PDFs Flavor Determination

Nuclear PDFs

Challenges and Opportunities for QCD

Fred Olness SMU

Thanks for substantial input from my friends & colleagues

LPC Workshop
Physics Connections between the LHC and EIC
13-15 November 2019

Landscape of the Energy Frontier & New Physics Searches

We've reached the peak energy. Future searches require precision!!!

"PDF uncertainties are among the leading uncertainties in the first LHC precision measurements by CMS" Jan Kretzschmar

... what's this got to do with

Nuclear PDFs

$$F_{2}^{\nu} \sim [d + s + \bar{u} + \bar{c}]$$

$$F_{2}^{\bar{\nu}} \sim [\bar{d} + \bar{s} + u + c]$$

$$F_{3}^{\nu} = 2[d + s - \bar{u} - \bar{c}]$$

$$F_{3}^{\bar{\nu}} = 2[u + c - \bar{d} - \bar{s}]$$

The ratio of iron (Fe) to Deuterium (D)

$$\frac{F_2^{Fe}}{F_2^D}$$

Discovered by the French in 1799 at Rosetta, a harbor on the Mediterranean coast in Egypt. Comparative translation of the stone assisted in understanding many previously undecipherable examples of hieroglyphics.

... the motivation for nCTEQ

T.J. Hobbs
T. Jezo,
M. Klasen
C. Keppel,
K. Kovarik
A Kusina,
F. Lyonnet,
J. Morfin,
F. Olness
J. Owens,
I. Schienbein,
J. Yu

Data from nuclear targets play a key role in the flavor differentiation

nuclear parton distribution functions

Case Study: The Strange PDF

Strange PDF: ν N di-muon Production

Need to "dig out" s(x) underneath d(x)

Puzzle: What is the Nuclear Correction

Charged Lepton DIS

some caveats
... correlated errors

Depends on nuclear corrections

Neutrino DIS

Propagation of γ/W thru nuclei

Just use protons and go to high energy!!!

$$u\bar{d} + u\bar{\mathbf{s}} + \mathbf{c}\bar{d} + \mathbf{c}\bar{\mathbf{s}} \rightarrow W^{+}$$

$$\bar{u}d + \bar{u}\mathbf{s} + \bar{\mathbf{c}}d + \bar{\mathbf{c}}\mathbf{s} \rightarrow W^{-}$$

$$u\bar{u} + d\bar{d} + \mathbf{s}\bar{\mathbf{s}} + \bar{\mathbf{c}}\bar{\mathbf{c}} \rightarrow Z$$

$$r^{s}(x,Q) = \frac{\bar{s}(x,Q) + s(x,Q)}{2\bar{d}(x,Q)}$$

Do it yourself!!!
Try **xFitter**

xFitter release xfitter-2.0.0

www.xFitter.org

xFitter/xFitterTalks » xFitter/../xFitterDevel.. » xFitter/../Meeting2017-.. » xFitter » xFitter/DownloadPage

Sample data files:

LHC: ATLAS, CMS, LHCb

Tevatron: CDF, D0

HERA: H1, ZEUS, Combined

Fixed Target: ... User Supplied: ...

Experimental Data Data: HERA, Tevatron, LHC, fixed target experiments **Processes:** Inclusive DIS, Jets, Drell-Yan, Parton Distribution Diffraction, Top production **Functions:** W and Z production x Fitter PDF, Updf, TMD **Theory Calculations** $\alpha_s(M_z), m_s, m_b, m_t \dots$ MSTW, NNPDF, ABM, ACOT **HO Schemes:** Jets, W, Z: FastNLO, ApplGrid Theoretical Hathor Top: Cross Sections QCDNUM, APFEL, k. **Evolution:** NNPDF reweighting Comparisons Other: to other PDFs TMDs, Dipole Model, ... (LHAPDF)

xFitter 2.0.0 FrozenFrog

Features & Recent Updates:

Photon PDF & QED
Pole & MS-bar masses
Profiling and Re-Weighting

Heavy Quark Variable Treshold Improvements in χ^2 and correlations TMD PDFs (uPDFs)

... and many other

How can we resolve proton structure and nuclear corrections

Ideally suited to " ... glean the fundamental insights into QCD"

A few thoughts:

Nucleon Structure:

protons, hadrons, nuclear tomography, ...

Hadron/Parton Transition:

Higher Twist, many body, duality, ...

nCTEQ PDF Update

What are the challenges & opportunities with an EIC

It will have high statistics for a wide variety of NUCLEI

Nuclear corrections are inextricably linked to the PDF flavor differentiation

It allows us to push to HI-X

W cuts eliminate much of this region Higher-twist, factorization violations, ... Test models in $x\rightarrow 1$ limit, e.g., d/u, ...

Q cuts eliminate much of this region Explores the parton/hadron transition Study non-perturbative collective phenomena

These are hard problems

we need good ideas

This is an area where EIC & LHeC are particularly suited to help

Combined Effort to Decipher

EIC can expand our knowledge of the nuclear A dimension

DUNE:

Nuclei σ needed for beam profile

Conclusion

"QCD is our most perfect physical theory" Frank Wilczek

"EIC would unlock scientific mysteries" NAP Report

F. Olness

Ideally suited to " ... glean the fundamental insights into QCD"

Nuclear PDFs 1.20 1.15 A=56, Z=26 Pixed Target DIS Fixed Target DIS 0.95 0.90 $\nu N \rightarrow \ell^{\pm} X$ 0.85 0.80 $\ell^{\pm} N \rightarrow \ell^{\pm} X$ HKN07 (NLO) 10-1 X

I work with protons.

Why do I need nuclei?

Flavor Differentiation

$$F_{2}^{\nu} \sim [d + s + \bar{u} + \bar{c}]$$

$$F_{2}^{\bar{\nu}} \sim [\bar{d} + \bar{s} + u + c]$$

$$F_{3}^{\nu} \sim [d + s - \bar{u} - \bar{c}]$$

$$F_{3}^{\bar{\nu}} = 2[d + s - \bar{u} - \bar{c}]$$

$$F_{3}^{\bar{\nu}} = 2[u + c - \bar{d} - \bar{s}]$$

Strange PDF

Precision QCD

$$\sigma = f \otimes \hat{\sigma}$$

Input on the Snowmass Community Planning Process

Your contributions and participation will naturally occur as part of one or more working groups. However, as we put together the process, you are also welcome to provide input and suggestions through this form. Please fill out the form by November 15.

* Required

Email address *

Your email

First and Last Name

Nuclear PDFs 1.20 1.15 A=56, Z=26 Pixed Target DIS Fixed Target DIS 0.95 0.90 $\nu N \rightarrow \ell^{\pm} X$ 0.85 0.80 $\ell^{\pm} N \rightarrow \ell^{\pm} X$ HKN07 (NLO) 10-1 X

I work with protons.

Why do I need nuclei?

Flavor Differentiation

$$F_{2}^{\nu} \sim [d + s + \bar{u} + \bar{c}]$$

$$F_{2}^{\bar{\nu}} \sim [\bar{d} + \bar{s} + u + c]$$

$$F_{3}^{\nu} \sim [d + s - \bar{u} - \bar{c}]$$

$$F_{3}^{\bar{\nu}} = 2[d + s - \bar{u} - \bar{c}]$$

$$F_{3}^{\bar{\nu}} = 2[u + c - \bar{d} - \bar{s}]$$

Strange PDF

Precision QCD

$$\sigma = f \otimes \hat{\sigma}$$

... the motivation for nCTEQ

E. Godat
T.J. Hobbs
T. Jezo,
C. Keppel,
K. Kovarik
A Kusina,
F. Lyonnet,
J. Morfin,
F. Olness
J. Owens,
I. Schienbein,

J. Yu

Data from nuclear targets play a key role in the flavor differentiation

nuclear parton distribution functions

