Computational fluid dynamics for physicists and engineers

Ruchi Mishra

Nicolaus Copernicus Astronomical Center

Inverted CERN school of Computing (iCSC), CERN, 28th Sep- 2nd Oct 2020

Content

What is Computational Fluid Dynamics?

Applications in different fields

How does CFD work?

Conservation equations

Discretization method

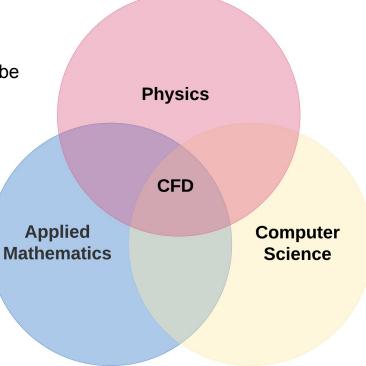
Riemann Problem

Example: Shock tube Problem

Example: KORAL Simulation

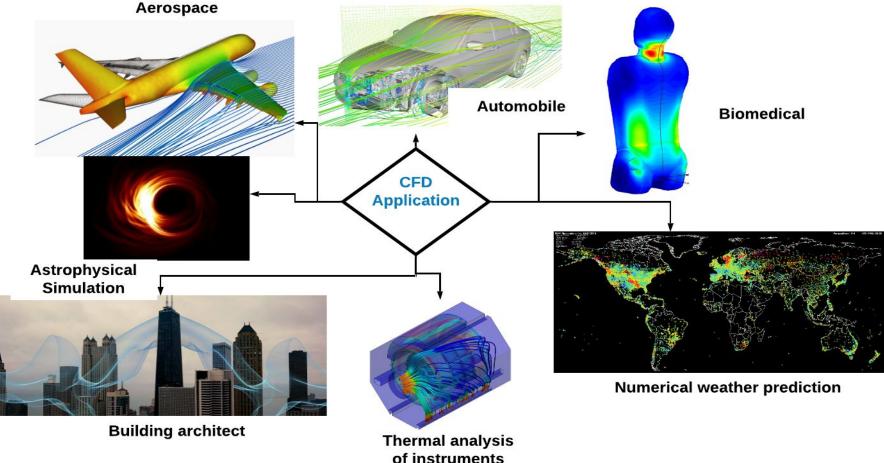
WHAT IS CFD?

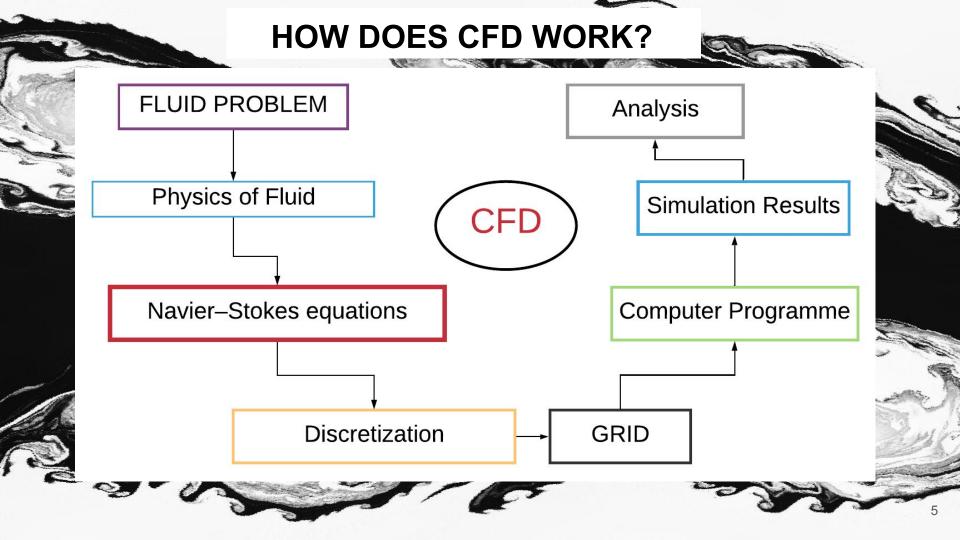
Fluid flows are governed by system of **partial differential equations** (PDEs) which describe the conservation of mass, momentum and energy.



Computational fluid dynamics (CFD) solves these PDEs by replacing them with algebraic equations.

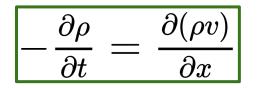
CFD APPLICATION IN DIFFERENT FIELDS





EQUATIONS GOVERNING FLUID FLOW

Forces



Mass conservation equation / continuity equation

$$\rho\left(\frac{Dv}{Dt}\right) = -\nabla P + \mu \nabla^2 v + F_{\chi}$$

mass X acceleration

Pressure Internal gradiant Forces Momentum conservation equation
 Navier-Stokes equation

$$\frac{D}{Dt} = \left[\frac{\partial}{\partial t} + (v, \nabla)\right]$$

$$\frac{\partial e}{\partial t} + v. \nabla e = -\frac{P}{\rho} \nabla. v$$

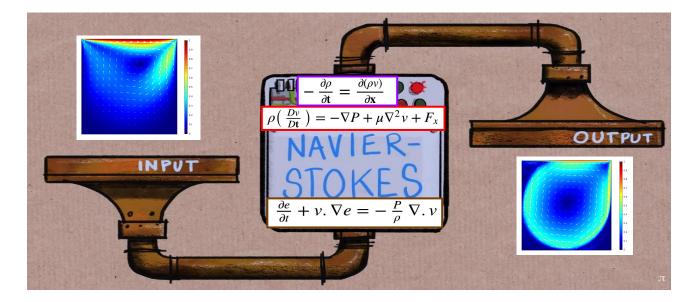
$$p = (\gamma - 1)\rho e$$
Equation of state

- Energy conservation equation

FROM INPUT TO OUTPUT

Initial conditions

Boundary conditions



Unknown Physical Quantities

7) e Έ Energy

Density

Velocity Pressure

DIFFERENT APPROACHES TO MODEL FLUID IN CFD

Eulerian Approach

Grid based hydrodynamics

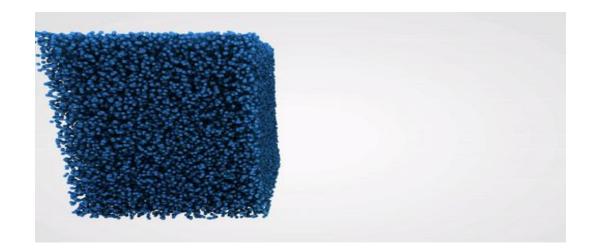
Solves the fluid dynamics equations by calculating the flux of conserved quantities through adjacent cell boundaries

Lagrangian Approach

Smooth particle hydrodynamics(SPH)

- Calculates the properties on each particle by averaging over its nearest neighbour

- Satisfies mass conservation without extra computation as the particles themselves represent mass



SIMPLIFIED EQUATIONS IN CONSERVED FORM

 $\left(\frac{Dv}{D\mathbf{t}}\right) = -\nabla P + \mu \nabla^2 v + F_x$ External Interna gradiant Forces Forces

We replace our equations by simpler ones.

Original Navier-Stokes equation reduces to Euler equations. ∂I Momentum conservation equation
Navier-Stokes equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial x} = 0$$
$$\frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho v^2 + P)}{\partial x} = 0$$
$$\frac{\partial e}{\partial t} + \frac{\partial ((e + P)v)}{\partial x} = 0$$

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = 0$$

 $\frac{\partial}{\partial t}$ [Conserved quantity] + $\frac{\partial}{\partial x}$ [Flux] = 0

How to solve it numerically ?

HOW TO SOLVE THEM NUMERICALLY?

Unknown Physical Quantities

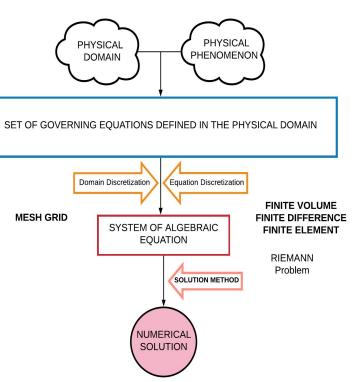
 ρ v p eDensity Velocity Pressure Energy

$$rac{\partial}{\partial t} [extsf{Conserved quantity}] + rac{\partial}{\partial x} [extsf{Flux}] = 0$$

Physical domain: space (*x*, *y*, *z*) and time *t* Physical quantities: $\rho v p e$

Since we will solve equations numerically, we have to discretize

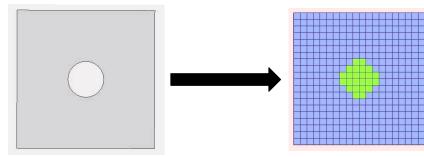
- 1) Physical domain
- 2) Physical quantities (aka equation discretization)

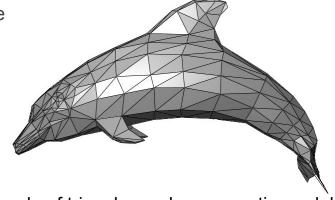


DOMAIN DISCRETIZATION

MESH GRID - Division of a continuous geometric space into discrete geometric cells

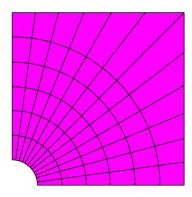
Model of flow around cylinder using cartesian grid.



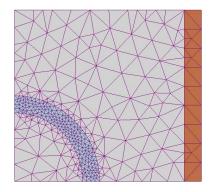


Example of triangle mesh representing a dolphin

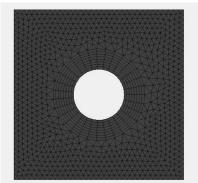
Structured curvilinear grid



Unstructured curvilinear grid

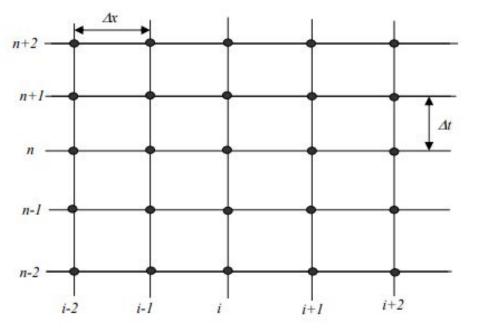


Hybrid grid



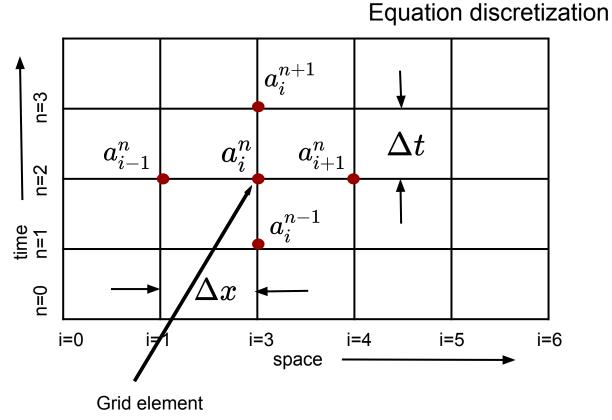
THE DISCRETIZED PHYSICAL DOMAIN

Grid generation



- A simple method of placing points in the domain
- Each point is labeled using *i* for spatial discretization and *n* for time discretization
- The spacing can be of variable size

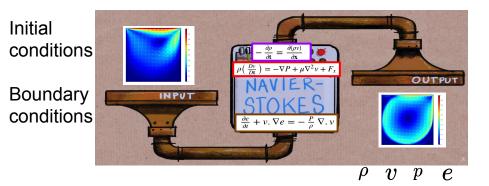
DISCRETIZATION OF PHYSICAL QUANTITIES



 $\frac{\partial a_i^n}{\partial x}$ $-a_{i-1}^n$ \mathbf{x} **Forward difference** $\frac{\partial a_i^n}{\partial x}$ Δx **Central difference** $\int \frac{a_{i+1}^n - \sum_i}{2\Delta x}$ $\frac{\partial a_i^n}{\partial x}$

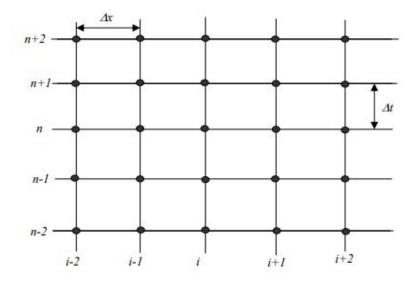
Backward difference

SPECIFYING INPUT THROUGH INITIAL AND BOUNDARY CONDITIONS



Some of the boundary conditions used in CFD

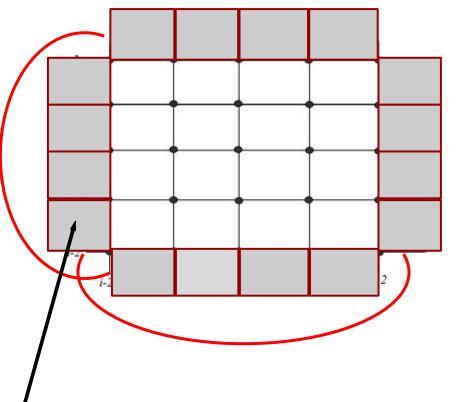
- 1- inlet condition
- 2- symmetric condition
- 3- periodic boundary condition
- 4- reflective boundary condition
- 5- outlet condition

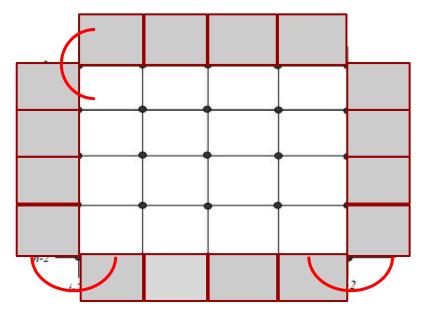


BOUNDARY CONDITIONS

Periodic Boundary Condition

Symmetric Boundary Condition

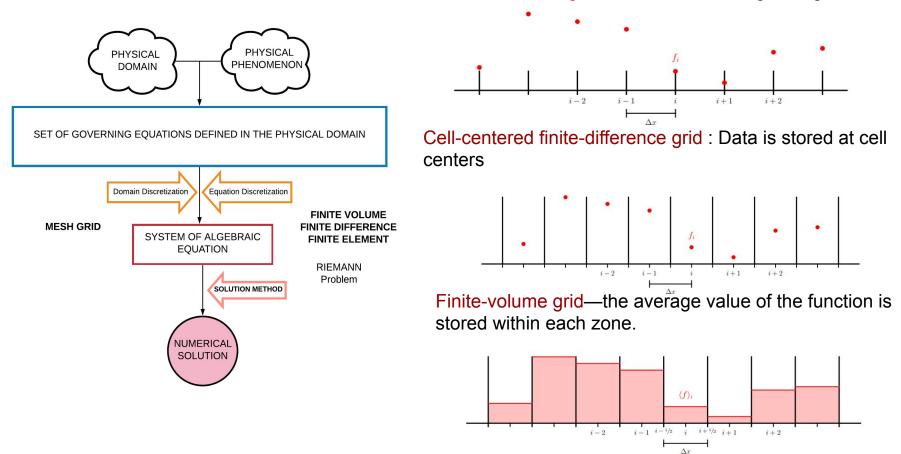


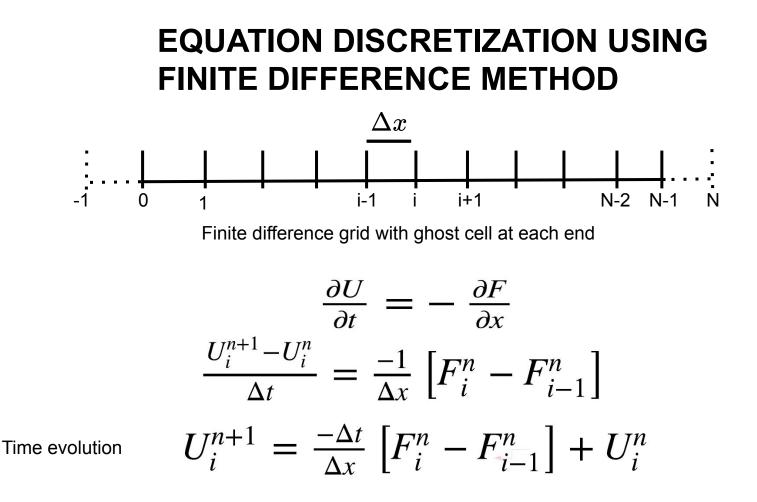


Ghost cells are used here to extend the grid beyond physical boundary to accommodate boundary condition 15

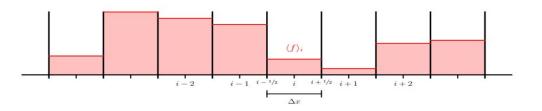
STORING DATA IN GRIDS

Finite-difference grid : Data is stored at grid edges

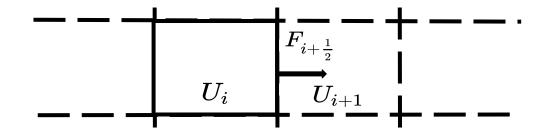




FINITE VOLUME METHOD



Fluxes are calculated at cell edges (i ± 1/2)



EQUATION DISCRETIZATION USING FINITE DIFFERENCE METHOD

$$\frac{\partial U}{\partial t} = -\frac{\partial F}{\partial x}$$

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} = \frac{-1}{\Delta x} \left[F_{i+\frac{1}{2}}^{n+\frac{1}{2}} - F_{i-\frac{1}{2}}^{n-\frac{1}{2}} \right]$$

$$U_i^{n+1} = \frac{-\Delta t}{\Delta x} \left[F_{i+\frac{1}{2}}^{n+\frac{1}{2}} - F_{i-\frac{1}{2}}^{n-\frac{1}{2}} \right] + U_i^n$$

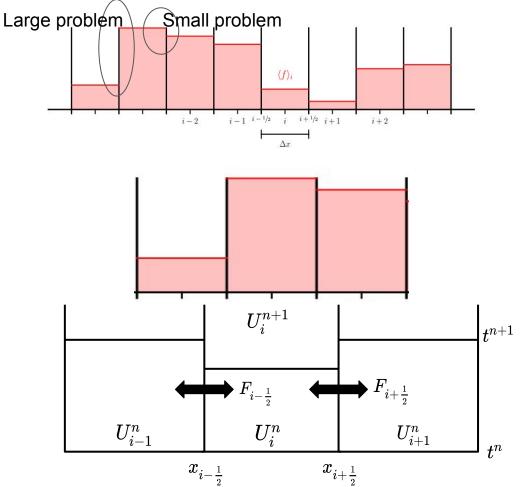
Time evolution

At the interface there will be a jump. How do we calculate flux at the interface ?

For flux evaluation at half time, we need information of state U at half time

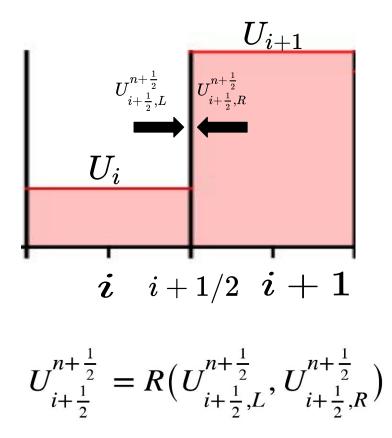
$$[F^{n+rac{1}{2}}_{i+rac{1}{2}}]=f(U^{n+rac{1}{2}}_{i+rac{1}{2}})$$

THE RIEMANN PROBLEM

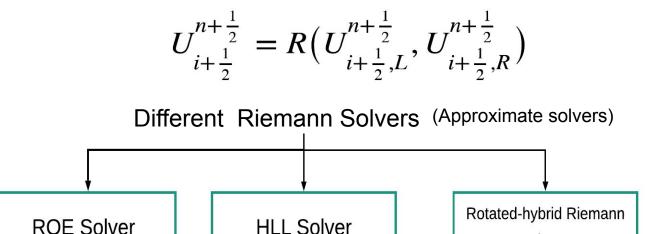


THE RIEMANN PROBLEM

- Two states separated by a discontinuity.
- This is called a Riemann problem.
- Solution to Riemann problem results in single state at interface.



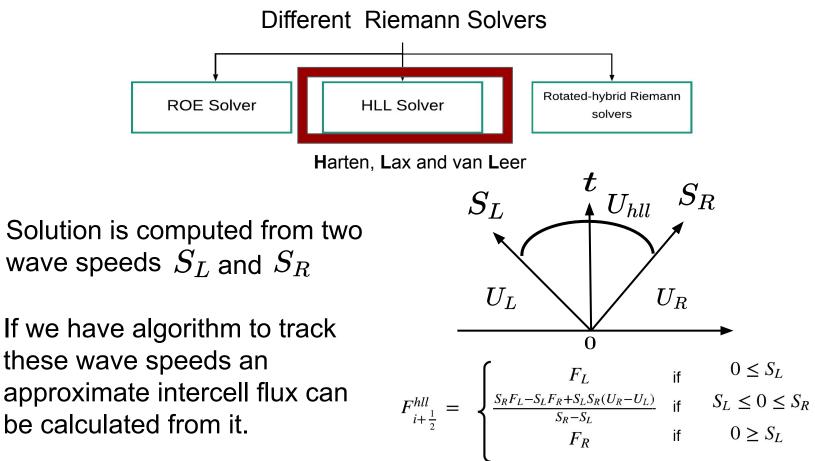
APPROXIMATE RIEMANN SOLVERS



solvers

The exact solution of Riemann problem at every interface is very expensive! Use approximate Riemann solver instead!

HLL RIEMANN SOLVER

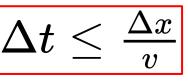


We have a new problem while discretizing the time.

CFL CONDITION

When we discretize the time, the step must be less than the time it takes for the information to propagate across a single zone.

This is called **CFL**(Courant–Friedrichs–Lewy) condition



$$C = \frac{v\Delta t}{\Delta x}$$

$$C \leq 1$$

Necessary condition for stability

SHOCK TUBE OR SOD PROBLEM IN 1D

Gary A.Sod (1978)

Commonly used problem to test accuracy of CFD codes using Riemann Solver.

Initial Condition		
$v_L=0$	$v_R=0$	
$ ho_L^-=1$	$ ho_R=0.1$	
$P_L=1$	wall $P_R=0.125$	
		0.5

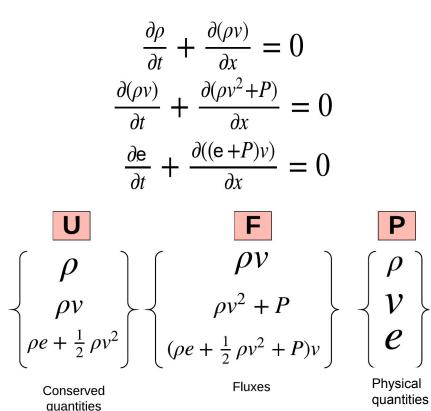
The fluid (gas) is initially at rest separated by a wall

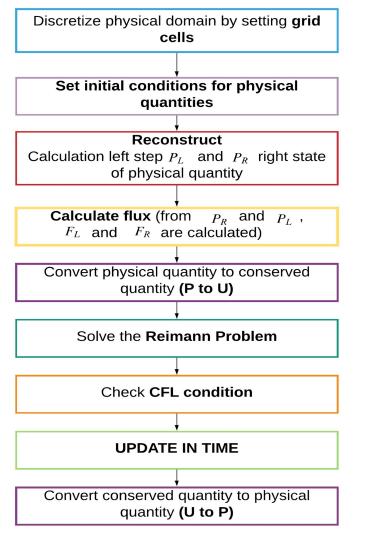
2

The sudden breakdown of the wall generates a high-speed flow resulting a shock wave, which propagates to the right

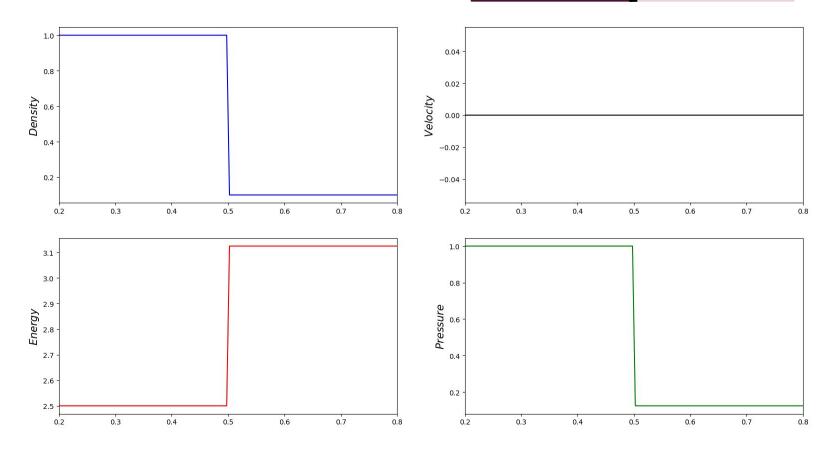
THE ALGORITHM

EQUATION IN CONSERVED FORM

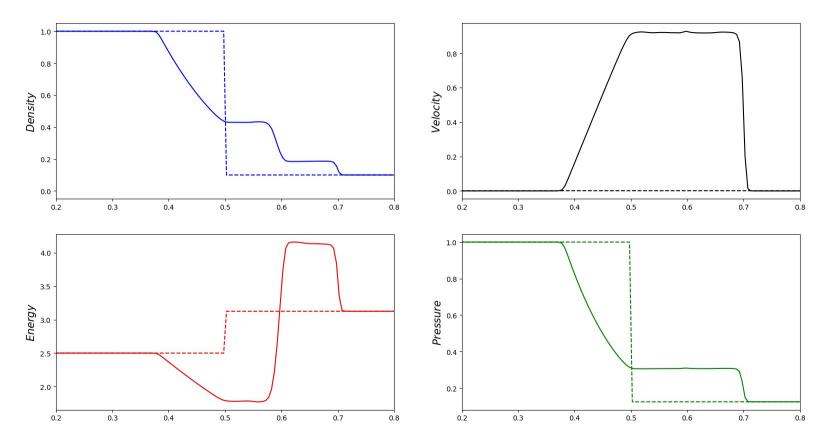




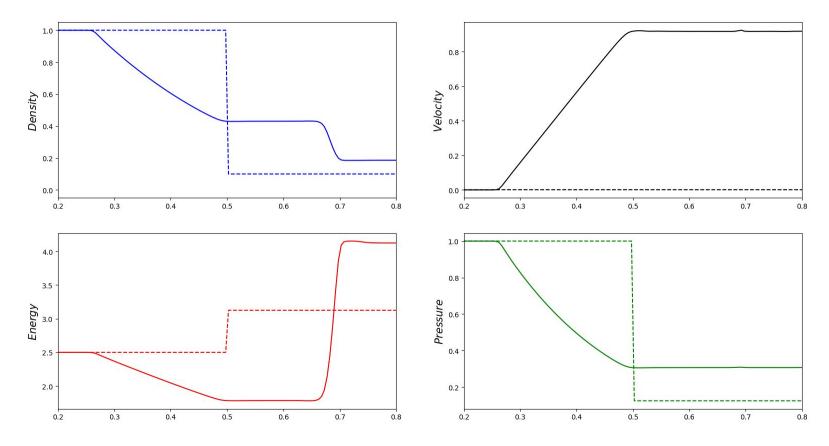
INITIAL CONDITION

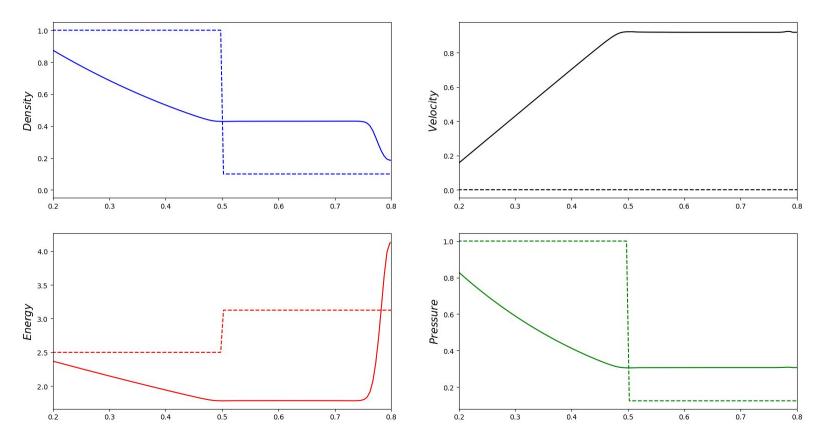


TIME EVOLUTION



TIME EVOLUTION





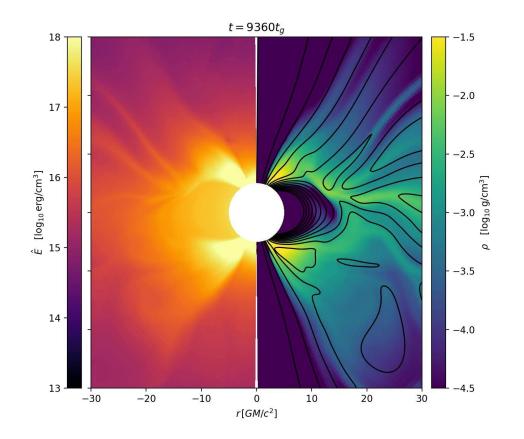
Why do we do simulation in Astrophysics?

SIMULATION IN ASTROPHYSICS

Simulation enables us to build a model of a system

It allows us to do virtual experiments to understand how this system reacts to a range of conditions and assumptions

General Relativistic Radiative MagnetoHydroDynamics



TAKE HOME MESSAGE :

- CFD enables us to predict fluid flow
- The fundamentals of CFD lie in solving the set of partial differential equations that describe the fluid flow (e.g. *Navier-Stokes equation*)
- In Eulerian grid based approach, the physical domain is discretized into large number of cells
- In each of these cells, Navier-Stokes equations can be rewritten as algebraic equations
- These equations are then solved numerically
- At the end we get the complete description of flow throughout the domain

THANK YOU