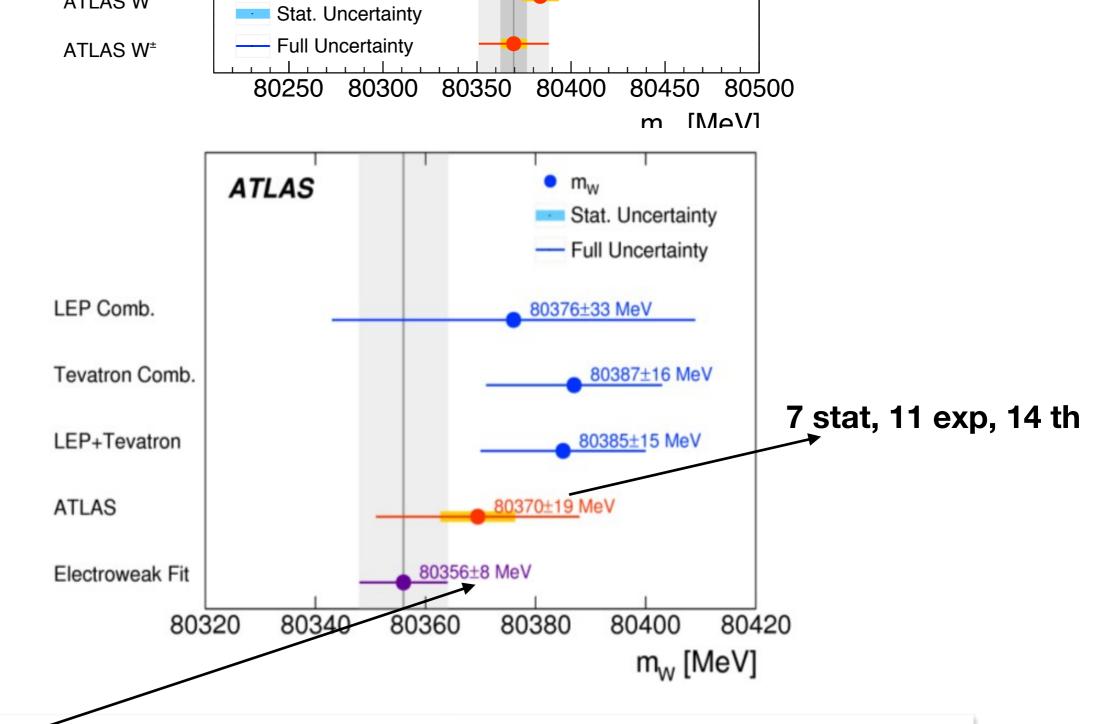
The effect of a flavor-dependent intrinsic $k_{\rm T}$ on the determination of W mass at hadron colliders

in collaboration with: A.Bacchetta (Pavia), M. Radici (Pavia), A. Signori (Argonne)

arXiv:1807.02101 - Phys.Lett. B788 (2019) 542-545



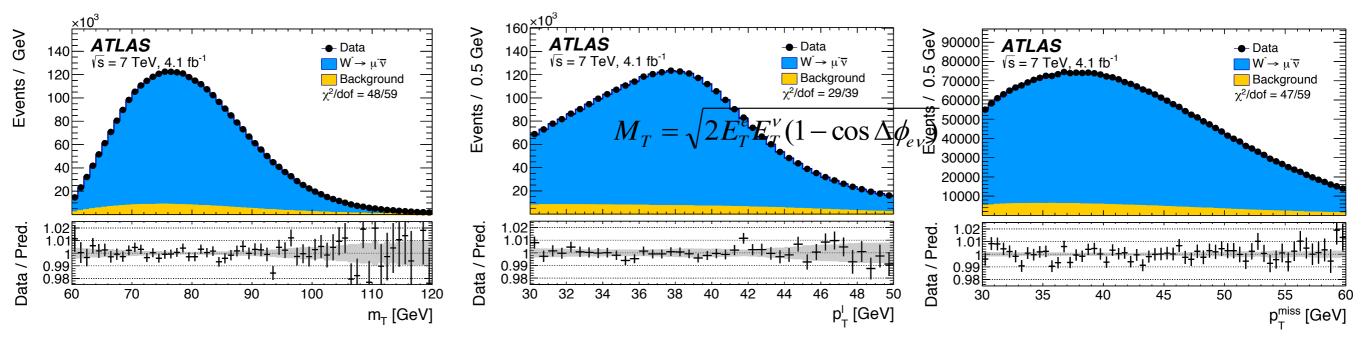
Istituto Nazionale di Fisica Nucleare

The determination of the *W*-boson mass from the global fit of the electroweak parameters has an uncertainty of 8 MeV, which sets a natural target for the precision of the experimental measurement of the mass of the *W* boson. The modelling uncertainties, which currently dominate the overall uncertainty on the m_W measurement presented in this note, need to be reduced in order to fully exploit the larger data samples available at centre-of-mass energies of 8 and 13 TeV. A better knowledge of the PDFs, as achievable with the inclusion in PDF fits of recent precise measurements of *W*- and *Z*-boson rapidity cross sections with the ATLAS detector [41], and improved QCD and electroweak predictions for Drell-Yan production, are therefore crucial for future measurements of the *W*-boson mass at the LHC. **ATLAS**, EPJC 78, 110 (2018)

The extraction of physical quantities

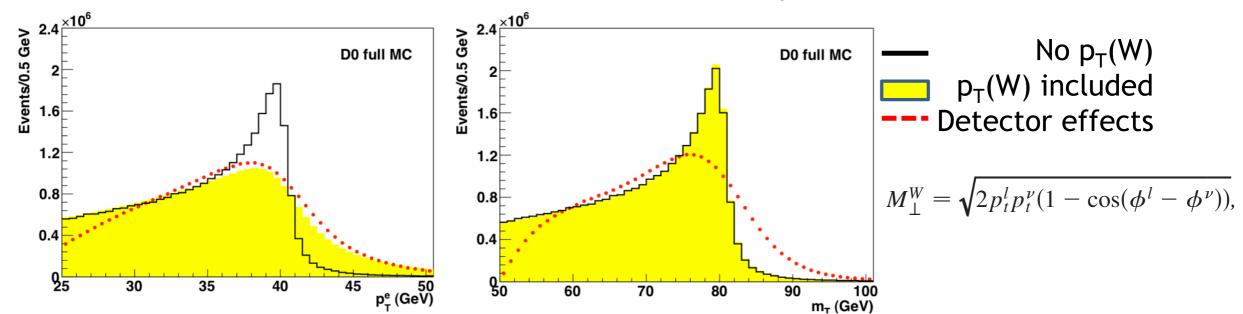
Observables

accessible via counting experiments: cross sections and asymmetries


Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

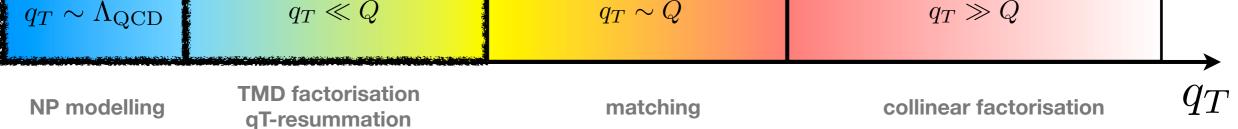
Template fit


- 1. generate several histograms with <u>highest available theoretical accuracy</u> and best possible detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range
- 2. the histogram that best describes data selects the preferred (*i.e. measured*) Mw
- the result of the fit depends on the hypotheses used to compute the templates (PDFs, scales, non-perturbative, different prescriptions, ...)
- these hypotheses should be treated as theoretical systematic errors

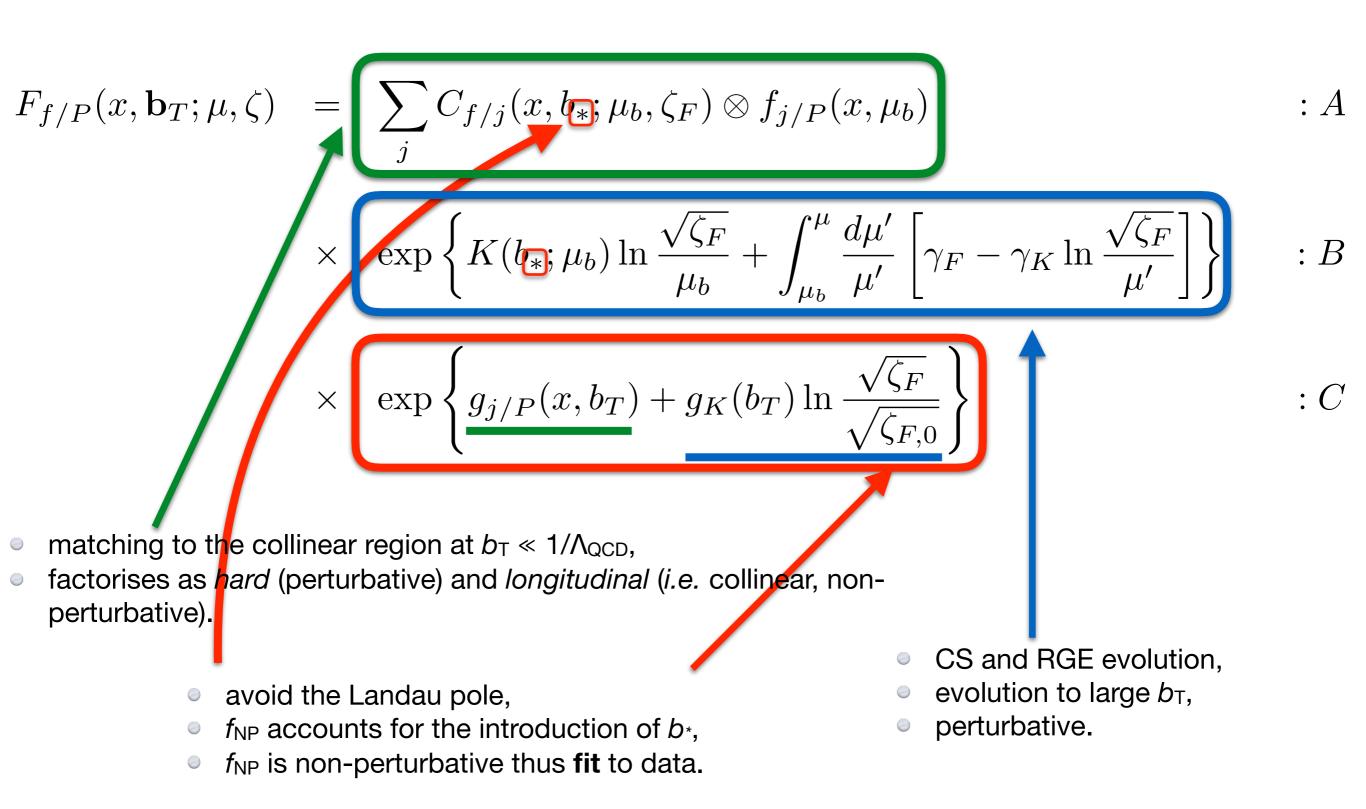
Observables and techniques

 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss}

jacobian peak enhances sensitivity to M_W

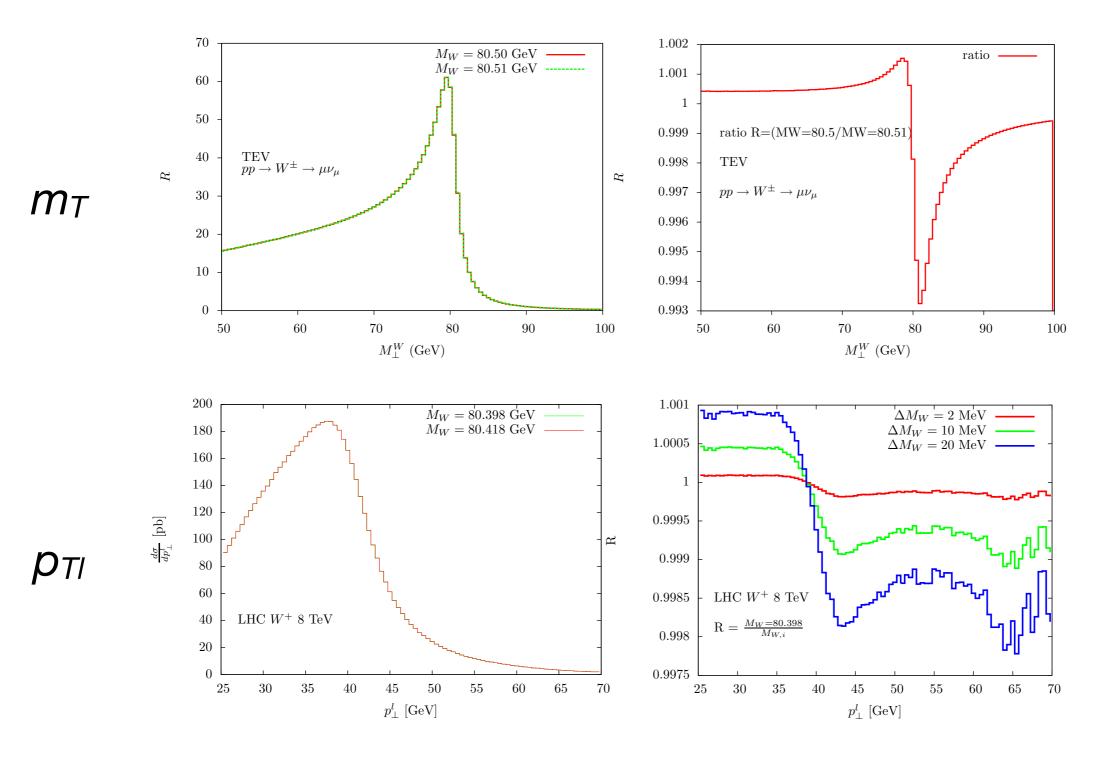

Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling p_{TW} modelling depends on flavour and all-order treatment of QCD corrections

TMD factorisation


- The q_T-distribution of a generic high-mass (Q) system produced in hadronic collisions has two main regimes:
 - for $q_T \ge Q$ collinear factorisation at fixed perturbative order is appropriate:

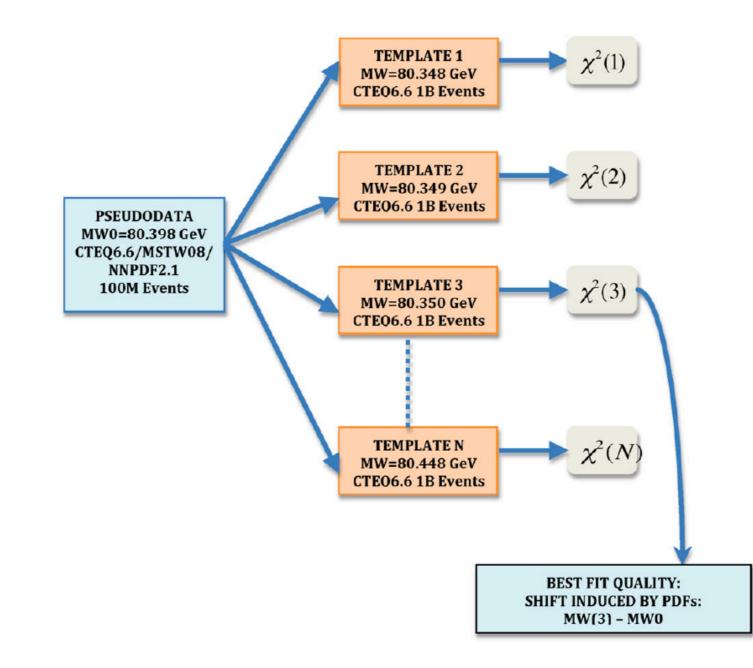
$$\left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} = \int_0^1 dx_1 \int_0^1 dx_2 f_1(x_1, Q) f_2(x_2, Q) \frac{d\hat{\sigma}}{dq_T} + \mathcal{O}\left[\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^n\right]$$

• for $q_{T} \ll Q$ transverse-momentum-dependent (TMD) factorisation at fixed $\tilde{T}_{g/A}(x, b_{T}; \mu, \zeta) = \sum_{a} \tilde{U}_{g/j}(x, b_{T}; \mu, \zeta) \otimes t_{j/A}(x; \mu) + \mathcal{O}(b_{T}\Lambda_{QCD})$ $\left(\frac{d\sigma}{dq_{T}}\right)_{res.} \xrightarrow{TMD} \frac{j_{\overline{0}}\overline{H}(\overline{Q})^{g}}{\int d^{2}\mathbf{b}_{T}e^{i\mathbf{b}_{T}\cdot\mathbf{q}_{T}}F_{1}(x_{1}, \mathbf{b}_{T}, Q, Q^{2})F_{2}(x_{2}, \mathbf{b}_{T}, Q, Q^{2}) + \mathcal{O}\left[\left(\frac{q_{T}}{Q}\right)^{m}\right]$ $\overset{q_{T} \sim res.}{=} \sigma_{0} \int d^{2}\mathbf{b}_{T}e^{i\mathbf{b}_{T}\cdot\mathbf{q}_{T}}e^{-S(\mathbf{b}_{T}, Q)}\left[\mathcal{C} \otimes f_{1}\right](x_{1}, \mathbf{b}_{T}, Q)\left[\mathcal{C} \otimes f_{2}\right](x_{2}, \mathbf{b}_{T}, Q) + \mathcal{O}\left[\left(\frac{q_{T}}{Q}\right)^{m}\right]$



TMD Evolution

Observables and techniques


Challenging shape measurement: a distortion at the few per mille level of the distributions yields a shift of O(10 MeV) of the M_W value

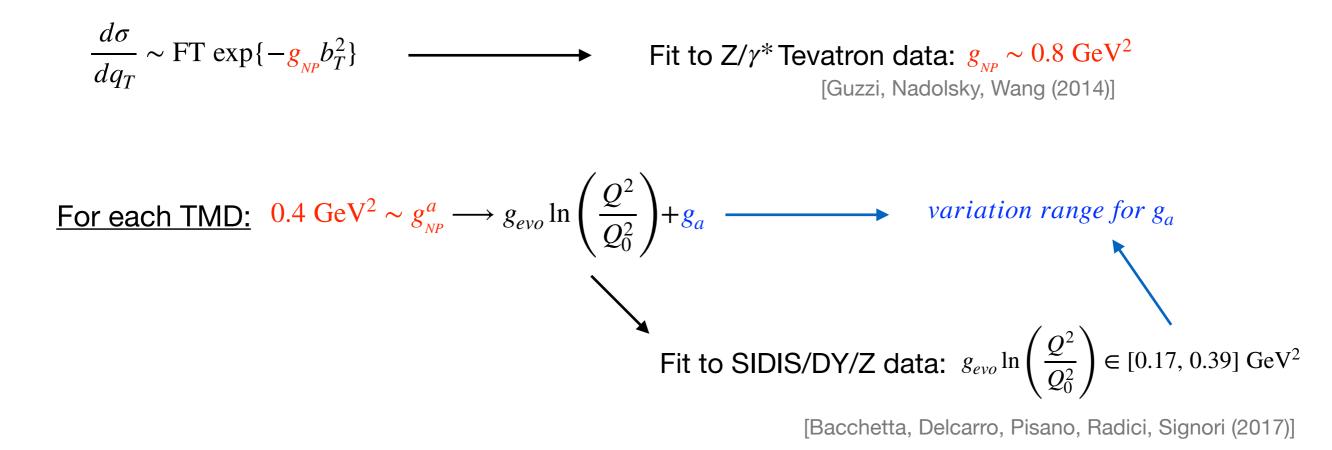
Template-fit estimate of theoretical uncertainties (ex:PDF)

Carloni Calame, Montagna, Nicrosini, Treccani PRD 69 (2004) Bozzi, Rojo, Vicini PRD 83 (2011) Bozzi, Citelli, Vicini PRD 91 (2015) Bozzi, Citelli, Vesterinen, Vicini EPJC 75 (2015)

- pseudodata with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed M_{W0}</u>
- templates with a reference PDF set (CTEQ6.6): high-statistics (1B) and different M_W
- same code used to generate both pseudodata and templates → only effect probed is the PDF one

p_{TW} and the modelling of intrinsic k_T Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality $\langle \hat{k}_{\perp,a}^2 \rangle$ for $a = u_v, d_{\overline{v}}$, sea. In total, we use five different parameters to describe all TMD PDFs. Since the present data have a limited coverage in x, we found no need of more $q_T \ll Q$ sophisticated choices different flavour structure $\Lambda_{\rm QCD}$ As for TMD FI's, fragmentation processes in which the fragmenting parton is in the valence content of the detected hadron are usually defined *favored*. Other wise the process is lclassified as $\frac{k_T^2}{\pi \langle k_T^2 \rangle_a \langle x \rangle}$ is excited from the vacuum in order to 2 for the detected hadron: favored -> different Gaussian the creation of fit most flavours pair. If the final hadron is a kaon, we further distinguis $h_{Pa} f_{a} / h_{Pa} f_{a} / h_{Pa}$ process initiated by a strange quark/antiquark from a favored $^{h}(z,P_{\perp}) = D_{1}^{a}(z)$ $\pi p_{1}B_{2}e^{-s_{1}}$ in the parametrization of collinear FFs [47] but not always [48]. In practice, we consider four different Gaussian shapes:

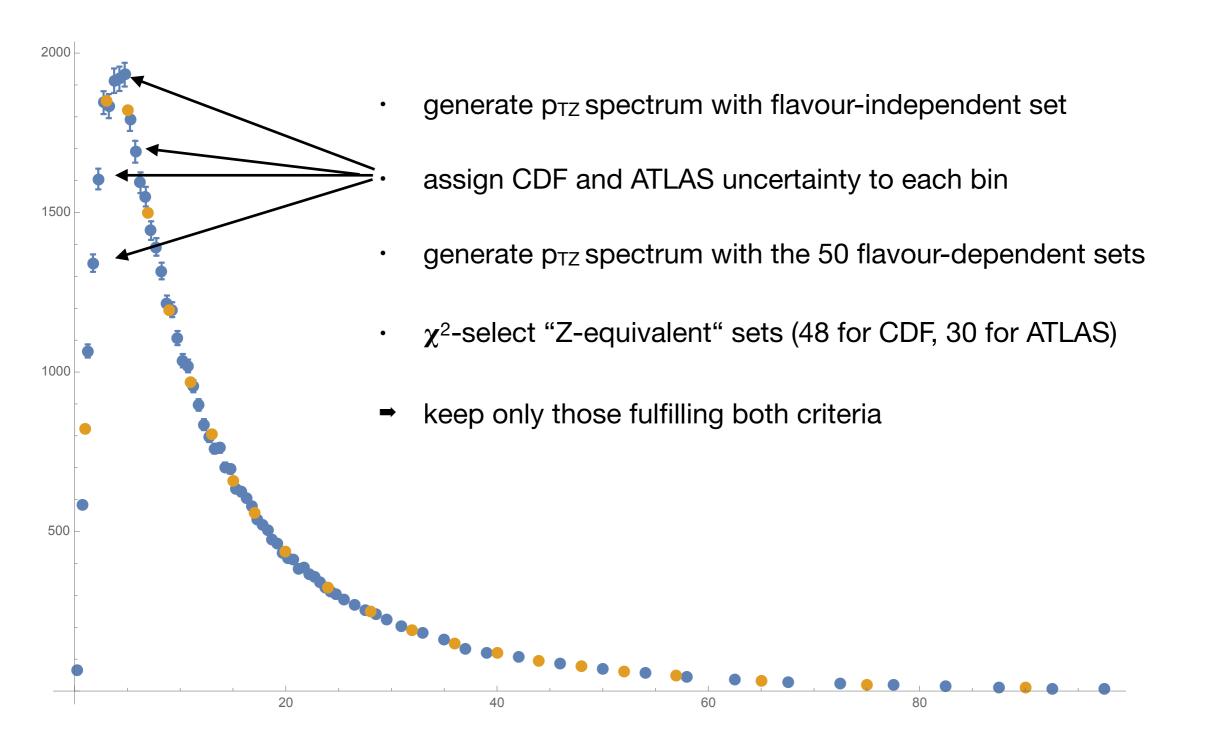
$$\rangle \neq \langle k_{\perp,\mathrm{d}_{\mathrm{v}}}^2 \rangle \neq \langle k_{\perp,\mathrm{sea}}^2 \rangle \qquad \langle P_{\perp,u\to\pi^+}^2 \rangle = \langle P_{\perp,\bar{d}\to\pi^+}^2 \rangle = \langle P_{\perp,\bar{d}\to\pi^-}^2 \rangle = \langle P_{\perp,d\to\pi^-}^2 \rangle \equiv \langle P_{\perp,\mathrm{fav}}^2 \rangle, \qquad (2.15)$$


$$\left\langle \mathbf{P}_{\perp,u\to K^+}^2 \right\rangle = \left\langle \mathbf{P}_{\perp,\bar{u}\to K^-}^2 \right\rangle \equiv \left\langle \mathbf{P}_{\perp,uK}^2 \right\rangle,$$
(2.16)

$$\left\langle \boldsymbol{P}_{\perp,\bar{s}\to K^+}^2 \right\rangle = \left\langle \boldsymbol{P}_{\perp,s\to K^-}^2 \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,sK}^2 \right\rangle,$$
(2.17)

$$\langle \boldsymbol{P}_{\perp,\text{all others}}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,\text{unf}}^2 \rangle.$$
 (2.18)

The last assumption is made mainly to keep the number of parameters under control, though


Choice of NP parameters

We consider :

- **50 flavour-dependent sets** $\{g_{NP}^{u_v}, g_{NP}^{d_v}, g_{NP}^{u_s}, g_{NP}^{d_s}, g_{NP}^s\}$ with $g_{NP}^a \in [0.2, 0.6]$ GeV²
- **1 flavour-independent set** with $g_{NP}^a = 0.4 \text{ GeV}^2$

"Z-equivalent" sets

NLL+LO QCD curves obtained through a modified version of the **DYqT** code [Bozzi, Catani, deFlorian, Ferrera, Grazzini (2009,2011)] (Tevatron 1.96 TeV & LHC 7 TeV)

Impact on the determination of M_W

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_T distributions

➡ pseudodata

 Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m*_T, *p*_{Tl}, *p*_{Tn} distributions for 30 different values of M_W

➡ templates

perform the template fit procedure and compute the shifts induced by flavour effects

- <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W⁻ (preferred by EW fit)
- lepton pt: quite important shifts (envelope up to 15 MeV)
- <u>neutrino pt</u>: same order of magnitude (or bigger) as lepton pt

	ΔM_{W^+}			ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$	
1	0	-1	-2	-2	3	-3	
2	0	-6	0	-2	0	-5	
3	-1	9	0	-2	4	-10	
4	0	0	-2	-2	-4	-10	
5	0	4	1	-1	-3	-6	
6	1	0	2	-1	4	-4	
7	2	-1	2	-1	0	-8	
8	0	2	8	1	7	8	
9	0	4	-3	-1	0	7	

	ΔM_{W^+}			$\Delta M_{W^{-}}$		
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$
1	-1	-5	7	-1	-3	8
2	-1	-15	6	0	5	10
3	-1	1	8	-1	-7	5
4	-1	-15	6	0	-4	5
5	-1	-4	6	-1	-7	5
6	-1	-5	7	0	2	9
7	-1	-15	6	-1	-6	5
8	-1	0	8	0	3	10
9	-1	-7	7	0	4	10

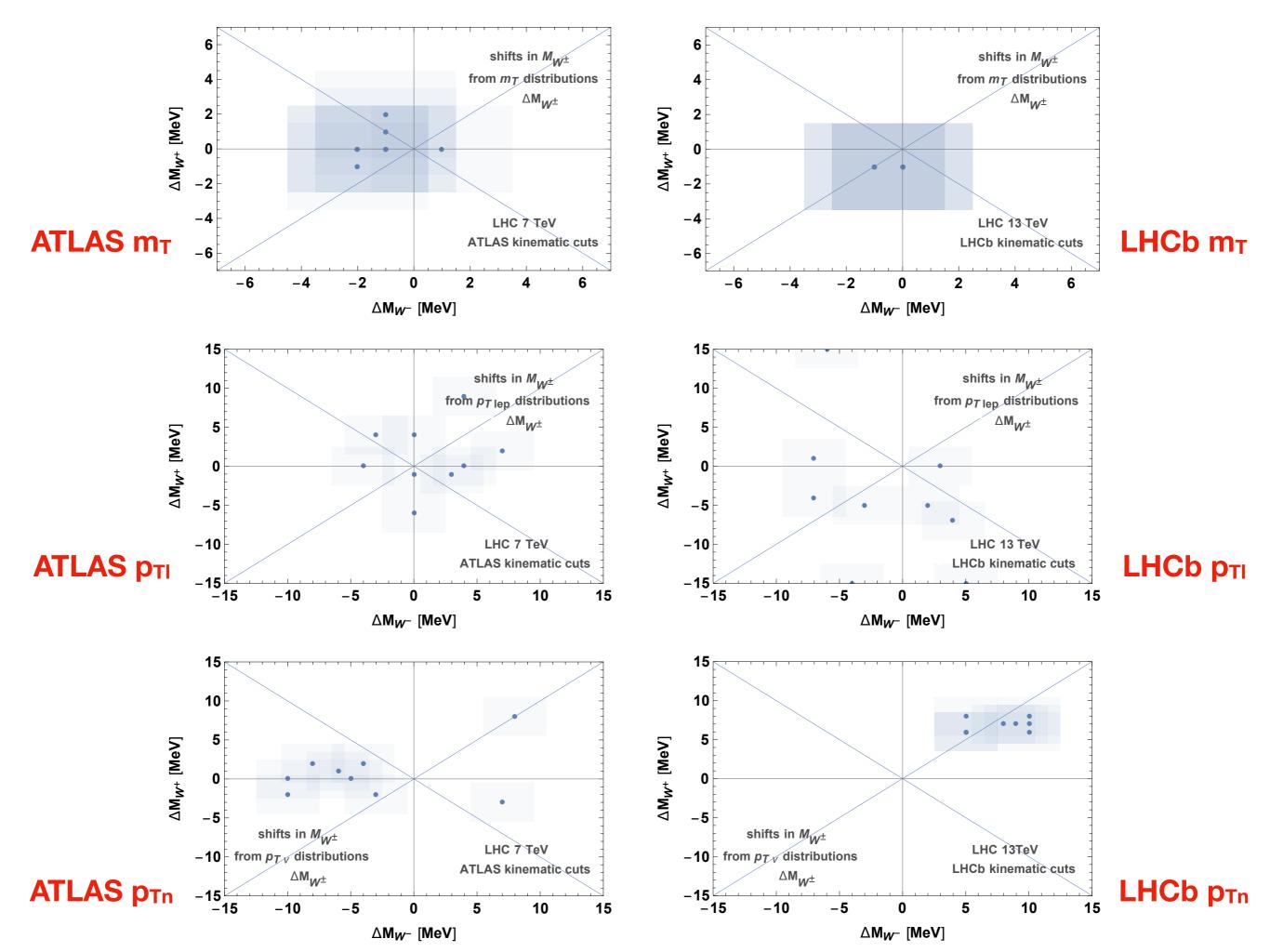

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini (2015)]

Statistical uncertainty: 2.5 MeV

Outlook

- <u>First flavour-dependent study</u> of the impact of intrinsic transverse momentum on the determination of the W mass
- Flavour effects are both <u>important</u> and <u>detectable</u>: <u>no "flavour-blind" analysis allowed</u>
- Explore other observables (ϕ^* , asymmetries, ...)
- Better constraints for f_{NP} from flavour-sensitive processes (i.e., SIDIS @ JLab, Compass, EIC)

Thank you!