Small-x physics and gluon saturation

Zhongbo Kang UCLA

LPC Workshop on Physics Connections between the LHC and EIC November 13 - 15, 2019

EIC on the horizon

CD-0 CD-1 CD-2 CD-3 Actions Authorized by Critical Decision Approval · Proceed with Allow · Establish baseline budget Approve Al expenditure of conceptual design expenditure for construction op of PED funds for using program funds · Continue design pr • Request PED funding funds for • Request construction construction design funding

Courtesy of A. Deshpande

Technical feasibility (~2030)

DOE/CF-0154

Department of Energy FY 2020 Congressional Budget Request

Science

Volume 4, Page 272:
"..(EIC)..Critical Decision-0, Approve
Mission Need, is planned for FY 2019."

March 2019

Office of Chief Financial Officer

Volume 4

HL-LHC will come in 2026

LHC discovered Higgs, now the era of precision QCD?

Courtesy of Sergo Jindariani

EIC Science Pillars: major ones

- Two major pillars
 - actively developed and developing at the moment (EIC white paper)
 - Quantum Tomography of protons and nuclei: spin, TMDs, GPDs, Wigner distribution, all that

A new form of matter - color glass condensate

QCD structure of nucleons/nuclei revealed by high energy scattering

- A dilute system
- Probes interact independently
- 4.0 CTEQ 6.5 parton
 3.5 distribution functions
 3.0 Q² = 10 GeV²

 2.5 Gluons dominate the soft constituents or hadron

 But density must saturate...

 2.0

 1.5

 1.0

 0.5

 0.0001

 0.001

 0.01

 1.0

- A dense system
- Probes interact coherently

Key questions to be addressed?

QCD in this quantum coherent regime

- Where and how does the transition from a dilute parton system to a coherent dense gluon-dominated state occur?
- What are the properties of such a dense gluon regime?

An unavoidable consequence of QCD

- Gluon saturation is an unavoidable consequence from first principle of QCD, and its discovery is mandatory
 - Its growth at small-x is governed by BFKL physics: g->gg splitting

An inevitable consequence of QCD at high energy

- However, when so many gluons are squeezed in a confined proton/nucleus, besides the usual splitting, they also start to overlap and recombine
 - Such recombination leads to non-linear dynamics
- Nonlinear dynamics/evolution (BK equation): saturation scale Q_s(x) from the balance

$$\frac{\partial N(x,r_\perp)}{\partial \ln{(1/x)}} = \alpha_s K_{\rm BFKL} \otimes N(x,r_\perp) - \alpha_s \left[N(x,r_\perp)^2 \right]$$
 radiation recombination

Two key ingredients

- How do you know if you have discovered gluon saturation?
 - After so many years of "smoking guns" and "not being able to convince people decisively", let's be realistic and define some criterions
- A two-ingredient criterion
 - The evolution of the system: the gluon system has to evolve via BK equation (note: not BFKL)
 - The interaction of the system: the gluon system has to interact with the external probe coherently = multiple scattering, instead of single scattering

Single scattering as in collinear factorization

Coherent multiple scattering as in small-x/CGC formalism

Early hints on gluon saturation

- Strong multiple scattering with the dense gluon system of the nucleus leads to broadening and suppression of away side
 - Different formalisms would lead to similar predictions

Why we are not convinced yet?

- CGC formalism uses: coherent multiple scattering + BK evolution
- Non-CGC formalism = high-twist formalism uses: coherent multiple scattering + DGLAP type evolution
- By our two-ingredient criterion, we have not discovered gluon saturation yet
- This dihadron correlation data cannot be described by models which do not contain multiple scattering

Other approach: nuclear PDFs

Nuclear PDFs have been well-known in LHC community

Key points for nPDFs approach

- Replacing proton PDFs by nuclear PDFs at an initial scale Q_0 ,
 - nPDFs: still follow DGLAP evolution
 - Dynamics: single scattering

- According to our two-ingredient criterion, both are not satisfied.
 Completely different from gluon saturation
 - It's known that it cannot describe dihedron correlation data in p+A collisions

LHC can go really small-x though

- But your Q² is too high to discover gluon saturation
 - The larger Q² is, the even smaller x one has to go in order to probe saturation region

Courtesy of Pia Zurita at IS 2019 conference

LHC and EIC complimentary: check (non)universality of gluon dynamics/distribution at small-x

Complimentary: LHC and EIC

 LHC and EIC complimentary: check (non)universality of gluon dynamics/distribution at small-x

A Tale of Two Gluon Distributions—绝代双"胶"

In terms of operators (TMD def. [Bomhof, Mulders and Pijlman, 06]), two gauge invariant gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11]

I. Weizsäcker Williams gluon distribution: conventional gluon distributions

$$xG_{\rm WW}(x,k_{\perp}) = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \operatorname{Tr} \langle P|F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$

II. Color Dipole gluon distributions:

$$xG_{\mathrm{DP}}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}} \mathrm{Tr}\langle P|F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$

■ Modified Universality for Gluon Distributions:

	Inclusive	Single Inc	DIS dijet	γ +jet	dijet in pA
xG_{WW}	×	×	$\overline{}$	×	
xG_{DP}			×		\checkmark

 $\times \Rightarrow$ Do Not Appear. $\sqrt{\Rightarrow}$ Apppear.

■ Measurements in pA collisions and at the EIC are tightly connected with complementary physics missions.

EIC has nucleus target: vs HERA

Nuclear enhancement of the saturation momentum (advantage over HERA)

Courtesy of Y. Hatta at QM 2019 conference

What should we do?

- Establishing conclusively the discovery of gluon saturation is not going to be easy, even with EIC
 - Many people are not so easy to be convinced, e.g. J. Nagle (checked theorist's code to make sure, QM 2019 talk)

Theory

 Once saturation scale becomes really perturbative, we can turn small-x/gluon saturation physics into a precision physics, following the usual wisdom of LHC pQCD community

Experiment

- We need multi-channels/observables (instead of a single golden channel) for our study: establish gluon saturation in all of them
- Of course golden channel is the one we will search first, e.g., dihadron correlation in e+A collisions, thanks to hard work of Elke Aschenauer and colleague's hard work on EIC simulations
- By carefully compare theory with experimental data, check our two-ingredient criterion, we should be able to make the final discovery of gluon saturation conclusively

The recent lesson: hint of BFKL at small-x

To discover hint of BFKL is already a long shot: HERA

Theory: go precision?

LHC pQCD community: NLO is a solved problem since 1990s, now you are telling me "NLO at small-x physics" is not fully understood until recently?!

Theory at LO

 LO: a simple quark undergoes coherent multiple scattering, and then fragments into a hadron

$$x_1 \sim \frac{p_{\perp}}{\sqrt{s}}e^{+y} \sim \mathcal{O}(1)$$

 $x_2 \sim \frac{p_{\perp}}{\sqrt{s}}e^{-y} \ll 1$

$$R_{pA} = \frac{1}{N_{\text{coll}}} \frac{dN^{pA \to hX}/dyd^2p_{\perp}}{dN^{pp \to hX}/dyd^2p_{\perp}}$$

Albacete & Marquet 2010

Theory at NLO: negative cross section?

One gluon radiation

A. Stasto, B.-W. Xiao, D. Zaslavsky, Phys. Rev. Lett. **112** (2014) 012302 BRAHMS $\eta = 2.2, 3.2$

Many work to resolve this issue: Altinoluk, Armesto, Beuf, Kovner, Lublinsky, 14 Kang, Vitev, Xing, 14, Ducloue, Lappi, Zhu, 16/17, Iancu, Mueller, Triantafyllopoulos, 16, Liu, Ma, Chao, 19, Liu, X. Liu, Kang, 19, ...

Ideas of kinematic constraints

Follow exact kinematics of the gluon radiation

$$x_g'P^- = \frac{l_\perp^2}{2(1-\xi)x_pP^+} + \frac{k_\perp^2}{2\xi x_pP^+} \le P^-$$

$$\xi \le 1 - \frac{l_{\perp}^2}{x_p s}$$

- Used mainly in event generators (LHC)
- Leads to additional contributions
- Further improve the instability of BK evolution equation, one can finally achieve much-better behaved NLO corrections

In LHC pQCD, you know very well why you favor DGLAP+NLLx method, instead

of solving BFKL directly

gluon distribution is fitted at LO

Theory at NLO

- Numerically this seems to be okay, however
 - So-called "exact kinematics" usually violates/mixes "power counting", thus it is not a systematic method in the standard pQCD factorization (though it is very useful in MC)
 - Another intrinsic problem: BK evolution of the gluons in the target nucleus evolves with x_g, or the rapidity of the gluon, such a scale should naturally come from your NLO computations, this is not achieved at the moment
 - This is in the same spirit of collinear factorization, renormalization mu scale for the PDF evolution naturally comes from the hard scale in your NLO computations
- A new systematic approach for small-x physics solving the above two problems

A new framework

 For semi-hard momentum region, both collinear and soft modes contribute

Kang, Liu, 1910.10166

Consistent with standard factorization

- Collinear has its natural rapidity scale as the incoming quark lightcone momentum
- Soft has its natural rapidity scale as the transverse momentum
- Now all are consistent

• add together = In
$$\left(\frac{\mathcal{V}}{X_A P_A}\right)$$

• soft gluon contribution = D at NLD, reproduces "kinematic

Constrain" terms

beyond = D systematic resummation and etc

 Earlier issue: DIS at NLO has even larger uncertainty than LO, can be fixed

Future EIC

EIC: The Next QCD Frontier - understanding the glue that binds us all

- The unambiguous ultimate proof of existence of saturation and its detailed properties can only come from EIC
 - Only DIS allows for the direct, model-independent, determination of the kinematics, such as x and Q²
 - Electron: point like and structureless; Proton: also a complicated object

Summary

Electron Ion Collider (EIC) is the next QCD frontier

Exciting physics opportunities ahead of us

Thank you!