LPC Workshop on Physics Connections between the LHC and EIC

13-15 November 2019 Fermilab, Wilson Hall

Measurements of leptons from heavy-flavor decays

Debasish Das

Saha Institute of Nuclear Physics, Kolkata, India

Heavy Quarks

Heavy quarks carry information about early stage of collisions:

- Charm(c) and bottom(b) quarks are massive
- Formation takes place only early in the collision.

Sensitivity to initial gluon density and gluon distribution

Selected results on HF in next slides

Correlations: jets/flow and Quarkonia (in brief)

Why they are good probes?

Heavy Quarks: Why good probes?

Large Mass :
$$m_{c,b} >> \Lambda_{QCD}$$

Are hard probes, even at low p_T

Do not change flavor while interacting with the QCD medium, although the phase-space distribution does change

$$\tau_{prod} \sim 1/2m \sim 0.1~fm << \tau_{QGP} \sim 5\text{-}10~fm$$

Nuclear modification factor:

$$R_{AA}(p_T) = \frac{Yield (A + A)}{Yield (p + p) \times \langle N_{coll} \rangle}$$

- Knowing system properties in a simple way
 - calibrated probe
 - calibrated interaction
 - suppression pattern tells about density profile of the medium
- Heavy-ion (AA) collisions
 - hard processes : calibrated probe
 - transported through the whole
 - evolution of the system
 - suppression provides density measurements

Heavy quarks in pp

and pA collisions

pp: test understanding of heavy-quark production

- parton level production processes
- LO contributions:
 gluon fusion, quark-antiquark annihilation
- NLO contributions:gluon splitting, flavor excitation
- also complex mechanisms, like,
 Multi Parton Interactions (MPI)
- understand perturbative QCD calculations where theoretical uncertainties are due to
- renormalization and factorization scales
- quark masses
- production mechanisms using differential measurements
- multiplicity dependence of heavy-flavor production cross sections
- angular correlation measurements
- pp collisions act as a reference for pA and AA collisions

pA collisions: Useful as there is no QGP expected while there are some high density effects

- Nuclear modification of Parton Density Functions
- Saturation and shadowing effects
- Energy loss in Cold Nuclear Matter (CNM)
- Multiple binary collisions and k_T broadening
- Help to compare AA collisions

Measuring heavy-flavor particles

Heavy-Flavor(HF) hadrons decay via weak interaction:

- decay length cτ ~ few 100 μm
- measure decay products
- signal on invariant mass distribution
- difficulty is in understanding the background
- need good event mixing and vertex information

Measurements of electrons and muons from heavy flavor decays

D -->
$$e/\mu + X$$
, BR ~ 10%

B -->
$$e/\mu + X$$
, BR ~ 11%

Single electron spectra (RHIC)

Phys. Rev. Lett. 98 (2007) 192301

Phys. Rev. Lett. 98, 172301 (2007)

- Single electron spectra (from HF decays) shown till 10 GeV/c
- Integrated yield scale with binary collisions
- Yield strongly suppressed at high p_T in central Au+Au collisions

Electron and Muon spectra at LHC

Pb+Pb Physics Letters B771(2017) 467–481

ALICE

PRL 109, 112301 (2012)

- Left plot: the electrons from semi-leptonic decays of HF hadrons at mid-rapidity in Pb-Pb collisions
- Right plot shows the pQCD calculations in agreement with data at

Electron and Muon spectra at LHC

• pQCD calculations agree with e± & μ± (from HF)at high p_T

Separate Measurement of B → e and D → e Spectra at RHIC STAR PHENIX

Phys. Rev. D 83, 052006 (2011)

Phys. Rev. Lett. 103, 082002 (2009)

- The results for p+p at 200 GeV
- Such results for Au+Au will be much harder

Electrons from beauty decays: RHIC & LHC

STAR, PRL 105, 202301 (2010)

ALICE, PhysicsLetters B738 (2014) 97–108

separation of e± from charm and beauty decays

- near-side peak for electron-hadron angular correlation
 - -- wider for electrons from beauty decays than
 - -- for those from charm decays

Next challenge: D⁰ reconstruction at RHIC STAR

Open charmed mesons (first measured) in heavy-ion collisions

Higher Luminosity: D⁰ in Au+Au at RHIC STAR

- Open charmed mesons (first) detail studies in heavy-ion collisions
- Also the p_T spectra at different centrality classes are fitted

Open charm at LHC: TeV regime Spectra

LHCb

Forward rapidity

JHEP 1603 (2016) 159 Erratum: JHEP 1705 (2017) 074

Open charmed mesons detail studies in pp collisions at 13 TeV

Open charm at LHC: TeV regime Spectra

pp 7 TeV, Eur. Phys. J. C77 (2017) 550 Mid-rapidity, ALICE JHEP 03 (2016) 081

Open charmed mesons detail studies in pp and also in Pb-Pb

Spectra

D⁰ **p**_T spectra in pp collisions : LHC

ALICE

LHCb

JHEP 1603 (2016) 159 <u>Erratum: JHEP 1705 (2017) 074</u>

- ALICE and LHCb D⁰ p_T spectra
- Both data within FONLL uncertainty band (for $p_{_{\rm T}}$ < 3 GeV/c)
- Both data on FONLL band upper edge (for $p_{_{\rm T}} > 3$ GeV/c)

D* and **D**⁰ spectra at high **p**_T in **pp**: LHC

ATLAS

NPB 907 (2016) 717

CMS-PAS-HIN-16-001

CMS

- ATLAS data in agreement with GM-VFNS
- Both data (ATLAS & CMS) at $p_{_{\rm T}} > 20$ GeV/c higher than FONLL

STAR

Heavy Flavor : D* in Jets

ATLAS

Phys.Rev.D 79, 112006, 2009

Phys.Rev. D 85, 052005 ,2012

Charm content in Jets : The ratio $N(D^{*+} + D^{*-}) / N$ (jet) is measured to be 0. 015 \pm 0. 008(stat) \pm 0. 007(sys) for D* mesons with fractional momenta 0. 2 < z < 0. 5 in jets with a mean transverse energy of 11.5 GeV.

Charm content in Jets : $N(D^{*\pm})$ / N (jet) is $0.025 \pm 0.001(stat) \pm 0.004(sys)$ for jets with transverse momentum between 25 and 70 GeV in $|\eta| < 2.5$ and $D^{*\pm}$ mesons with fractional momenta 0.3 < z < 1.

EIC Physics Connections!

Open bottom at LHC: TeV regime Spectra

LHCb, Forward rapidity

pp at 7 TeV

Open bottom mesons detail studies in pp collisions at 7 TeV

B⁺ p_T spectra at LHC

CMS

Phys. Rev. Lett. 119, 152301 (2017)

Pb+Pb at 5.02 TeV

Mid - rapidity pp at 5.02 TeV

Pb+Pb at 5.02 TeV

- FONLL describes the pp data well for CMS
- FONLL agrees with LHCb (forward rapidity)
 - FONLL explains ATLAS & CMS data at 7 TeV

Nuclear modification factor

Single electron R_{AA}: RHIC

QM 2015, Nuclear Physics A 956 (2016) 513-516

STAR

- Strong suppression for p_T > 4 GeV/c in central collisions but less towards more peripheral collisions
- Likely enhancement at low $p_{_{\rm T}}$ in both central and peripheral collisions

Medium studies

HF decay lepton R_{AA}: LHC

PRL 109, 112301 (2012)

Pb+Pb 2.76 TeV

ALICE

- ullet yields of leptons from heavy-flavor decays show suppression at high \mathbf{p}_{T} in central Pb-Pb collisions, compared with binary scaled pp collisions
- less suppression in more peripheral collisions

D⁰ mesons in pA collisions : LHC

ALICE, PHYSICAL REVIEW C 94, 054908 (2016)

LHCb, JHEP 1710 (2017) 090

- ALICE R_{DA} data are consistent with 1 within uncertainities
- We see no major modification in pPb and also similar with LHCb
- We need more precise data to be able to separate between the models

D mesons in AA collisions: LHC

ALICE , Pb+Pb 2.76 TeV JHEP 03 (2016) 081 CMS, Pb+Pb 5.02 TeV, CMS-PAS-HIN-16-001, arXiv:1708.04962

Similar suppression in Pb+Pb at 2.76 TeV and 5.02 TeV

Beauty Suppression: LHC

CMS

Pb+Pb 5.02 TeV, Phys. Rev. Lett. 119, 152301 (2017)

- Consistent with various models
- But we need more precise data to extract detailed underlying mechanism from the various models

Onia

Forward Rapidity: with Onia and Models

EPJC 74 (2014) 2974 p-p @ 7 TeV

Color Singlet Model [NPA470 (2013) 910]

- Calculations for LO and NLO
- Qualitative features like data for low p_T and rapidity dependence
- Underestimates the data at high p_T
- Also the leading- $p_{_{\mathrm{T}}}$ NNLO contributions
- Better agreement at high p_T, but with large uncertainties

Non-Relativistic QCD (NRQCD)

[PRD84 (2011) 114001, PRD85 (2012) 114003]

- -- Theory overestimates the data
- -- Smaller disagreement at high $p_{_{\rm T}}$

Y(2S) -to-Y(1S) ratio in good agreement with CSM & NRQCD & Hybrid [Mod. Phys. Lett. A 28, 1350120 (2013)] (L.S.Kisslinger and DD)

More on Forward rapidity JHEP 1511, 103, (2015)

LHCb, pp

Figure 4. Differential cross-sections $\frac{d}{du}\sigma^{\Upsilon \to \mu^+ \mu^-}$ in the range $p_T < 30 \text{ GeV}/c$ for (red solid circles) $\Upsilon(1S)$, (blue open squares) $\Upsilon(2S)$ and (green solid diamonds) $\Upsilon(3S)$ mesons for (left) $\sqrt{s} = 7 \,\mathrm{TeV}$ and (right) $\sqrt{s} = 8 \,\text{TeV}$ data. Thick lines show fit results with the CO model predictions from refs. [63, 64] in the region 2.5 < y < 4.0, and dashed lines show the extrapolation to the full region 2.0 < y < 4.5. The data points are positioned in the bins according to eq. (6) in ref. [62].

(L.S.Kisslinger and DD) Mod.Phys.Lett. A28 (2013) 1350067 (forward rapidity) Mod.Phys.Lett. A28 (2013) 1350120. (7.0 TeV) Mod.Phys.Lett. A29 (2014) 1450082. (8.0 TeV)

Bottomonia flow?

DD and N.Dutta, Int.J.Mod.Phys. A33 (June 2018) no.16, 1850092

Studies of J/ψ v_2 at RHIC and LHC energies have provided important elements toward the understanding on the production mechanisms and thermalization of charm quarks. Bottomonia has an advantage since it is a cleaner probe. A brief discussion has been provided for $\Upsilon(1S)$ v_2 , which can become the new probe for QGP, including the necessity of studies for small systems.

ALICE and CMS

ArXiv: 1812.06772 (December 2018) YELLOW REPORT

(CERN) Yellow Report on Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams *What's new* (2019) : ALICE : arXiv:1907.03169 & CMS : http://cds.cern.ch/record/2698580 comparable at 5.02 TeV Pb+Pb

28

Where lies the challenge?

ALICE, PLB 753 (2016) 41

simultaneous description of HF decay R_{AA} and v_2 is a challenge

-- can constrain energy loss models

Heavy-flavor energy loss at LHC: ADS/CFT Armesto, Dainese, Salgado, Wiedemann Horowitz, Gyulassy

Armesto, Dainese, Salgado, Wiedemann YSICAL REVIEW D 71, 054027 (2005)

Physics Letters B 666 (2008) 320-323

Colour charge dependence

$$R_{D/h}(p_t) = R_{AA}^D(p_t) / R_{AA}^h(p_t)$$

Mass hierarchy

$$R_{B/D}(p_t) = R_{AA}^{e \text{ from } B}(p_t) / R_{AA}^{e \text{ from D}}(p_t)$$

- More intricacies on heavy-flavor quenching mechanisms
- R^{c}_{AA}/R^{b}_{AA} ratio differ as we see for pQCD and AdS/CFT

Unanswered Questions and next steps

- Heavy quarks are particularly good probes to study the properties of hot QCD matter
- pp data are important baseline measurements
 - examine interplay of soft and hard processes
- pA which is more than just a control
 - needed to study the CNM effects in various x ranges
- AA collisions : for understanding dense/hot QCD matter
 - strong interaction of heavy quarks with the QCD medium
- But do we understand fully the suppression at high p_T at RHIC?
- In this perspective what is the role of collisional energy loss?
- Difference between Pb+Pb at 2.76 TeV and 5.02 TeV?
- The role of shadowing effect? EIC Physics Connections!
- Next steps:
- Need more statistics, better precision and extended coverage (in terms of $\mathbf{p}_{_{\mathrm{T}}}$)
- Need new differential measurements to constrain models and address open questions
- Liliana Apolinário, José Guilherme Milhano, Gavin P. Salam, Carlos A. Salgado, PRL. 120, 232301(2018)

 New probes like top quarks ? L.Kisslinger, D.Das, Mod.Phys.Lett.A Vol. 34 (2019) 1950353; http://cds.cern.ch/record/2699428 (CMS)

MORE

Different particle species ALICE, Pb-Pb

Phenix, d-Au

PRL 112, 252301 (2014)

Phys. Lett. B 738 (2014) 361

200 GeV , R_{dA}

2.76 TeV, R

Backward rapidity (-2.0 < y < -1.4, Au-going direction)

Forward rapidity (1.4 \leq y \leq 2.0, d-going direction)

Comparisons at LHC

