
TOWARDS “WRITE ONCE, RUN ANYWHERE”

miguel.astrain@i2a2.upm.es

Acknowledgements:

Mariano Ruiz, Antonio Carpeño and Sergio Esquembri

of the Universidad Politécnica de Madrid (UPM)

Miguel Astrain Etxezarreta

Universidad Politécnica de Madrid (UPM)

Agenda

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 2

Introduction (1h)

• Context

• The OpenCL Models

• OpenCL Host Programming

• OpenCL Kernel Programming

• FPGA Oriented Kernel Design

Advanced (1h)

• More on OpenCL host programming

• Example: Matrix Multiplication

• More on FPGA Oriented kernel design

• Memory Hierarchy

• Synchronization in OpenCL

• The OpenCL Event Model

• Building OpenCL

Additional materials

In addition to these slides, and the set of examples, it is useful to have:

• OpenCL in Action. Matthew Scarpino. Manning 2011. (Very recomended)

• Heterogeneous Computing with OpenCL. Gaster, Howes, et al Morgan Kaufmann

2011.

• OpenCL Parallel Programming Development CookBook. Raymond Tay. PACKT

2013.

Vendor specific documentation for each platform:

• Xilinx VITIS Softwate platform

– https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/index.html

• Intel FPGA SDK for OpenCL

– https://www.intel.com/content/www/us/en/programmable/products/design-

software/embedded-software-developers/opencl/support.html

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 3

https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/index.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html

Before we start…

Three main profiles that will benefit from this course:
1. Scientific background: Scientific experiments, Data Acquisition, some hardware…

2. Programmer background: Programming frameworks, some parallelization, GPUs….

3. Hardware background: HDL, FPGAs, DSP, some programming….

No knowledge is required from the other fields.

The goal… understanding the heterogeneous programming model.

1. Lower learning curve to write high-performance algorithms for hardware.

2. Apply programming concepts to hardware. Integrate many hardware in a unified

framework.

3. Optimizations thanks to hardware knowledge, provide tools for the above.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 4

The very basics

Very recommended to review the CSC2019 lectures on these topics:

1. Software Design in the Many-Cores era; A. Gheata, E. Tejedor.

2. Base Concepts of Parallel Programming: A Pragmatic Approach; A. Gheata, E. Tejedor.

Over-summarized, the frameworks for high-performance computing help on:

1. Dividing tasks into smaller problems.

2. Managing the tasks (and memory!) to execute efficiently.

But OpenCL offers one more perk, managing heterogeneous hardware:

1. Additional to parallelism I can select optimal hardware!  More performance!

2. A single computing language can manage many devices!  Ease of maintenance,

portability!

3. An open standard, which is manufacturer agnostic Write once, run anywhere!

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 5

It’s a Heterogeneous world

• OpenCL lets Programmers write a single portable program that uses ALL

resources in the heterogeneous platform

A modern computing platform includes:

• One or more CPUs

• One or more FPGAs

• One of more GPUs

• DSP processors

• FPGA with AI Cores + DSP + PCIe +DDR

• ADCs?! (Xilinx RFSOC) …

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 6

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of heterogeneous parallel computing

CPUs, GPUs, FPGAs, DSPs,…

OpenCL is an open standard maintained by the non-profit technology consortium Khronos Group.

Industry Standards for Programming Heterogeneous Platforms

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 7

CPUs
Multiple cores

GPUs
Increasingly general purpose

Heterogeneous
Computing

FPGA
HLS Languages

https://en.wikipedia.org/wiki/Khronos_Group

FPGAs?

• Very interesting hardware, with real-time capabilities.

• While often losing to GPUs in raw computation muscle, FPGAs are more energy efficient!

• The learning curve for HDLs is steep, what do I need to know about FPGAs to use
OpenCL?

– Actually, very little! Knowledge helps, of course, but the tools provided with OpenCL SDKs help us!

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 8

Custom data path!

Much more than just logic blocks!

THE OPENCL MODELS

There are quite a few.

OpenCL Models

OpenCL defines a set of models to organize the core ideas:

• Platform Model

• Execution Model

• Memory Model

• Programming Model

from: Khronos registry, OpenCL specification 2.2

276 pages of condensed information!

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 10

OpenCL Platform Model

• One Host and one or more OpenCL

Devices.

o Each OpenCL Device is

composed of one or more

Compute Units.

 Each Compute Unit is divided into

one or more Processing

Elements.

OpenCL keywords are high-lightened in RED

hereinafter.

Processing

Element

OpenCL Device

(CPU, FPGA, GPU…)

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 11

CPU

• The host has the recipe on how to perform the computation

• It uses commands to the device to do so.

• The device has the power to perform the computation.

• Can only understand kernel code.

• Memory divided into Host Memory and Device Memory.

Host and Device

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 12

Host Devices

write

Task

read

Host Memory Device Memory

OpenCL Execution Model

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 13

• Define a problem domain and execute an instance of a kernel for each point in the domain.

• The smallest unit is called a work-item

• If the problem needs synchronization or has dependencies, manage them into work-groups

OpenCL code:

__kernel void times_two(

__global float* input,

__global float*

output)

{

int i =

get_global_id(0);

output[i] = 2.0f *

input[i];

}

C/C++ code:

void times_two(float* input,

float* output)

{

int i =

some_identifier_routine();

output[i] = 2.0f * input[i];

}

OpenCL

OpenCL qualifiers

OpenCL Execution Model

0 4 8 12 16 20 24 28

…
……… Host

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 14

Q
u

e
u

e

Work Items!

__kernel void times_two(

__global float* input,

__global float*

output)

{

int i = get_global_id(0);

output[i] = 2.0f *

input[i];

}

Input

Output

• Note there is no for loop.

• This is very GPU like programming.

• No imposed order of execution

IDs: 0 1 2 3 4 5 6 7

0 2 4 6 8 10 12 14

The idea behind OpenCL

• Computation divided into simpler functions (a kernel) executing at each point in a problem

domain.

• Most of the computing muscle is usually needed in a few lines of code.

• Typical example: 1024x1024 image with one kernel invocation per pixel or 1024x1024 =

1,048,576 kernel executions

Traditional loops Data Parallel OpenCL

void multiply(const int n, const

float *a,

const float *b, float

*c)

{

int i;

for (i = 0; i < n; i++)

c[i] = a[i] * b[i];

}

__kernel void multiply (__global

const float *a,

__global const float

*b,

__global

float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

}

// many instances of the kernel,

// called work-items, execute

in parallel, but how much parallelism? ...

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 15

Example: N-dimensional domain

• Typical example, an image:

• Global Dimensions:

o 1024x1024 (whole problem space)

• Local Dimensions:

o 128x128 (work-group, executes

together)

• The work-item is the pixel.

• You can tune the dimensions that are “best”

for your hardware.

• Remember Platform Model “CU” and “PE”.

1024

1
0
2
4

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 16

OpenCL Memory model

• Private Memory

o Per work-item

• Local Memory

o Shared within a work-group

• Global Memory

o Visible to all work-groups

• Host Memory / Constant

o On the CPU

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 17

https://www.khronos.org/

OpenCL Memory model

Memory management is explicit!.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 18

More on this and SYCL later…

https://www.khronos.org/

OpenCL Programming Model

Definitions, lots of definitions… What does it all mean?

• They help keep ideas clear.

• Divide and manage the problem the OpenCL way!

• The programming model is … the rest …

• Your problem, your algorithm, your hardware

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 19

OpenCL Programming Model

• Data Parallelism

• Task Parallelism

• Single Instruction Multiple Data

• Single Program Multiple Data

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 20

• kernels and indexes

o Work-items

• kernels and queues

o Work-Group

• OpenCL C

o Vector instructions.

• Platforms and devices

o Deploy to multiple devices

OPENCL HOST PROGRAMMING

What is your favorite language?

Host Programming

• There is now a full specification in C++.

• Host bindings are available for C, C++, Java, Python.

• Kernels are written in OpenCL C subset of C99 with specific extensions

and restrictions.

• Recommend using C/C++. Most examples are written in C.

• Lots of development effort in C++, SYCL,…

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 22

Host Programming

• The host program is the code that runs on the host to:

o Setup the environment for the OpenCL program

o Create and manage kernels

• 5 simple steps in a basic host program:

1. Define the platform … platform = devices + context + queues

2. Create the program (dynamic library for kernels)

3. Setup memory objects

4. Define the kernel (attach arguments to kernel functions)

5. Submit commands … transfer memory objects and execute kernels

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 23

……
……

….

Host Program
// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

CL_TRUE, 0,

n*sizeof(cl_float), dst,

0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 24

Command-Queues

• The computation “recipe” is scheduled through the

command-queue.

• Commands for a device include kernel execution,

synchronization, and memory transfer operations.

Queue

HOST

Device

Device Memory

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 25

commandswrite

Task

read

Example: step by step

Lets analyse a host program:
1. Platform:

*The code ahead might be simplified or wrong to keep it shorter and readable.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 26

……
……

….

Host:

CPU, Linux, C language
Device:

CPU, Intel x86, OpenCL C

Ex:

1.

2.

3.

4.

5.

Example: step by step

cl_uint num_of_platforms = 0;

clGetPlatformIDs(0, 0, &num_of_platforms);

cl_platform_id* platforms = new cl_platform_id[num_of_platforms];

clGetPlatformIDs(num_of_platforms, platforms, 0);

clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME, 0, 0, platform_name_length);

clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME, platform_name_length,

platform_name, 0);

cl_platform_id platform = platforms[selected_platform_index];

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 27

Number of available platforms: 1

Platform names:[0] Intel(R) OpenCL [Selected]

Ex:

1.

2.

3.

4.

5.

Example: step by step

cl_uint cur_num_of_devices;

clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 0, 0, &cur_num_of_devices);

cl_device_id* devices_of_type = new cl_device_id[cur_num_of_devices];

clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, cur_num_of_devices,

devices_of_type, 0);

cl_uint device_index = 0;

cl_device_id device = devices_of_type[device_index];

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 28

CL_DEVICE_TYPE_CPU: 1

CL_DEVICE_TYPE_CPU[0]

CL_DEVICE_NAME: Genuine Intel(R) CPU @ 2.60GHz

CL_DEVICE_AVAILABLE: 1

CL_DEVICE_VENDOR: Intel(R) Corporation

Ex:

1.

2.

3.

4.

5.

Example: step by step

• Create a simple context with a single device:
cl_context clCreateContext(cl_context_properties *properties, cl_uint

num_devices, cl_device_id *devices, (void CL_CALLBACK

*notify_func)(…), void user_data, cl_int *error);

context = clCreateContext(NULL, 1, &device_id, NULL,

NULL, &err);

• Create a simple command-queue to feed our device:
cl_command_queue clCreateCommandQueue(cl_context context,

cl_device_id device_id, cl_command_queue_properties properties,

cl_int *error);

q_commands = clCreateCommandQueue(context, device_id, 0,

&err);
16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 29

Ex:

1.

2.

3.

4.

5.

Example: step by step

const char* raw_text = &program_text_prepared[0];

cl_int err;

cl_program program = clCreateProgramWithSource(context,

1, &raw_text, 0, &err);

clBuildProgram(program, (cl_uint)num_of_devices, devices,

build_options.c_str(), 0, 0);

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 30

Build program options: "-DT=float -DTILE_SIZE_M=1 -DTILE_GROUP_M=16

-DTILE_SIZE_N=128 -DTILE_GROUP_N=1 -DTILE_SIZE_K=8"

Ex:

1.

2.

3.

4.

5.

Example: step by step

cl_kernel krnl = 0;

string kernel_name = “Multiply”

krnl = clCreateKernel(program, kernel_name.c_str(),

&err);

• As we will see later, kernels are really like

functions.

• They have arguments. But must return void.

• They are identified by name for OpenCL.

• Remember that kernels are compiled for the device

architecture.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 31

Ex:

1.

2.

3.

4.

5.

Example: step by step

• HOST MEMORY BUFFER:

cl_float* data_ptr = (cl_float *) malloc(sizeof(cl_float) * count);

cl_mem array_of_floats = clCreateBuffer(context, CL_MEM_READ_WRITE,

sizeof(cl_float)*count, data_ptr, NULL);

• KERNEL ARGUMENTS :

clSetKernelArg(kernel, 0, sizeof(cl_mem), &array_of_floats);

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 32

Ex:

1.

2.

3.

4.

5.

Example: step by step

Remember the variables:

cl_command_queue q_commands;

cl_kernel krnl;

cl_mem array_of_floats;

1. clEnqueueWriteBuffer(q_commands, array_of_floats, CL_FALSE, 0,

sizeof(cl_float)*count, data_ptr,0, NULL, NULL);

2. clEnqueueTask(q_commands, krnl, 0, NULL,NULL); NO dimensions!

3. clEnqueueReadBuffer(q_commands, array_of_floats, CL_TRUE,

sizeof(cl_float)*count, data_ptr, 0, NULL, NULL);

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 33

Ex:

1.

2.

3.

4.

5.

OPENCL KERNEL PROGRAMMING

OpenCL Kernel Programming

• Derived from ISO C99 + ISO C11

o A few restrictions: no recursion, function pointers,...

o Preprocessing directives defined by C99 are supported (#include etc.)

• Built-in data types

o Scalar and vector data types, pointers

o Image types:

 image2d_t, image3d_t and sampler_t

• OpenCL #pragmas added to guide the compiler.

• The return type of a kernel function must be void

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 35

OpenCL Kernel Programming

• Function qualifiers

o __kernel qualifier declares a function as a kernel

 I.e. makes it visible to host code so it can be enqueued.

o Kernels can call other kernel-side functions

• Address space QUALIFIERS

o __global, __local, __constant, __private

o Pointer kernel arguments must be declared with an address space qualifier

• Work-item functions

o get_work_dim(), get_global_id(), get_local_id(), get_group_id()

• Synchronization functions

o Barriers - all work-items within a work-group must execute the barrier function
before any work-item can continue

o Memory fences - provides ordering between memory operations

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 36

OpenCL Kernel Programming

• Pointers to functions are not allowed

• Pointers to pointers allowed within a kernel, but not as an argument to a

kernel invocation

• Bit-fields are not supported

• Variable length arrays and structures are not supported

• Recursion is not supported (yet!)

• Double types are optional in OpenCL v1.1, but the key word is reserved

(note: most implementations support double)

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 37

OpenCL Kernel Programming

• Built-in functions — mandatory

o Work-Item functions, math.h, read and write image

o Relational, geometric functions, synchronization functions

o printf ()

• Built-in functions — optional (called “extensions”)

o Double precision, atomics to global and local memory

o Selection of rounding mode, writes to image3d_t surface

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 38

FPGA ORIENTED KERNEL DESIGN

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 39

FPGA Oriented Kernel Design

• Some general rules for FPGAs:

• Work-Item and a kernel.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 40

Strategy Scheme AREA FREQ THROUGHPUT LATENCY

Parallelizing

++ = ++ =
Pipelining

+ ++ + +
Complex op.

= -- ++ --
Divide op.

++ ++ = ++

D1 P1

D1 P1

D2 P1

D1 P1.1 P1.2
D2 P1.1

D1 P1+P2+P3

D1 P1 P2 P3

FPGA Oriented Kernel Design

The most important FPGA design patern

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 41

#pragma OPENCL EXTENSION cl_intel_channels : enable

from IntelFPGA programming guide

FPGA Oriented Kernel Design

• Send Data from one kernel to another without host intervention

• Send Data from I/O to kernel or from kernel to I/O

• Send Data from host to kernel and vice versa without using global memory

• Data remains in a channel as long as the kernel remains loaded on the FPGA device,

persistence among NDRange invocations and among work-groups

• Blocking and Non-Blocking behavior

• Pipes are OpenCL 2.0 standard, contrary to channels

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 42

Host

write

I/O I/O

AXI ST/AVALON ST

read

Comments on SYCL

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 43

• SYCL. cross-platform abstraction C++ programming model for OpenCL.

o Adding much of the ease of use and flexibility of single-source C++.

• SYCL implements a single-source multiple compiler-passes (SMCP).

o Simplifying the Device-Host separation of OpenCL.

• Easier to handle for programmers. But OpenCL concepts remain, i.e.

As a summary, is just simpler …

for programers.

o cl::sycl::platform

o cl::sycl::context

o cl::sycl::device

o cl::sycl::program

o cl::sycl::queue

o class kernel

• The SYCL Platform Model

• SYCL Execution Mode (command groups)

• Memory Model (same 4 layers)

• The SYCL programming model

END OF INTRODUCTION

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 44

ADVANCED:

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 45

MORE ON OPENCL HOST PROGRAMMING

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 46

Context and Command-Queues

• Context:

o The environment within which kernels execute
and in which synchronization and memory
management is defined.

• The context includes:

o One or more devices

o Device memory

o One or more command-queues

• All commands for a device (kernel execution,
synchronization, and memory transfer operations)
are submitted through a command-queue.

• Each command-queue points to a single device
within a context.

Queue

Context

Device

Device Memory

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 47

Command-Queues

• Commands include:

o Kernel executions

o Memory object management

o Synchronization

• The only way to submit commands to a

device is through a command-queue.

• Each command-queue points to a single

device within a context.

• Multiple command-queues can feed a

single device.

o Independent streams of commands that

don’t require synchronization.

Queue Queue

Context

GPU CPU

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 48

Command-Queue execution details

Command queues can be configured in different ways to control how

commands execute

• In-order queues:
o Commands are enqueued and complete in the order they appear in the program (program-

order)

• Out-of-order queues:
o Commands are enqueued in program-order but can execute (and hence complete) in any order.

• Execution of commands in the command-queue are guaranteed to be

completed at synchronization points
o Discussed later

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 49

What do we put in device memory?

Memory Objects:

• A handle to a reference-counted region of global memory.

There are two kinds of memory object

• Buffer object:

o Defines a linear collection of bytes (“just a C array”).

o The contents of buffer objects are fully exposed within kernels and can be
accessed using pointers

• Image object:

o Defines a two- or three-dimensional region of memory.

o Image data can only be accessed with read and write functions, i.e. these are
opaque data structures. The read functions use a sampler.

• Pipe (Channel) object:

o A pipe is a memory object that stores data organized as a FIFO.

o Pipe objects are not accessible from the host.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 50

Memory Object Options

• These are from the point of view of the device.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 51

Conventions for naming buffers

• It can get confusing about whether a host variable is just a

regular C array or an OpenCL buffer

• A useful convention is to prefix the names of your regular

host C arrays with “h_” and your OpenCL buffers which will

live on the device with “d_”

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 52

Tasks and NDRange

• Enqueue the kernel for execution:

clEnqueueTask(cl_command_queue commands, cl_kernel kernel, cl_uint

num_events, const cl_event *wait_list, cl_event event);

clEnqueueNDRangeKernel (cl_command_queue commands, cl_kernel kernel,

cl_uint work_dims, size_t *global_work_offset, size_t

global_work_size, size_t *local_work_size,

0, NULL, NULL);

clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, &local,

0, NULL, NULL);

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 53

Events later.

MATRIX MULTIPLICATION EXAMPLE

A00 A01 A02 B00 B01 B02 C00 C01 C02

A10 A11 A12 B10 B11 B12 = C10 C11 C12

A20 A21 A22 B20 B21 B22 C20 C21 C22

Example: Linear Algebra

L AU =

= x
A(i,:)

B(:,j)
C(i,j)

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 55

Analize C=A·B

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)

{

int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

C[i*N+j] = 0.0f;

for (k = 0; k < N; k++) {

// C(i, j) = sum(over k) A(i,k) * B(k,j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

}

}

}

}

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 56

Matrix multiplication: OpenCL kernel (1/2)

void mat_mul(int N, float *A, float *B, float *C)

{

int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

// C(i, j) = sum(over k) A(i,k) * B(k,j)

for (k = 0; k < N; k++) {

C[i*N+j] += A[i*N+k] * B[k*N+j];

}

}

}

}

__kernel void mat_mul(

const int N,

__global float *A, __global float *B, __global float *C)

Mark as a kernel function and

specify memory qualifiers

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 57

Matrix multiplication: OpenCL kernel (2/2)

__kernel void mat_mul(

const int N,

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

for (k = 0; k < N; k++) {

// C(i, j) = sum(over k) A(i,k) * B(k,j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

}

}

}

}

i = get_global_id(0);

j = get_global_id(1);

Remove outer loops and set

work-item co-ordinates

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 58

Matrix multiplication: OpenCL kernel

__kernel void mat_mul(

const int N,

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

i = get_global_id(0);

j = get_global_id(1);

// C(i, j) = sum(over k) A(i,k) * B(k,j)

for (k = 0; k < N; k++) {

C[i*N+j] += A[i*N+k] * B[k*N+j];

}

}

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 59

Matrix multiplication: OpenCL kernel improved

• Rearrange and use a local scalar for intermediate C element values (a

common optimization in Matrix Multiplication functions)

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 60

__kernel void mmul(

const int N,

__global float *A,

__global float *B,

__global float *C)

{

int k;

int i = get_global_id(0);

int j = get_global_id(1);

float tmp = 0.0f;

for (k = 0; k < N; k++)

tmp += A[i*N+k]*B[k*N+j];

}

C[i*N+j] += tmp;

}

This Accumulation is

recognized by the compiler !

MORE ON FPGA ORIENTED KERNEL DESIGN

Single Work-Item vs NDRange Kernel

• Intel recommends single work-Item kernels, when possible

• Use NDRange when the code does not have memory dependencies and

loops. If data must be shared among WI this structure is not efficient.

• High throughput achieved by using multiple pipelines stages at any time.

Parallelism by pipelining the loop iterations.

• Some strategies are common to FPGAs, others depend on the family of

FPGA, consult the programming guide for each one.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 62

Single Work-Item vs NDRange Kernel

Single Work-Item kernel

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 63

Single Work-Item vs NDRange Kernel

NDRange Kernel

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 64

Optimizing Data Processing Efficiency

Strategy 1: Unrolling a Loop

#pragma unroll <N>

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 65

Optimizing Data Processing Efficiency

Strategy 2: Coalescing Nested Loops

#pragma loop_coalesce <loop_nesting_level>

The OpenCL compiler hates nested loops. Try to avoid its use!!

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 66

Optimizing Data Processing Efficiency

Strategy 3: Specifying a Loop Initiation Interval

#pragma ii <desired_initiation_interval>

Define the number of clock cycles to wait among successive loop iterations

Strategy 4: Loop Concurrency

#pragma max_concurrency <N>

Define the number of iterations to be in progress at one time

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 67

Optimizing Data Processing Efficiency

Strategy 5: Specifying the work group size

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 68

Optimizing Data Processing Efficiency

Strategy 6: Specifying the Number of Compute Units

Strategy 7: Specifying the Number of SIMD Work-Items

However. Use vectors explicitly as frequently as possible

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 69

Optimizing Data Processing Efficiency

Strategy 8: Removing Loop-Carried Dependencies

#pragma ivdep

When each loop access different parts of the array there may be fictitious

dependencies. This directive commands the compiler to forget the dependencies

and remove the extra initiation cycles in the loop immediately after the pragma

directive.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 70

Compilation Report

Report about code structures that prevent the loops from being fully pipelined.

Report about area usage.

Report about wrong memory management.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 71

More…

Strategy 9: Implementing Arbitrary Precision Integers

Sometimes, optimizing the code when working with FPGAs demands adjusting

the size of data to the size strictly needed.

Strategy 10: Inferring Registers and Shift Registers.

When variables are defined as “private” and the access to arrays are statically

inferable, they are implemented as FFs in LEs, or in blocks RAM (if their size is

larger than 64 bytes). They are the fastest hardware for loop execution.

Strategy 11: Inferring Single-Cycle Floating-Point Accumulator.

Only for Arria10 devices.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 72

… and more strategies

Create good and efficient code for FPGA kernels is a complex task. The

results depends heavily on the designer’s expertise.

However, it’s a perfect beginning to read two very useful manuals.

“Intel FPGA SDK for OpenCL Programming Guide” and

“Intel FPGA SDK for OpenCL Best Practices Guide”

They are hard to deal with though they will give you priceless help for

optimizing the area and speed of your application parting from the

information given by the compilation report.

They will show you how to work with loop-carried dependency, how to carry

out proper memory management to improve access, how to use channels or

pipes when needed, etc.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 73

THE OPENCL MEMORY HIERARCHY

The Memory Hierarchy

Private memory

Local memory

Global memory

Host memory

Private memory

Local memory

Global memory

Host memory

Bandwidths Sizes

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 75

Easy rule

x10

Private Memory

• Managing the memory hierarchy is one of the most important things to get
right to achieve good performance.

• Remember memory transfers are explicit!

• Private Memory:

o A very scarce resource, only a few thousands of 32-bit words per
Work-Item at most

o If you use too much it spills to global (or local) memory or reduces the
number of Work-Items that can be run at the same time, potentially
harming performance

o These is the closest-to-hardware memory. The actual realization varies
from one to another. (CPU registers, FPGA registers,…)

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 76

Local Memory

• The memory for the work-groups:

o Close to the hardware, but shared between work-items. Each device

realizes it in a different way.

o Your kernels are responsible for transferring data between Local and

Global/Constant memories

• Access patterns to Local Memory affect performance in a similar way to

accessing Global Memory.

• Due to their architecture, managing local memory is most important to

GPUs.

• FPGA local memory is still very fast (private), but being shared means

access patterns affect it.

• CPUs do not have specialized hardware for this….

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 77

Global Memory

• The host accessible memory.

• The access pattern to global memory should be the easiest possible.

o Move data to faster memories, think about dependencies of the

algorithm.

• Constant memory is an specialization of global.

• In FPGAs global memory is RAM outside the chip.

o Constant memory might get replicated or cached to chip memory to

satisfy reading needs.

o While the bandwidth is good, the FPGA can easily overwhelm it with

read and write operations.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 78

Memory Consistency

• OpenCL uses a relaxed consistency memory model; i.e.

o The state of memory visible to a work-item is not guaranteed to be consistent

across the collection of work-items at all times.

• Within a work-item:

o Memory has load/store consistency to the work-item’s private view of memory,

i.e. it sees its own reads and writes correctly

• Within a work-group:

o Local memory is consistent between work-items at a barrier.

• Global memory is consistent within a work-group at a barrier, but not guaranteed

across different work-groups!!

o This is a common source of bugs!

• Consistency of memory shared between commands (e.g. kernel invocations) is

enforced by synchronization (barriers, events, in-order queue)

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 79

SYNCHRONIZATION IN OPENCL

Consider N-dimensional domain of work-items

• Global Dimensions:

o 1024x1024 (whole problem space)

• Local Dimensions:

o 64x64 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are brought to a
known point in their execution. Most common example is a barrier … i.e. all units of
execution “in scope” arrive at the barrier before any proceed.

1024
1
0
2
4

Synchronization within work-groups:

barriers and memory fences.

Cannot synchronize between

work-groups within a kernel.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 81

Work-Item Synchronization

• Use barrier to synchronize work items inside a work-group.

• barrier(CLK_LOCAL_MEM_FENCE) or barrier(CLK_GLOBAL_MEM_FENCE)

• Careful with branching! All the work items must take the same branch.

• Across work-groups

o No guarantees as to where and when a particular work-group will be

executed relative to another work-group

o Cannot exchange data, or have barrier-like synchronization between

two different work-groups! (Critical issue!)

o Only solution: finish the kernel and start another

• The FPGA being hardware, does have other means to synchronize (pipes).

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 82

Where might we need synchronization?

• Consider a reduction … reduce a set of numbers to a single value

o E.g. find sum of all elements in an array

• Sequential code

int reduce(int Ndim, int *A)

{

int sum = 0;

for (int i = 0; i < Ndim; i++)

sum += A[i];

return sum;

}

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 83

Simple parallel reduction

• A reduction can be carried out in three steps:

1. Each work-item sums its private values into a local array indexed by

the work-item’s local id

2. When all the work-items have finished, one work-item sums the local

array into an element of a global array (indexed by work-group id)

3. When all work-groups have finished the kernel execution, the global

array is summed on the host

Again, the dimensionality of the problem regarding performance depends on

the hardware!

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 84

THE OPENCL EVENT MODEL

OpenCL Kernel life cycle

• An event is an object that communicates the status of commands in OpenCL … legal

values for an event:

o CL_QUEUED: command has been enqueued.

o CL_SUBMITTED: command has been submitted to the compute device

o CL_RUNNING: compute device is executing the command

o CL_COMPLETE: command has completed

o ERROR_CODE: a negative value indicates an error condition occurred.

• Can query the value of an event from the host … for example to track the progress of a

command.

cl_int clGetEventInfo (

cl_event event, cl_event_info param_name,

size_t param_value_size, void *param_value,

size_t *param_value_size_ret)

Examples:

• CL_EVENT_CONTEXT

• CL_EVENT_COMMAND_EXECUTION_STATUS

• CL_EVENT_COMMAND_TYPE

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 86

Generating and consuming events

• Consider the command to enqueue a kernel. The last three arguments
optionally expose events (NULL otherwise).

cl_int clEnqueueNDRangeKernel (

cl_command_queue command_queue,

cl_kernel kernel,

cl_uint work_dim,

const size_t *global_work_offset,

const size_t *global_work_size,

const size_t *local_work_size,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

Pointer to an event object

generated by this command

Array of pointers to the

events being waited upon …

Command queue and events

must share a context.

Number of events this

command is waiting to

complete before executing

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 87

Event: basic event usage

• Events can be used to impose order constraints on kernel execution.

• Very useful with out-of-order queues.

cl_event k_events[2];

err = clEnqueueNDRangeKernel(commands, kernel1, 1,

NULL, &global, &local, 0, NULL, &k_events[0]);

err = clEnqueueNDRangeKernel(commands, kernel2, 1,

NULL, &global, &local, 0, NULL, &k_events[1]);

err = clEnqueueNDRangeKernel(commands, kernel3, 1,

NULL, &global, &local, 2, k_events, NULL);

Enqueue two

kernels that

expose events

Wait to execute

until two previous

events complete

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 88

OpenCL synchronization: queues & events

GPU

CPU

GPU

CPU

Time Time

Kernel 1

Kernel 2

E
n

q
u

e
u

e
K

e
rn

e
l
1

E
n

q
u

e
u

e
K

e
rn

e
l
2

Kernel 2 starts

before the results

from Kernel 1 are

ready

Kernel 1

Kernel 2

E
n

q
u

e
u

e
K

e
rn

e
l
1

E
n

q
u

e
u

e
K

e
rn

e
l
2

Kernel 2 waits for

an event from

Kernel 1 and does

not start until the

results are ready

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 89

Profiling with Events

• OpenCL is a performance oriented language … Hence performance

analysis is an essential part of OpenCL programming.

• The OpenCL specification defines a portable way to collect profiling data.

• Can be used with most commands placed on the command queue …

includes:

o Commands to read, write, map or copy memory objects

o Commands to enqueue kernels, tasks

• Profiling works by turning an event into an opaque object to hold timing

data.

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 90

Using the Profiling interface

• Profiling is enabled when a queue is created with the

CL_QUEUE_PROFILING_ENABLE flag set.

• When profiling is enabled, the following function is used to extract the

timing data

cl_int clGetEventProfilingInfo(

cl_event event,

cl_profiling_info param_name,

size_t param_value_size,

void *param_value,

size_t *param_value_size_ret)

Expected and

actual size of

profiling data.

Profiling data to query

(see next slide)

Pointer to

memory to

hold results

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 91

cl_profiling_info values

• CL_PROFILING_COMMAND_QUEUED

o the device time in nanoseconds when the command is enqueued in a

command-queue by the host. (cl_ulong)

• CL_PROFILING_COMMAND_SUBMIT

o the device time in nanoseconds when the command is submitted to

compute device. (cl_ulong)

• CL_PROFILING_COMMAND_START

o the device time in nanoseconds when the command starts execution on

the device. (cl_ulong)

• CL_PROFILING_COMMAND_END

o the device time in nanoseconds when the command has finished

execution on the device. (cl_ulong)

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 92

BUILDING OPENCL FOR FPGA

Building Program Objects

• The program object encapsulates:

o A context

o The program kernel source or binary

o List of target devices and build options

• The C API creates a program object:

o clCreateProgramWithSource()

o clCreateProgramWithBinary()

CPUs and GPUs:

OpenCL uses runtime

compilation … because in

general you don’t know the

details of the target device

when you ship the program

Compile for

GPU

Compile for

CPU

GPU

code

CPU

code
Offline

Compile for

FPGA

FPGA

Code

FPGAs:

OpenCL DOESN’T

use runtime compilation

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 94

OpenCL FPGAs Development

Kernels
Source Code

norm
sdtfft
mean
vpnc
(.cl)

ADC_Controller
VHDL model

(.vhd)

System + IP
Files

(.qip, .qsys)

Board Config Files
(board_env.xml)
(board_spec.xml)

Intel
Quartus
Prime
Design

Software

Board
Support
Package

Intel FPGA SDK
for OpenCL

Kernels Offline
Compiler (aoc)

Kernel
Binary
(.aocx)

HOST
Application

Code
(.c, .h)

Cross Compiler
arm-linux-
gnueabihf

HOST
Binary

HOST DESIGN FLOW DEVICE DESIGN FLOW

EMBEDDED LINUX O.S DESIGN FLOW

Cross Compiler
arm-linux-
gnueabihf

User Space
Applications

and
Linux Kernel

Code
(.c, .h)

Embedded
Linux

Distribution

OpenCL
RTE Driver

(.c, .h)

ADC_Contro
ller Driver

(.c, .h)

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 95

• Example of

heterogeneous

system:

• SoC with:

• FPGA (Altera)

• CPU (arm).

Final remarks

• Remember the models to divide the computation the OpenCL way!

• The Host is controlling the computation of one or multiple heterogeneous

devices.

• The host communicates using commands in command-queues.

• The 4 layers of memory. Memory transfers are explicit!

• There are lots of layers of parallelism

• Synchronize your work-items.

• Use events and profile them to monitor performance.

• Building an OpenCL application requires multiple compilations (min. 2)

16/03/2020 Introduction to Heterogeneous Programming in OpenCL with FPGAs - Miguel Astrain - iCSC2020 96

Thank you!

Special thanks to Dr. Antonio Carpeño and Professor Mariano Ruiz for their guidance.

