Status and prospects with charm production studies at LHCb

FELIPE GARCÍA

Laboratoire Leprince-Ringuet, École polytechnique Laboratoire de l'Accélérateur Linéaire

STRONG 2020 Joint Kick-Off Meeting

The LHCb detector

- Forward single arm spectrometer.
- Designed to study heavy flavour physics in *pp* collisions.
- \bullet Only LHC experiment fully instrumented in the region $2 < \eta < 5$.
- Some nice features:
 - *Excellent vertex, IP and decay time resolution thanks to VELO.

$$\Rightarrow \sigma(\text{IP}) \approx 20 \,\mu\text{m}.$$

❖ Very good momentum resolution.

$$\Rightarrow \delta p/p \approx 0.5 - 1.0\%$$
 for $0 GeV/c.$

❖ Particle identification.

$$\Rightarrow \varepsilon_{K \to K} \approx 95 \% \text{ for } \varepsilon_{\pi \to K} \approx 5 \% \text{ up to } 100 \text{ GeV/}c.$$

$$\Rightarrow \varepsilon_{\mu \to \mu} \approx 97 \% \text{ for } \varepsilon_{\pi \to \mu} \approx 1 - 3 \%.$$

$$\Rightarrow \varepsilon_{\mu \to \mu} \approx 97 \% \text{ for } \varepsilon_{\pi \to \mu} \approx 1 - 3 \%$$

 \bigstar LHCb can also operate in *p*-Pb and Pb-Pb collisions.

The LHCb detector

Fixed-target operation

- **\$**Unique feature at LHC.
- ❖Inject noble gas into the VELO tank (interaction region).
- ❖Gas target for *p*-gas and Pb-gas collisions.
- So far have been used: He, Ne and Ar.
- Typical pressure $\sim 2 \times 10^{-7}$ mbar (about two orders of magnitude higher than nominal pressure).

LHCb operations for heavy ion physics LHCb

LHCb rapidity coverage in the cms

Fills the existing energy gap between SPS and RHIC.

$$\sqrt{s_{NN}}^{SPS} < \sqrt{s_{NN}}^{SMOG} < \sqrt{s_{NN}}^{RHIC} < \sqrt{s_{NN}}^{LHC}$$

$$\sim 20 \text{ GeV} < \sim 70 \text{ GeV} < 200 \text{ GeV} < 5 \text{ TeV}$$

Gives access to the large Bjorken-x region in the target.

Collider mode

Fixed target mode

At
$$\sqrt{s_{NN}} = 110 \text{ GeV}, y^* = y_{lab} - 4.77$$

Charm in fixed-target p-A and Pb-A collisions

Nucleus-nucleus collisions ($\sqrt{s_{NN}}$ = 69 GeV): 2.5 TeV Pb beam on fixed target.

- No regeneration of charmonium $(\sigma_{c\bar{c}}^{FT} \approx \frac{1}{100} \sigma_{c\bar{c}}^{LHC})$.
- ▶ Probe the Quark Gluon Plasma (QGP) phase transition via colour screening.
- ▶ LHCb allows for new opportunities for charm: $J/\psi, \psi', \chi_c, D^0, D^{+/-}, D^*, \Lambda_c, \dots$

Proton-nucleus collisions.

- ▶ Baseline for the nucleus-nucleus collisions, study of nuclear PDF, and other effects.
- ▶ At LHCb, 3 units of rapidity coverage, at large Bjorken-x in the target (x_2) .
 - Access the nPDF anti-shadowing region and intrinsic charm content in the nucleon

Fixed-targets so far

Data samples: two datasets in this presentation.

- Select events with only Beam 1 at the interaction point.
- ♦ Select only events within the VELO $\Rightarrow Z_{vertex} \in [-200,200]$ mm.

 $\clubsuit J/\psi \to \mu^+\mu^-$ and $D^0 \to K^{\mp}\pi^{\pm}$ inclusive cross sections in p-He at $\sqrt{s_{NN}} = 86.6$ GeV.

Phys. Rev. Lett. 122, 132002

- $4J/\psi$ measurement.
- $\bullet \sigma_{J/\psi} = 1225.6 \pm 100.7 \text{ nb/nucleon.}$
- LHCb result in good agreement with other measurements.

- D^0 measurement.
- $\bullet \sigma_{D^0} = 156.0 \pm 13.1 \,\mu \text{b/nucleon}.$

With fraction $(c \to D^0) = 0.542 \pm 0.024$:

- $\bullet \sigma_{c\bar{c}} = 144 \pm 13 \,\mu\text{b/nucleon}.$
- LHCb result in reasonable agreement with NLO pQCD predictions and other measurements.

 \clubsuit J/ ψ differential yields in p-Ar and cross sections in p-He.

Phys. Rev. Lett. 122, 132002

- * Plain and dashed red lines are phenomenological parametrisation: JHEP 05 (2013) 155
- ◆ HELAC-ONIA predictions for *p-p* (blue lines) and *p*-A (green boxes): EPJC(2017) 77:1

*p-Ar yields at $\sqrt{s_{NN}} = 110 \text{ GeV}$.

*p-He cross sections at $\sqrt{s_{NN}} = 86.6 \text{ GeV}$.

- ▶ HELAC-ONIA underestimates the J/ ψ cross section on p-He by a factor 1.78.
- ▶ Good shape agreement with the predictions.

 $\clubsuit D^0$ differential yields in p-Ar and cross sections in p-He.

Phys. Rev. Lett. 122, 132002

* HELAC-ONIA predictions for *p-p* (blue lines) and *p-*A (green boxes): EPJC(2017) 77:1

*p-He cross sections at $\sqrt{s_{NN}} = 86.6 \text{ GeV}$.

- ▶ HELAC-ONIA underestimates the D^0 cross section on p-He by a factor 0.72.
- ▶ Good rapidity shape agreement with the predictions.

10

Phys. Rev. Lett. 122, 132002

- $\clubsuit D^0$ cross sections from p-He at $\sqrt{s_{NN}} = 86.6$ GeV and intrinsic charm
 - * HELAC-ONIA predictions for *p-p* (blue lines) and *p-*A (green boxes): EPJC(2017) 77:1
 - With $x_2 \approx \frac{2m_c}{\sqrt{s_{NN}}} \exp(-y^*)$ we have: $y^* \in [-1.73, -2.53] \Leftrightarrow x_2 \in [0.17, 0.37]$
- *HELAC-ONIA does not contain intrinsic charm contribution.
- For the moment, **no evidence** of strong valence-like intrinsic charm contributions.

- Ongoing analyses of existing data:
 - ♣ 2017 p-Ne at $\sqrt{s_{NN}}$ = 69 GeV
 - ♣ 2018 Pb-Ne at $\sqrt{s_{NN}}$ = 69 GeV
 - Expected to reach much more central events than in Pb-Pb scenario.

For Run 3 of LHC:

- For FT: New gas feed system (SMOG2)
 - ⇒ Start with known gasses (He, Ne, Ar) before new ones.
- ❖ VELO upgraded
- ❖ Scintillating Fibre (SciFi) tracking station to be installed ⇒ Improvement of the track reconstruction in very dense environments (nuclei-nuclei).
 - ⇒ Still saturate for most central Pb-Pb collisions.
- We should have no centrality limitation in the previous nuclei-nuclei FT collisions in Run 3.
- Start using new gas species (H, D, O).

- ♣ Run 3: SciFi → Push Pb-Pb to 30% centrality.
- Run 4: Add silicon Inner Tracker to SciFi → Push Pb-Pb to 10-20%.
- Run 5: Add Middle Tracker to the set up \rightarrow Push Pb-Pb to 0%.
- ⇒ For Run 4 and 5 we are confident to have no centrality limitation for the fixed-target scenario, for any chosen target!

Inner Tracker (LS3)

Middle Tracker (LS4)

LHCb-PUB-2018-015

System	$\sqrt{s_{ m NN}}$	< pressure>	$ ho_S$	\mathcal{L}	Rate	Time	$\int \mathcal{L}$
	(GeV)	(10^{-5} mbar)	(cm^{-2})	$(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	(MHz)	(s)	(pb^{-1})
$p\mathrm{H}_2$	115	4.0	2.0×10^{13}	6×10^{31}	4.6	2.5×10^6	150
$p\mathrm{D}_2$	115	2.0	1.0×10^{13}	3×10^{31}	4.3	0.3×10^{6}	9
$p{ m Ar}$	115	1.2	0.6×10^{13}	1.8×10^{31}	11	2.5×10^{6}	45
$p{ m Kr}$	115	0.8	0.4×10^{13}	1.2×10^{31}	12	2.5×10^{6}	30
$p \mathrm{Xe}$	115	0.6	0.3×10^{13}	0.9×10^{31}	12	2.5×10^6	22
$p{ m He}$	115	2.0	1.0×10^{13}	3×10^{31}	3.5	3.3×10^{3}	0.1
$p{ m Ne}$	115	2.0	1.0×10^{13}	3×10^{31}	12	3.3×10^{3}	0.1
$p\mathrm{N}_2$	115	1.0	0.5×10^{13}	1.5×10^{31}	9.0	3.3×10^{3}	0.1
$p\mathrm{O}_2$	115	1.0	0.5×10^{13}	1.5×10^{31}	10	3.3×10^3	0.1
PbAr	72	8.0	4.0×10^{13}	1×10^{29}	0.3	6×10^5	0.060
PbH_2	72	8.0	4.0×10^{13}	1×10^{29}	0.2	1×10^5	0.010
$p{ m Ar}$	72	1.2	0.6×10^{13}	1.8×10^{31}	11	3×10^5	5 /

	SMOG	SMOG	SMOG2	
	published result	largest sample	example	
	$p{\rm He@87~GeV}$	$p{ m Ne@69~GeV}$	pAr@115 GeV	
Integrated luminosity	$7.6 \mathrm{nb^{-1}}$	$\sim 100~\mathrm{nb}^{-1}$	$\sim 45~{ m pb}^{-1}$	
syst. error on J/ψ x-sec.	7%	6 - $7%$	2 - 3 %	
$J\!/\!\psi$ yield	400	15k	15M	
D^0 yield	2000	100k	150M	
Λ_c^+ yield	20	1k	1.5M	
$\psi(2S)$ yield	negl .	150	150k	
$\Upsilon(1S)$ yield	negl .	4	7k	
Low-mass Drell-Yan yield	negl .	5	9k	

- The possible catalog of systems to be studied is broad.
- Expected data to be recorded in Run 3 of LHC.
- **Assumptions:**
 - Simultaneous to p-p.
 - ▶ 1/3 of beam time.
 - All available beam bunches to be used.
- Estimates of expected charmed particles production are extrapolated from p-He result.
- * Important increase in statistics, and reduction of systematic errors.
- **The measurements of** $\psi(2S)$ and possibly χ_c would provide important inputs to the study of sequential suppression of charmonia.

Conclusions

- LHCb is the only LHC experiment capable of running in both collider and fixed-target modes.
- LHCb has unique capabilities for heavy-flavour measurements at LHC.
- \clubsuit Fixed-target programme has delivered J/ψ and D^0 cross sections and yields measurements:
 - In $\sqrt{s_{NN}} = 110 \text{ GeV } p\text{-Ar collisions.}$
 - In $\sqrt{s_{NN}} = 86.6 \text{ GeV } p\text{-He collisions.}$
 - No evidence for strong intrinsic charm contribution.
 - ▶ Other analyses ongoing (*p*-Ne and Pb-Ne at $\sqrt{s_{NN}}$ = 69 GeV).
- The SMOG2 and LHCb general detector upgrade, will significantly enhance performance and allow more ambitious measurements in fixed-target mode.
- Prospects for charm physics at LHCb are promising, and will give unique and decisive input to Heavy Ion physics

Thank You!