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WHAT IS CFD?

Fluid flows are governed by
system of partial differential
equations (PDEs) which describe
the conservation of mass,
momentum and energy.

Applied
- Mathematics

Physics

CFD

Computer
Science

Computational fluid
dynamics (CFD) solves these
PDEs by replacing them with
algebraic equations.



CFD APPLICATION IN DIFFERENT FIELDS
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HOW DOES CFD WORK

FLUID PROBLEM
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EQUATIONS GOVERNING FLUID FLOW
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FROM INPUT TO OUTPUT

Initial
conditions

Boundary | ()= VP +/+ e

Unknown Physical Quantities
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Density ~ Velocity Pressure Energy



DIFFERENT APPROACHES TO MODEL FLUID IN CFD

Eulerian Approach Lagrangian Approach

Grid based hydrodynamics Smooth particle hydrodynamics(SPH)

- Solves the fluid dynamics
equations by calculating the flux of
conserved quantities through
adjacent cell boundaries

- Calculates the properties on each particle by averaging over
its nearest neighbour

- Satisfies mass conservation without extra computation as the
particles themselves represent mass

IN THIS LECTURE WE ARE GOING TO COVER ONLY THE GRID BASED HYDRODYNAMICS 8



SIMPLIFIED EQUATIONS IN CONSERVED FORM

Momentum conservation equation
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How to solve it numerically ?



HOW TO SOLVE THEM NUMERICALLY?

PHYSICAL
DOMAIN

Unknown Physical Quantities

P UV P €

PHYSICAL
PHENOMENON

Density  Velocity Pressure Energy SET OF GOVERNING EQUATIONS DEFINED IN THE PHYSICAL DOMAIN
0 . 0 —0
E Cons erved qu antlty —|— 8— FluX p— Domain Discretization Equation Discretization
£ FINITE VOLUME
MESH GRID FINITE DIFFERENCE
- - . SYSTEM OF ALGEBRAIC FINITE ELEMENT
Physical domain: space (x,y,z) and time t EQUATION
Physical quantities: 0 U P € RIETANN

SOLUTION METHOD

Since we will solve equations numerically, we have to discretize
1) Phys!cal doma!q ‘ . o P
2) Physical quantities (aka equation discretization)
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https://www.lucidchart.com/documents/edit/493c9019-c309-4301-b6c9-057cf29a1c83/0?callback=close&name=slides&callback_type=back&v=1813&s=720

DOMAIN DISCRETIZATION

MESH GRID - Division of a continuous geometric space into discrete
geometric cells

Model of flow around cylinder using cartesian grid.

Q )
|

Structured curvilinear grid Unstructured curvilinear grid

\
Example of triangle mesh representing a dolphin

Hybrid grid
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Ax

Grid generation

PRI s

THE DISCRETIZED PHYSICAL DOMAIN
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A simple method of placing points
in the domain

Each point is labeled using i for
spatial discretization and » for
time discretization

The spacing can be of variable
size
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DISCRETIZATION OF PHYSICAL QUANTITIES

Backward difference

Equation discretization
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SPECIFYING INPUT THROUGH INITIAL
AND BOUNDARY CONDITIONS

Initial , t—i‘h‘
conditions n+2 l : :
Boundary | ntl—e 8 ® * o
conditions| “
: n —e ® @ @ =3
-1 —& > 4 L 4 ® @
Some of the boundary conditions used in CFD

1- inlet condition & I, iy
2- symmetric condition

3- periodic boundary condition

4- reflective boundary condition

5- outlet condition



BOUNDARY CONDITIONS

Periodic Boundary Condition Symmetric Boundary Condition
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Ghost cells are used here to extend the grid beyond physical boundary to accommodate boundary condition



STORING DATA IN GRIDS

PHYSICAL
DOMAIN

PHYSICAL
PHENOMENON

SET OF GOVERNING EQUATIONS DEFINED IN THE PHYSICAL DOMAIN

Domain Discretization »|<{ Equation Discretization

A

SYSTEM OF ALGEBRAIC
EQUATION

MESH GRID

SOLUTION METHOD

NUMERICAL

SOLUTION

FINITE VOLUME
FINITE DIFFERENCE
FINITE ELEMENT

RIEMANN
Problem

Finite-difference grid : Data is stored at grid edges

A

Cell-centered finite-differenc;e grid : Data is stored at cell
centers

Finite-volume grid—the aveFége value of the function is
stored within each zone.
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Time evolution

EQUATION DISCRETIZATION USING
FINITE DIFFERENCE METHOD
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Finite difference grid with ghost cell at each end
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FINITE VOLUME METHOD

Fluxes are calculated at
cell edges (i * 1/2)
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EQUATION DISCRETIZATION USING
FINITE DIFFERENCE METHOD
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Finite volume grid with two ghost cells at both ends

o _ _ oF
ot dx
n+1 n - _l
Ui " Ui _ FI’H' _ Fi’l 12]
l Ax l+— Z—E
—At I’l+— I’l—l
Time evolution U;H_l — F F 12] + U’

Ax = L= l
l+2 l

19



THE RIEMANN PROBLEM

At the interface Large problém %all problem
there will be a (ﬂ N

jump. <

How do we F BT RRLITER

calculate flux at
the interface ?

For flux evaluation at
half time, we need

information of state i g+l
U at half time
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Two states separated by a
discontinuity.

This is called a Riemann
problem.

Solution to Riemann
problem results in single
state at interface.

THE RIEMANN PROBLEM
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APPROXIMATE RIEMANN SOLVERS

Different Riemann Solvers (Approximate solvers)

Y \J \

Rotated-hybrid Riemann
ROE Solver HLL Solver d

solvers

The exact solution of Riemann problem at every interface is very expensive!

Use approximate Riemann solver instead!
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HLL RIEMANN SOLVER

Different Riemann Solvers
|

A

Rotated-hybrid Riemann
ROE Solver HLL Solver
solvers

Harten, Lax and van Leer

t
Solution i ted from t St ‘%SR
olution is computed from two
wave speeds S7 and Sg K
Ur Ur
If we have algorithm to track 0
these wave speeds an , 7

SpF1 =S Fr+S1.Sr(Ur—UL)

approximate intercell flux can
be calculated from it. 2 SR;: )



https://www.lucidchart.com/documents/edit/1052bbda-f78b-4c3b-9a71-b9bccc71f265/0?callback=close&name=slides&callback_type=back&v=804&s=720

We have a

new
problem
while
discretizing

the time.

CFL CONDITION

When we discretize the time, the step must be less
than the time it takes for the information to propagate
across a single zone.

This is called CFL(Courant—Friedrichs—Lewy)
condition

_ vAt
C = Azx

C <1

Necessary condition for stability 24
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SHOCK TUBE OR SOD PROBLEM IN 1D

Gary A.Sod (1978)
Commonly used problem to test accuracy of CFD codes using Riemann Solver.

Initial Condition

’UL:O ’UR:O
pr =1 pr = 0.1

The fluid (gas) is initially at
rest separated by a wall

The sudden breakdown of
the wall generates a
high-speed flow resulting a
shock wave, which
propagates to the right




THE ALGORITHM

EQUATION IN CONSERVED FORM

ap dpv)
o ox 0

dpv)  d(pV*+P)
ot t ox 0

de n d((e+P)v) 0

ot Ox
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pe+ 5 pv (pe+%pv2+P)v €
~ J X D, L )
Conserved Fluxes Physical
quantities

guantities

Discretize physical domain by setting grid
cells

|

Set initial conditions for physical
quantities

!

Reconstruct
Calculation left step P, and P right state
of physical quantity

|

Calculate flux (from p, and p, ,
Fr and Fr are calculated)

:

Convert physical quantity to conserved
guantity (P to U)

'

Solve the Reimann Problem

!

Check CFL condition

!

UPDATE IN TIME

!

Convert conserved gquantity to physical
quantity (U to P)
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INITIAL CONDITION
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t=0.1

TIME EVOLUTION
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t=0.2

TIME EVOLUTION
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t=0.3

TIME EVOLUTION

0.8

0.7

0.6

0.5

0.4

0.3

0.0 = = = e o

e

o~
3 2 = 2] @ ©o < ~
IS S S o b <] 3 o
A32019A 9.nssa.id
L]
1 o
1
1
1
1
1
1
1
1
! =
1 o
1
1
1
1
1
1
1
1
! ©
. >
1 o
1
1
1
1
1
1
1
SR |euczes nnil " )
P e S -—
i 1
i 1
1 1
H 1
H 1
H 1
1 1
H 1
1 < |
1 A !
1 (=] !
H 1
1 1
H 1
H 1
H 1
1 1
1 1
1 Wi !
1 H }
1 (=] !
H 1
1 1
H 1
i 1
H 1
H 1
H 1
H o~ 1
e ® © < N o ° o = ks z
— =] (=} (=} (=] o < W - = S
Aususg Abisu3

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.8

0.7

0.6

0.5

0.4

0.3

0.2

30



SIMULATION IN ASTROPHYSICS

Simulation enables us to build a model of

Why do we do a system

simulation in It allows us to do virtual experiments to
understand how this system reacts to a
range of conditions and assumptions

Astrophysics?
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General Relativistic Radiative MagnetoHydroDynamics

Using KORAL

t=9360t,

18
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=
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E [logyoerg/cm?]
p [logio g/cm?]

[
w

14

13
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TAKE HOME MESSAGE :

CFD enables us to predict fluid flow

The fundamentals of CFD lie in solving the set of partial differential
equations that describe the fluid flow (e.g. Navier-Stokes equation )

In Eulerian grid based approach, the physical domain is discretized into
large number of cells

In each of these cells, Navier-Stokes equations can be rewritten as algebraic
equations

These equations are then solved numerically

At the end we get the complete description of flow throughout the domain
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