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EIC on the horizon
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HL-LHC will come in 2026

LHC discovered Higgs, now the era of precision QCD?

LHC Timeline

i Run 2:
Design £ = 10%** /em? /s L = 2x10% fem? /s
@l for 300/fb

ergo Jindariani

HL-LHC: Peak L = 2 x 10*% /em? /s

level luminosity to

Nominal scenario: £ =5 x 10** /cm?/s
for 3000/fb; Pile-up <u> = 140

Ultimate Scenario: £ = 7.5 x 10** /em? /s
for 4000/fb; Pile-up <u> = 200

=25% increase in integrated lum.




EIC Science Pillars: major ones

= Two major pillars
= actively developed and developing at the moment (EIC white paper)

% Quantum Tomography of protons and nuclei:
spin, TMDs, GPDs, Wigner distribution, all that

"

% A new form of matter - color glass condensate
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QCD structure of nucleons/nuclei revealed

by high energy scattering
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Key questions to be addressed?

QCD in this quantum coherent regime

=  Where and how does the transition from a dilute parton system to a
coherent dense gluon-dominated state occur?

= What are the properties of such a dense gluon regime?

EIC would figure out
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An unavoidable consequence of QCD

Gluon saturation is an unavoidable consequence from first
principle of QCD, and its discovery is mandatory

Its growth at small-x is governed by BFKL physics: g->gg splitting
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An inevitable consequence of QCD at high energy

= However, when so many gluons are squeezed in a confined
proton/nucleus, besides the usual splitting, they also start to
overlap and recombine
= Such recombination leads to non-linear dynamics

= Nonlinear dynamics/evolution (BK equation): saturation scale Q. (x)
from the balance
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Two key ingredients

= How do you know if you have discovered gluon saturation?

= After so many years of “smoking guns” and “not being able to convince people
decisively”, let’s be realistic and define some criterions

= A two-ingredient criterion

= The evolution of the system: the gluon system has to evolve via BK equation
(note: not BFKL)

= The interaction of the system: the gluon system has to interact with the
external probe coherently = multiple scattering, instead of single scattering

h pL=2zk,

: O od
3

ki

000000
000Q0Q0

(a

~

Single scattering Coherent multiple scattering
as in collinear factorization as in small-x/CGC formalis




Early hints on gluon saturation

= Strong multiple scattering with the dense gluon system of the
nucleus leads to broadening and suppression of away side

= Different formalisms would lead to similar predictions

.7770

i{ Central dAu collisions

© STAR Preliminary CGC calculations
P <2GeVk n>=32 [ Stasto et al
P> Py > 1GeVican>=32  —— Albacete-Marquet

“non-CGC" calculations




Why we are not convinced yet?

= CGC formalism uses: coherent multiple scattering + BK evolution

* Non-CGC formalism = high-twist formalism uses: coherent
multiple scattering + DGLAP type evolution

= By our two-ingredient criterion, we have not discovered gluon
saturation yet

= This dihadron correlation data cannot be described by models
which do not contain multiple scattering




Other approach: nuclear PDFs

= Nuclear PDFs have been well-known in LHC community
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Key points for nPDFs approach

" Replacing proton PDFs by nuclear PDFs at an initial scale Q,,
=  nPDFs: still follow DGLAP evolution
=  Dynamics: single scattering

A

= According to our two-ingredient criterion, both are not satisfied.
Completely different from gluon saturation

= |t's known that it cannot describe dihedron correlation data in p+A collisions




LHC can go really small-x though

= But your Q2 is too high to discover gluon saturation

= The larger Q2 is, the even smaller x one has to go in order to probe saturation
region

e+A and p(d)+A experiments ~1212 data points*

* average of newest nPDFs analyses
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C and EIC complimentary: check (non)universality of
istribution at small-x :




Complimentary: LHC and EIC

= [LHC and EIC complimentary: check (non)universality of gluon
dynamics/distribution at small-x

A Tale of Two Gluon Distributions—-#8CX “f%”

In terms of operators (TMD def. [Bomhof, Mulders and Pijlman, 06]), two gauge
invariant gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11]
I. Weizsacker Williams gluon distribution: conventional gluon distributions
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II. Color Dipole gluon distributions:
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EIC has nucleus target: vs HERA

= Nuclear enhancement of the saturation momentum (advantage
over HERA)
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What should we do?

Establishing conclusively the discovery of gluon saturation is not
going to be easy, even with EIC

=  Many people are not so easy to be convinced, e.g. J. Nagle (checked theorist’s
code to make sure, QM 2019 talk)

Theory

= Once saturation scale becomes really perturbative, we can turn small-x/gluon
saturation physics into a precision physics, following the usual wisdom of LHC
pQCD community

Experiment
= We need multi-channels/observables (instead of a single golden channel) for
our study: establish gluon saturation in all of them

= Of course golden channel is the one we will search first, e.g., dihadron
correlation in e+A collisions, thanks to hard work of Elke Aschenauer and
colleague’s hard work on EIC simulations

By carefully compare theory with experimental data, check our
two-ingredient criterion, we should be able to make the final
discovery of gluon saturation conclusively



The recent lesson: hint of BFKL at small-x

= To discover hint of BFKL is already a long shot: HERA

Ball et al 17, xFitter 18
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Theory: go precision?

= LHC pQCD community: NLO is a solved problem since 1990s, now

you are telling me “NLO at small-x physics” is not fully understood
until recently?!

NNLO progress
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Theory at LO

= LO: a simple quark undergoes coherent multiple scattering, and

then fragments into a hadron
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Theory at NLO: negative cross section?

= One gluon radiation

Dilute-Dense factorizations: large x proton or v* — as dilute probe:
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ldeas of kinematic constraints

= Follow exact kinematics of the gluon radiation
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= Used mainly in event generators (LHC)
= |eads to additional contributions

Further improve the instability of BK evolution equation, one can finally achieve
much-better behaved NLO corrections

In LHC pQCD, you know very well why you favor DGLAP+NLLx method, instead
of solving BFKL directly
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Theory at NLO

= Numerically this seems to be okay, however

= So-called “exact kinematics” usually violates/mixes “power counting”, thus it is
not a systematic method in the standard pQCD factorization (though it is very
useful in MC)

= Another intrinsic problem: BK evolution of the gluons in the target nucleus
evolves with xg, or the rapidity of the gluon, such a scale should naturally come
from your NLO computations, this is not achieved at the moment

= This is in the same spirit of collinear factorization, renormalization mu scale for
the PDF evolution naturally comes from the hard scale in your NLO
computations

= A new systematic approach for small-x physics solving the above
two problems




A new framework

= For semi-hard momentum region, both collinear and soft modes
contribute

Kang, Liu, 1910.10166
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Consistent with standard factorization

= Collinear has its natural rapidity scale as the incoming quark light-
cone momentum

= Soft has its natural rapidity scale as the transverse momentum

= Now all are consistent
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= Earlier issue: DIS at NLO has even larger uncertainty than LO,




Future EIC

= EIC: The Next QCD Frontier - understanding the glue that binds us all

saturation
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= The unambiguous ultimate proof of existence of saturation and its
detailed properties can only come from EIC

= Only DIS allows for the direct, model-independent, determination of the
kinematics, such as x and Q2

= Electron: point like and structureless; Proton: also a complicated object




Electron lon Collider (EIC) is the next QCD frontier

Exciting physics opportunities ahead of us

Thank you!




