Experience of using HELAC-Onia with pion beams

Andrei Gridin Joint Institute for Nuclear Research (Dubna, Russia)

FTE@LHC & NLOAccess

STRONG 2020 joint kick-off meeting CERN, 7-8 November 2019

COMPASS experiment @ CERN

 π^- beam with P = 190 GeV/c

$$\sqrt{s} = 19.7 \; GeV$$

Beam intensity: $\approx 10^8$ part/sec

High tracking power:~350 planes

Two years of Drell-Yann data taking (2015 + 2018)

3 nuclear targets: NH3, A1, W

Production of $J/\psi J/\psi$ with pion beam

Only one measurement with pion beam performed by the NA3 in 1982:

- $\sigma_{2J/\psi}(150 \text{ GeV/c}) = 18 \pm 8 \text{ pb/nucleon}$
- $\sigma_{2J/\psi}(280~GeV/c) = 30 \pm 10~pb/nucleon$

Possible contribution from **SPS**, **DPS**, **Intrinsic charm** production mechanisms;

Not many generators of $2J/\psi$: Pythia8 (CS LO), HELAC-Onia (NRQCD NLO);

Phys Lett B, v114, No6

Using HELAC-Onia with pion beams

Starting with v.2.4.0 Helac-Onia can use different PDFs for each beam:

qqbar channel: gg channel:

generate p p > $cc^{(3S11)}$ $cc^{(3S11)}$

generate g g > $cc^{(3S11)}$ $cc^{(3S11)}$

- **GRVPI1**
- E = 190 GeV/c
- Fixed target mode
- **Nuclear PDFs**

Cross sections from generators:

Pythia8:

$$\pi p \to 2J/\psi \ via \ q\bar{q} : 1.42 \cdot 10^{-8} mb$$

 $\pi p \to 2J/\psi \ via \ gg: \ 1.11 \cdot 10^{-9} mb$

HELAC-Onia:

$$\pi p \to 2J/\psi \ via \ q\bar{q} : 9.57 \cdot 10^{-11} mb$$

 $\pi p \to 2J/\psi \ via \ gg: \ 3.32 \cdot 10^{-10} mb$

HELAC-Onia gives untrustable $2J/\psi$ cross section at **COMPASS** energies. But cross section ratios between qqbar and gg could be estimated by hand.

Using HELAC-Onia with different nuclear targets

An
$$x_{||} = \frac{p_{Z2J/\psi}}{p_{beam}}$$
 variable could be used for comparison of $2J/\psi$ production mechanisms.

Feed-down effect with pion beam

Physical Review D, Vol 64, 094015

State	Mass (GeV)	Decay mode (BR)	fraction
J/ψ	3.1	-	0.57 ± 0.3
$\psi(2S)$	3.69	$J/\psi + X \ (61\%)$	0.08 ± 0.02
$\chi_{1c}(1P)$	3.51	$J/\psi + \gamma \ (34 \%)$	0.20 ± 0.05
$\chi_{2c}(1P)$	3.56	$J/\psi + \gamma \ (19\%)$	0.15 ± 0.04

For the case of pion beam fractions of feed down components are known.

HELAC-Onia does not generate pairs of higher charmonium states (e.g. $\psi(2S)\chi_{1c} \rightarrow J/\psi J/\psi$).

Feed-down effect with pion beam

Helac-Onia: Generated $J/\psi J/\psi$ are written in .lhe

PDG_id and mass of final state particles were changed

Pythia8:
Regenerate events (reshuffle the momentum of quarks and gluons)

After all the generation chain one gets a set of good events with the needed state (e.g. $J/\psi\psi(2S)$). All the laws of momentum and energy conservation are taken into account by Pythia8.

Distributions with feed down effect:

Conclusions

HELAC-Onia was already used by couple of experiments (D0, ATLAS, CMS, LHCb) and seems to be promising also for COMPASS.

There are many questions and ideas to HELAC-Onia developers (cross-sections, feed-down effect, usage of JAM pion PDF).