

How EIC Physics

can impact LHC

E.C. Aschenauer BNL

Papers on EIC Science:

https://wiki.bnl.gov/eic/index.php/Presentations#Publications

Electron Ion Collider

Facts about the EIC

What is the EIC:

A high luminosity ($10^{33} - 10^{34}$ cm⁻²s⁻¹) polarized electron proton / ion collider with $\int s_{ep} = 20 - 140 \, GeV$

What is new/different:

Hera: factor 100 to 1000 higher luminosity both electrons and protons / light nuclei polarized nuclear beams: d to U

Two Proposals:

BNL: add an electron Beam to RHIC JLab: add a hadron facility to Cebaf

US-EIC:

polarization, ion species together with its luminosity and $\int s$ coverage makes it a completely unique machine worldwide.

Documents on EIC:

Physics: arXiv: 1212.1701 and arXiv:1708.01527 Summary on JLEIC & eRHIC accelerator designs: http://icfa-bd.kek.jp/Newsletter74.pdf

ep:

EIC extends kinematic coverage for data with polarised beams and nuclei by 2 decades in x at a fixed Q^2 and by $\frac{2}{2}$ decades in Q^2 at a fixed x

EIC:

A high luminosity ($10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1}$) polarized electron proton / ion collider with $\int s_{ep} = 20 - 140 \, GeV$

The inner life of hadrons Parton distribution functions

The Path to Imaging Quarks and Gluons

There are many reasons why one wants to have a 3d picture of nucleons and nuclei collective effects is one of them.

Obtaining a full information is an other one

HOW TO ACCESS PARTONS IN DIS

DIS / SIDIS:

Detect scattered lepton → limited flavor separation

- \rightarrow Detector: excellent e/h separation, p_T and Θ resolution Detect identified hadrons in coincidence to scattered lepton
- → needs fragmentation functions to correlate hadron type with parton flavor
- \rightarrow Detector: PID over a wide range of η

<u>Charge Current:</u>

W-exchange: direct access to the quark flavor no FF - complementary to SIDIS

 \rightarrow Detector: large rapidity coverage and large \sqrt{s}

tag sea-quarks through the sub-processes and jet substructure

→ Detector: large rapidity coverage and PID

A. Accardi et al.

0.2

0.0

Proton PDFs at high x

Baseline: CJ-15

0.8

0.6

Relative error improvement:

- pseudo-data for 0.01 < x < 0.9</p>
- □ NC Cross sections on proton target
- □ F₂ⁿ from deuterium with tagged proton spectator
- □ 10×100 GeV² at 100 fb⁻¹,
- energy scan √s=57, 49, 28 GeV at 10 fb⁻¹
- \rightarrow more studies in progress

Observables: Charge Current in ep and eA

W-exchange: direct access to the quark flavor

Ws are maximally parity violating

→ Ws couple only to one parton helicity

$$W^- + p \rightarrow u\bar{d}$$

$$W^- + n \rightarrow d\overline{u}$$

Complementary to SIDIS:

- □ high Q²-scale: > 100 GeV²
- $lue{}$ best way to measure at very high $lue{}$
- extremely clean theoretically
- No Fragmentation function
- → stringent test on theory approach for SIDIS

 UNIVERSALITY of PDFs

EIC:

first time charge current physics in polarized ep and eA collisions

effective neutron target:
(un)polarized Deuterium or /and He-3
through tagging the spectator proton(s)

Observables: Charge Current in ep

EIC has a large kinematic coverage for charge current events ()

Generated 10 fb-1 worth of ep CC events with DJANGOH for 20 GeV x 250 GeV

xFitter is used to get the impact on PDFs
good agreement between pseudo-data and prediction

Impact of CC@EIC to PDFs

Very strong impact on $x\overline{D}$ significant impact on xu_v Need to still understand in detail why there is impact on $x\overline{U}$

→ very promising first results

Access the Flavor Structure: SIDIS

12

target nucleon

What can SIDIS@EIC Teach us

PDFs: flavor separation from SIDIS@EIC

Use reweighting method to define EIC SIDIS data impact on collinear unpolarized PDFs and Fragmentation functions

Correlation factor of observable o to a flavor i

$$\rho\left[f_{i},\mathcal{O}\right] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\Delta\mathcal{O}\Delta f_{i}}\,, \quad \begin{array}{c} \text{account for} \\ \text{uncertainties} \\ \xi \equiv \frac{\delta\mathcal{O}}{\Delta\mathcal{O}} \end{array}, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad S[f_{i},\mathcal{O}] = \frac{$$

δ0 : exp. uncertainty
Observable

A PDF in Observable

PDF Constrain from SIDIS@EIC

15

LPC W

 x_B

 x_B

PDF Constrain from SIDIS@EIC

Js=45 GeV

Lesson learnt

If one wants to obtain the best PDF and FF constrain it will be critical to perform a combined fit

Jets at EIC

Observables: Di-Jets

Experimental Aspects of Jet Physics at a Future EIC arXiv:1911.00657

Only with highest EIC center-of-mass energies one can reach high di-jet masses cannot be compensated with higher luminosity at lower 1s

Underlying Event

Underlying event: everything except the particles fragmented from the hard scatted partons

- □ Toward: $|\Delta \Phi|$ < 60 degree,
 - Transverse: 60<|ΔΦ| < 120,</p>
- Away: |∆Φ| >120
- Trigger Jet is Jet with highest p_T , $\Delta \Phi$ = Φ_{part} Φ_{Jet1}
- Measurements
- charged multiplicity density,
 sum p_t density
- Density difference in 3 regions

Underlying Event

No big effect from ISR and FSR on underlying event

Underlying Event: Comparison to pp

- In each event, we analyze jets with high momentum, jet by jet.
- For each jet, we define two cones (r = 0.4).
- Each cone is centered at the same as the jet but $\pm \pi/2$ away in Φ from the jet Φ.
- \checkmark Take the particles from the two cones as underlying event.

Results from the two different methods are consistent.

 $1~GeV^2 < Q^2 < 10~GeV^2$, transverse region, p_T corrections at EIC, much smaller than STAR EIC rapidity cut (-4,4) instead of using (-1,1) as for STAR

Example for Jet Physics at an EIC: Unpolarized and polarized parton structure of photons

Details: X. Chu, ECA arXiv:1705.08831

Photon Parton Structure

In high energy ep collision, two types of processes lead to the production of di-jets:

direct: point-like photon resolved: hadronic photon

- Di-jets@EIC ideal probe to constrain (un)polarised Photon-PDFs
 - Direct/resolved contributions can be separated reconstructing x,

unpolarized cross section:

 $(p_{\tau}^{\text{di-jet}})^2 [\text{GeV}^2]$

Input: proton-CTEQ-5 & g: SAS

Photon Parton Structure

<u>polarized cross section:</u>

Input: proton-DSSV &

γ: PLB 337 373 (1994)

Jet Angularity

$$\tau_a \equiv \frac{1}{p_T} \sum_{i \in I} p_T^i \left(\Delta R_{iJ} \right)^{2-a}$$

arXiv:1910.11460

what's another
 words for
right-angularity?

Thesaurus.plus

Photoproduction Cross Section

- ☐ Jet Radius = 0.8
- □ 0.2 < inelasticity < 0.8</p>
- ☐ Lab Frame
- Cross sections shown for jet $p_T > 4$ and jet $p_T > 10$ GeV

- □ Carry out angularity studies in photoproduction region $(10^{-5} < Q^2 < 1)$
- Resolved and direct cross sections from PYTHIA in good agreement with theoretical expectations (F. Ringer, K. Lee)

Angularity: Theory Vs PYTHIA

Good agreement with PYTHIA if non-perturbative effects, if the purely perturbative result obtained within QCD factorization are convolved with a shape function

Non-Perturbative Effects

- Non-perturbative effects (MPI and pileup) are large at the LHC but the correction shifts the perturbative results to match the data
- At the EIC, the perturbative results already agree quite well and only a small correction factor is needed to make the agreement better

■ Non-perturbative effects are modeled using a single parameter shape function which is convoluted with the perturbative cross section

$$F_{\kappa}(k) = \frac{4k}{\Omega_{\kappa}^{2}} exp\left(-\frac{2k}{\Omega_{\kappa}}\right)$$

Generalized Parton Distributions (GPDs)

or

2+1d-Imaging in coordinate space

High precision imaging at EIC at low and high x Golden channel: DVCS

0.3

0.2

0.1

0.6

 b_{T} (fm)

0.8

0.4

 $e + p \rightarrow e + p + \gamma$

 $10 < Q^2 < 17.8 \text{ GeV}^2$

 $\int Ldt = 10 \text{ fb}^{-1}$

8.0

0.7

0.5

0.3

0.2

0.1

 $x_BF(x_B, 1)$

What will we learn about 2d+1 structure of the proton

GPD IHI cand EE a 1 de la ction of t, x and Q2

arXiv:1304.0077

GPD H and E 2d+1 structure for sea-quarks and gluons

Proton structure important for QGP in small systems

Collective phenomena seen in pA collisions, i.e. ATLAS & CMS

H. Mäntysaari & B. Schenke arXiv:1607.01711

In a hydro-picture (used in AA) fluctuations in the proton are crucial to understand the seen pA@LHC behaviors

Examples of proton density profiles at $x \sim 10^{-3}$

EIC can map out
the spatial quark
and gluon
structure of the
proton in x and
Q²

What about Nuclei?

Inclusive Cross-Sections in eA

Direct Access to gluons at medium to high x by tagging photon-gluon fusion through charm events

Gluon distribution $\sim d\sigma(x,Q^2)/dlnQ^2$

Direct Access to Gluons in eA

For Details: arXiv:1708.05654

Direct Access to gluons at medium to high x by tagging photon-gluon fusion through charm events

high precision F_L^{charm} will offer an opportunity to benchmark different GM-VFNS schemes with an unprecedented precision.

EIC: Impact on the Knowledge of 1D Nuclear PDFs

√s < 90 GeV

Ratio of PDF of Pb over Proton

- Without EIC, large uncertainties
 - → With EIC significantly reduced uncertainties
- Complementary to RHIC and LHC pA data. Provides information on initial state for heavy ion collisions.
- Does the nucleus behave like a proton at low-x?
 - → relevant to very high-energy cosmic ray studies
 - → critical input to AA
- □ submitted to PRD arXiv:1708.05654

The influence of the initial state in AA

Diffraction in DIS at Small x

Diffraction in e+p:

- \triangleright coherent \Leftrightarrow p intact
- incoherent ⇔ breakup of p
- HERA: 15% of all events are hard diffractive

Diffraction in e+A:

- > coherent diffraction (nuclei intact)
- breakup into nucleons (nucleons intact)
- incoherent diffraction
- Predictions: σ_{diff}/σ_{tot} in e+A ~25-40%

eRHIC: Spatial Gluon Distribution from d //dt

Diffracti Meascuramant of patrodyset (parotons) edicatoribus'i on Ain' neut laji, o, o

Ongoing: Measurement of neutron distribution in nuclei

- Converges to input F(b) rapidly: |t| < 0.1 almost enough
- Recover tacdiffortely verpanted introduction was deing to be used to generate pseudodato (seeset Wood-Souxon) ion effects, smaller J/w shows no effect

0.18

0.16

Systempartnethyweited to exit rest source distribution

Studying non-linear effects

Scattering of electrons off nuclei:

- Probes interact over distances $L \sim (2m_N x)^{-1}$
- □ For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nucleon
- Probe interacts coherently with all nucleons

$$Q_s^2 \sim \frac{\alpha_s x G(x, Q_s^2)}{\pi R_A^2}$$

 $Q_s^2 \sim \frac{\alpha_s x G(x, Q_s^2)}{\pi R_s^2}$ HERA: $xG \sim \frac{1}{x^{0.3}}$ A dependence: $xG_A \sim A$

Nuclear "Oomph" Factor Pocket Formula: $(Q_s^A)^2 \approx cQ_0^2 \left(\frac{A}{x}\right)^2$

$$(Q_s^A)^2 \approx cQ_0^2 \left(\frac{A}{x}\right)^{1/3}$$

Enhancement of Q_S with $A \Rightarrow$ non-linear QCD regime can be reached at significantly lower energy in A than in proton

Tagging centrality in eA collision will be important

- → stringent cut on centrality ~ 1%
 - → effective energy boost by ~3
 - → effective increase of A
- \rightarrow utilized in p/dA and AA all the time

Key Observables for Saturation

Diffraction:

Diffractive events are indicative of a color neutral exchange between the virtual photon and the proton or nucleus over several units in rapidity.

 $M_{\rm X}^2$: Squared mass is the diffractive final state

 x_{IP} : Momentum fraction of the "Pomeron" with respect to the hadron. The rapidity gap between produced particles and the proton or nucleus is $Y \sim \ln(1/x_{\text{IP}})$

Inclusive Diffraction

- ☐ HERA observed: ~14% of all events are diffractive
- Saturation models (CGC) predict up to odiff/otot ~25% in eA
- Ratio enhanced for small MX and suppressed for large MX
- Standard QCD predicts no MX dependence and a moderate suppression due to shadowing.
 - It would be nice to have equally rigorous extraction of diffractive PDF as the "std. PDFs"
 - both for proton and nuclei

Key Observables for Saturation

Di-Hadron Correlations:

TMDs and "QGP" in small

Collective flow signatures seen even in the smallest systems and at RHIC energies

TMD formalism in DIS predicts a distribution for linearly polarized gluons in an unpolarized target. This is reflected in $cos(2\phi)$ asymmetries in dijet production

Study azimuthal anisotropy as a function of the rapidity dis-balance of the jets

→ Process sensitive to unpolarized and linearly polarized gluon distribution

$$xG_{ww}^{ij} = \frac{1}{2}\delta^{ij}xG^{(1)} - \frac{1}{2}\left(\delta^{ij} - \frac{2k^{i}k^{j}}{k^{2}}\right)xh_{\perp}^{(1)}$$

- A. Metz and J. Zhou, Phys. Rev. D84, 051503 (2011), arXiv:1105.1991
- D. Boer, P. J. Mulders, and C. Pisano, Phys. Rev. D80, 094017 (2009), arXiv:0909.4652
- D. Boer, S. J. Brodsky, P. J. Mulders, and C. Pisano, Phys. Rev. Lett. 106, 132001 (2011), arXiv:1011.4225.
- F. Dominguez, J.-W. Qiu, B.-W. Xiao, and F. Yuan, Phys. Rev. D85, 045003 (2012), arXiv:1109.6293.
- A. Dumitru, L. McLerran, and V. Skokov, Phys. Lett. B743, 134 (2015), arXiv:1410.4844.
- A. Dumitru and V. Skokov, Phys. Rev. D91, 074006 (2015), arXiv:1411.6630.
- A. Dumitru, T. Lappi, and V. Skokov, Phys. Rev. Lett. 115, 252301 (2015), arXiv:1508.04438. LPC Workshop on Physics Cornections between the UriC and EI605.02739

Kinematics: Di-jets in x*A

Key observables: P_T and q_T

□ the difference in momenta (imbalance)

$$\overrightarrow{q_T} = \overrightarrow{k_1} + \overrightarrow{k_2}$$

the average transverse momentum of the jets

$$\overrightarrow{P_T} = (1-z)\overrightarrow{k_1} - z\overrightarrow{k_2}$$

- \square Φ is angle between P_T and q_T
- \square work in "correlation limit" $P_T >> q_T$
- azimuthal asymmetry arising from the linearly polarized gluon distribution:

$$v_2 = \langle \cos 2\Phi \rangle$$

Elliptic Anisotropy in Di-Jet Production

Dipartons from McDijet event generator (V. Skokov) \rightarrow showers via Pythia \rightarrow experimental cuts \rightarrow jet-finding with ee-kt (FastJet)

- □ Dijets recover the anisotropy (v2) quite well
- □ NOTE: phase shift between long. and trans. y*

Ansatz for Gluon TMDs:

$$v_2^L = \frac{1}{2} \frac{h_{\perp}^{(1)}(x, q_{\perp})}{G^{(1)}(x, q_{\perp})} \quad , \quad v_2^T = -\frac{\epsilon_f^2 P_{\perp}^2}{\epsilon_f^4 + P_{\perp}^4} \frac{h_{\perp}^{(1)}(x, q_{\perp})}{G^{(1)}(x, q_{\perp})}$$

Let's get to work and built EIC

Proposal to DFG:

"Next Generation Perturbative QCD for Hadron Structure: Preparing for the Electron-Ion Collider"

Fully approved, started October 2019

Work packages:

- QCD evolution at one percent precision
- > Parton distributions and fragmentation functions
- Multiparton interactions and higher-twist effects
- Theoretical and experimental interplay to optimize the EIC design
- > Semi-inclusive reactions from low to high pT

Deep Inelastic Scattering

Deep Inelastic Scattering (DIS):

- As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- Direct, model independent determination of parton kinematics of physics processes through scattered lepton

$Q^2 = 2E_e E_2' (1 - \cos \theta_{e'}) = -q^2$

$$y=1-\frac{E'_e}{E_e}\cos^2\left(\frac{\theta'_e}{2}\right)$$
 $x=\frac{Q^2}{2pq}$

Measure of inelasticity

Measure of momentum fraction of struck quark

Measure of resolution power

$$\sqrt{s} = 2\sqrt{E_e E_p}$$

center-of-mass energy of electron-hadron system

s(x) and sbar(x) where do we stand?

NNPDF 3.1 arXiv:1706.00428

$$r_s(x,Q^2) = \frac{s(x,Q^2) + \bar{s}(x,Q^2)}{\bar{d}(x,Q^2) + \bar{u}(x,Q^2)}.$$

Observables: Charge Current in ep and eA

Just some of the physics opportunities:

polarized ep/en:

- test models based on helicity retention $\Delta d/d \rightarrow 1$ (Phys.Rev.Lett. 99 (2007) 082001)
- precision test models assuming charge symmetry violation
- precision test handiness of Ws
- \Box tag charm in coincidence with CC event $\rightarrow \Delta s$

unpolarized ep/en:

- \square impact on PDFs \rightarrow high \times quark PDFs
 - \rightarrow tag charm in coincidence of CC event \rightarrow s
- $lue{}$ precision constrain on light quark weak neutral current couplings a_u , v_u , a_d v_d

unpolarized eA:

- ☐ Test Models for the EMC-effect
 - charge symmetry violation
 - Isovector EMC effect (Cloet, Bentz, Thomas et. al., PRL 102 252301)

How to access Gluons in DIS

Several different complementary channels to access gluons

		Photon Gluon Fusion	
Scaling Violation	FL	Di-jets	Charm
all x-Q ² × _g = × _{Bj}	only accessible if y is large $x_g = x_{Bj}$	wide coverage in x_{Bj} - Q^2 x_g = x_{Bj} (1+ M^2 / Q^2) > x_{Bj}	same coverage in × _{Bj} -Q² as incl. F ₂ × _g ≳× _{Bj}
only limited by detector acceptance detector acceptance	need several beam energies	need a wide acceptance detector	needs excellent m- vertex detector and particle ID

What can an EIC Do?

Should study what NC and CC cross sections at EIC can tell us on the vector and axial-vector weak neutral current couplings

PDFs: flavor separation from SIDIS@EIC

Use reweighting method to define EIC SIDIS data impact on collinear unpolarized PDFs and Fragmentation functions

Correlation factor of observable o to a flavor i

$$\rho\left[f_{i},\mathcal{O}\right] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\Delta\mathcal{O}\Delta f_{i}}\,, \quad \frac{\text{uncertainties}}{\sup} \quad S[f_{i},\mathcal{O}] = \frac{\langle\mathcal{O}\cdot f_{i}\rangle - \langle\mathcal{O}\rangle\langle f_{i}\rangle}{\xi\,\Delta\mathcal{O}\Delta f_{i}}\,, \quad \frac{\delta\mathcal{O}}{\delta\mathcal{O}}$$

δ0 : exp. uncertainty
Observable

A PDF in Observable

The DVCS Phase Space

 $(CS: wide range of observables (<math>\sigma$, A_{UT} , A_{LU} , A_{UL} , A_{C}) to disentangle GPDs

DVCS at eRHIC

DVCS: Golden channel theoretically clean wide range of observables $(\sigma, A_{UT}, A_{LU}, A_{UL}, A_{C})$ to disentangle different GPDs

DVCS data at end of HERA

D. Mueller, K. Kumericki S. Fazio, and ECA arXiv:1304.0077

DVCS Asymmetries

$$\int d\sigma \sim \left(\tau_{BH}^* \tau_{DVCS} + \tau_{DVCS}^* \tau_{BH}^*\right) + |\tau_{BH}^*|^2 + |\tau_{DVCS}^*|^2$$

→ different charges: e⁺ e⁻:

$$\Delta \sigma_{c} \sim \cos \phi \cdot \text{Re}\{H + \xi H + ...\}$$

→ polarization observables:

$$\Delta \sigma_{LU} \sim \sin \phi \cdot \text{Im}\{H + \xi H + kE\}$$

$$\Delta \sigma_{UL} \sim \sin \phi \cdot \text{Im}\{H + \xi H + ...\}$$

$$\Delta \sigma_{UT} \sim \sin \phi \cdot \text{Im} \{ k(H - E) + ... \} \qquad \qquad H, E$$

kinematically suppressed

Disentangle different GPDs

Vary electron and proton beam spin directions:

target

Transverse momentum dependent distributions (TMD)

TMDs at STAR

Before STAR TMDs came only from fixed target data \rightarrow high x @ low Q² needed to establish concept at high Q² and wide range in x polarised pp at RHIC

STAR unique kinematics: from high to low x at high Q2

TMDs @ EIC

3d-Imaging of Nuclei

1950-60: Measurement of charge (proton) distribution in nuclei

Ongoing: Measurement of neutron distribution in nuclei

 $EIC \Rightarrow$ spatial gluon distribution in nuclei \rightarrow Saturated or non-saturated?

Method:

Diffractive vector meson production: $e + Au \rightarrow e' + Au' + J/\psi$, ϕ , ρ

Momentum transfer $t = |\mathbf{p}_{Au} - \mathbf{p}_{Au'}|^2$ conjugate to b_T

Are other effects important?

What is the impact of sudakov factors $\leftarrow \rightarrow$ parton showers?

Sudakov / parton showers have a critical impact

- → how well do we know them in nuclei?
- → can use forward correlation peak to calibrate them

For details on the study: arXiv:1403.2413

