

FoCal: A Forward Calorimeter for ALICE in Run 4

Constantin Loizides (ORNL) on behalf of the FoCal collaboration

15.11.2019

LPC workshop on Physics connection between the LHC and EIC

The FoCal proposal

 $3.2 < \eta < 5.8$

(baseline design @ 7m)

FoCal-E: high-granularity Si-W sampling calorimeter for photons and π⁰ **FoCal-H**: conventional Cu-Sc sampling calorimeter for photon isolation and jets

Observables:

- π^0 (and other neutral mesons*)
- Isolated photons
- Jets (and di-jets*)
- J/ψ (Y*) in UPC
- W, Z maybe possible*
- Event plane and centrality*

(* not yet studied)

Advantage in ALICE:

forward region almost not instrumented; 'unobstructed' view of interaction point

FoCal-E design

Studied in simulations 20 layers: W(3.5 mm \approx 1X₀) + silicon sensors Two types: Pads (LG) and Pixels (HG)

- Pad layers provide shower profile
- Pixel layers provide position resolution to resolve shower overlaps

Main optimization (TBD):

- Number of pixel layers and location
- Number of pad layers
- Maximum separation between layers

- Main challenge: Separate γ/π⁰ at high energy
 - Two photon separation from π^0 decay (10 GeV, η =4.5) ~0.5mm
 - Needs small Molière radius and high granularity readout
 - Si-W calorimeter with effective granularity ≈ 1mm²

Showers of two 5.4 GeV test beam electrons in a all-pixel layer prototype

Extensive R&D, see recent detector seminar at CERN: https://indico.cern.ch/event/856365/

Rapidity coverage and efficiency 5

position z = 7m beam pipe radius 3.5cm

8x8cm square around beam: maximum rapidity 5.5-5.8

2-gamma distance gets small beyond η =5.5:

→ sharp drop at R_{min} plus effect of circle vs square

Very good π^0 efficiency up to $\eta = 5.5$ (falls off above $p_T = 10$ GeV due to 2-gamma distance)

π⁰ efficiency vs p_T

Physics goals

- Quantify nuclear modification of the gluon density at small-x
 - Isolated photons in pp and pPb collisions
- Explore non-linear QCD evolution
 - Azimuthal $\pi^{0-}\pi^{0}$ and isolated photon- π^{0} (or jet) correlations in pp and pPb collisions
- Investigate the origin of long range flow-like correlations
 - Azimuthal π⁰⁻h correlations using FoCal and central ALICE (and muon arm?) in pp and pPb collisions
- Explore jet quenching at forward rapidity
 - Measure high p_T neutral pion production in PbPb
- Other measurements need (more) study
 - Jets and dijets in pp/pPb and UPC
 - Quarkonia in UPC (and pp?)
 - Photon and pion HBT
 - W,Z in pp/pPb?
 - Measurements at 14 TeV
 - Universality at small-x
 - Saturation in pp
 - High-x (>0.1) gluon constraints?

Physics goals

- Quantify nuclear modification of the gluon density at small-x
 - Isolated photons in pp and pPb collisions

- Rise of gluon density natural for linear QCD evolution describing parton splitting
- Tamed by non-linear QCD evolution functions describing parton recombination, perhaps leading to saturation at the saturation scale Q_s

Measure isolated photons forward

- At LO more than 70% from Compton with direct sensitivity to gluon density
- Not affected by final state effects nor hadronization
- Uniquely low coverage at LHC (similar to LHeC)

Hierarchy of goals

- Prove or refute gluon saturation
- Explore non-linear QCD evolution at small x
- Constrain nuclear PDFs at small x

Strong LHC small-x program

- Various experiments/measurements including γ, DY, open charm +UPC
- Important to test factorization/ universality
- Synergy with fRHIC + EIC/LHeC

- Large uncertainties on the gluon content of the nucleus at small x
- Very few (DIS) measurements available
 - And they only probe the gluon density via the (DGLAP) evolution
- Low-x especially accessible at forward rapidity $x_{1,2} \approx \frac{2m_T}{\sqrt{s}} \exp{(\pm y)}$
 - Photons are a excellent probe, not affected by final state nor hadronization

Isolation distribution

Direct γ/all cluster ratio

Main ingredients for direct photon identification

- Isolation cut (EmCal + HCal)
- Rejection of decays by invariant mass reconstruction

Improvement in signal fraction by factor 10 or more, from ~0.01 to ~0.1-0.6

- Systematic uncertainty <20% above 6 GeV
- Below ~6 GeV, uncertainty rises due to background subtraction
- Significant improvement (up to factor 2) on EPPS16 gluon PDF
- Similar improvement as from open charm
 - Test factorization/universality

Impact on recent nNNPDF 13

R. Khalek et al., arXiv:1904.00018

Recent nuclear PDFs: nNNPDF from DIS and minimal theoretical assumptions

- No constraints for $x < 10^{-2}$ from DIS
- FOCAL provides significant constraints over a broad range: ~10⁻⁵ 10⁻²
- Outperforming significantly the EIC in this aspect

Summary

- FoCal is highly granular Si+W-calorimeter complemented by a conventional sampling hadronic calorimeter
- Main physics goals
 - quantify gluon density in proton and nuclei at small-x
 - explore non-linear QCD evolution
 - establishes strong small-x program at LHC together with LHCb and UPC measurements; complementary to fRHIC and EIC
- Conceptual detector design available
 - Focus now mainly on implementation and integration
 - Lol draft available for discussion
 - See public note: <u>ALICE-PUBLIC-2019-005</u>
 - Discussions on national and institutional contributions ongoing

We very much welcome groups to join the project

15

FoCal also extends the kinematic reach for hadrons and UPC

Forward open charm by LHCb 17

LHCb, arXiv:1707.02750

- Forward D⁰ suppression observed by LHCb
- Consistent description with nuclear PDFs, with a large contribution from high x from fragmentation
 - Potential final state effects ignored
- Data constrain nPDF uncertainties by ~factor 2
 - Tension with ALICE mid-rap point (goto p29)
- Measurements with photons needed to verify factorization and universality

Eskola et al., arXiv:1906.02512

Reweighted nPDFs

Kusina et al., PRL121 (2018) 052004

ALICE, arXiv:1906.03425

Reweighted nPDFs are in tension with the new ALICE mid-rapidity results

- DY forward (and backward)
 - Sensitive to gluons only at NLO
- D⁰ production and D⁰-D⁰ correlations
- Measurements of B+ production
 - Advantage higher scale for calculation (but also higher x)
- Isolated photon production and correlations with hadrons
 - Measure photon from conversions
 - Improve low p_T tracking for Run-4 with tracking stations inside the magnet

Charm vs photon sensitivity

Toy study: Photons are more sensitive to shape of Rg than charm

Factorization

21

PRD 73 (2006) 094007

arXiv:hep-ph/0311110

Breaking of factorization/universality, examples before D0/CDF/Phenix

- Efficiency for high energy neutral pions nevertheless quite good
- Combinatorial background may prohibit low p_T reconstruction, but above 5 GeV can perform a precise R_{AA} measurement

 π^0 - π^0 correlations in pp (for decorrelation studies)

(jet/dijets in pp/pPb/UPC)

(for UPC measurements)

Excellent performance for other observables (complete case studies envisioned for TDR)

J/ψ in UPC (empty FoCol) 24

