
Big Data technologies and distributed 
data processing with SQL

Inverted CERN School of Computing 2020

Emil Kleszcz (CERN)

30.09.2020



Emil Kleszcz | Big Data technologies and SQL-like distributed data processing 2

Table of contents

1. Brief introduction to Big Data and Hadoop ecosystem.
2. Distributed Data processing on Hadoop:

a. MapReduce
b. Spark SQL
c. Presto

3. Comparison of the processing frameworks.
4. An example: Atlas EventIndex project.



Introduction to Big Data
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Huge 
dataset

Strategy 
to 

retrieve &
store data



What is Big Data?
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Big data
(3V)

Velocity

Variety

Volume
• Scale of data
• Large volume: TB,PB, etc.
• Size, records, transactions, tables, etc.

• Different forms of data
• Multiple data sources
• Type of data: structured, unstructured, etc.

Frequency of updates:
• Batch processing
• Stream processing
• Real-time processing



Big Data history & facts
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• 2004 - MapReduce: Simplified Data Processing on 
Large Clusters by Google.

• 2005 - Hadoop created by Yahoo & built on top of
Google’s MapReduce.

• 2008 - Google processes 20PB of data in one day.

• 90% of data created in last 2 years.
• 4.4ZB in 2013, now ~15ZB yearly, expected.
• 44ZB in 2020 (1ZB = 10^21B).
• The whole universe can contain ~10^124 objects 

(entropy of black holes).
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Architecture overview

Data stores

Resource 
orchestration

MapReduce, etc.

SQL syntax, etc.
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Data models: CAP theorem
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Big Data ecosystem

HDFS
Hadoop Distributed File System
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Hadoop ecosystem
• Started at Yahoo in 2006 based on Google File 

System and MapReduce from 2003-2004
• A framework for large scale data processing

• Open source
• Written in Java
• To be run on a commodity hardware

• 3Vs of Big Data:
• Data Volume (Terabytes, … , Zettabytes)
• Data Variety (Structured, Unstructured)
• Data Velocity (Batch processing)



Emil Kleszcz | Big Data technologies and SQL-like distributed data processing 10

Distributed system for data processing
• Split and distribute data across many machines (sharding)
• Storage with multiple data processing interfaces
• Operates at scale by design (shared nothing - scales out)
• Typically on clusters of commodity-type servers/cloud
• Well established in the industry (open source)
• Distributed data processing

• Fast parallel data scanning
• Profit from data locality - high throughput between storage, CPU & Memory

Interconnected network

MEMORY

CPU

Disks

MEMORY

CPU

Disks

MEMORY

CPU

Disks

MEMORY

CPU

Disks

MEMORY

CPU

Disks

MEMORY

CPU

Disks

Node 1 Node 2 Node 3 Node 4 Node 5 Node X

Scale-out data 
processing
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Hadoop Distributed File System (HDFS)
• HDFS characteristics

• Fault-tolerant: multiple copies of data, or Erasure Coding (RAID 5/6, XOR-like)
• Scalable - design to deliver high throughputs, sacrificing access latency
• Files cannot be modified in place (Write once - Read Many)
• Permissions on files and folders like in POSIX, also additional ACLs can be set
• Minimal data motion and rebalance

hdfs dfs –ls                #listing home dir
hdfs dfs –ls /user          #listing user dir…
hdfs dfs –du –h /user       #space used
hdfs dfs –mkdir newdir      #creating dir
hdfs dfs –put myfile.csv .  #storing a file on HDFS
hdfs dfs –get myfile.csv .  #getting a file from HDFS

• Ways of accessing and processing data
• Can be mounted with Fuse (with fstab entry)
• Programming bindings: Java, Scala, Python, C++
• HDFS has web UI where its status can be tracked

• http://namenode:50070

• HDFS architecture:
• Cluster with master-slave architecture

• Name Node(s) (1 or more per cluster) - maintains & manages file system metadata (in RAM)
• Data Nodes (many per cluster) - store & manipulate the data (blocks)
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HDFS architecture
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How HDFS stores the data

1.1GB

1. File to be stored on HDFS of size 1126MB 
(split into 256MB blocks)

256MB 256MB 256MB256MB
102
MB

Data Node1 Data Node2 Data Node3 Data Node4

256MB 256MB 256MB

256MB 256MB

256MB

256MB

256MB 256MB

256MB

256MB 256MB

102
MB

102
MB

102
MB

3. Blocks with their replicas (by default 3) are distributed across Data Nodes

2. Ask Name Node where to put the blocks

Name Node1



Emil Kleszcz | Big Data technologies and SQL-like distributed data processing 14

What to use Hadoop for?
• Big Data storage with HDFS and big data volumes with MapReduce
• Strong for batch processing at scale

• Data exploration (ad-hoc), reporting, statistics, aggregations, correlation, ML, BI
• Hadoop is On-Line Analytical Processing (OLAP)

• no real-time data but historical or old data moved in batches
• Write once - read many

• no data modifications allowed only appends
• Typical use cases:

• Storing and analysing systems’ logs, time series data at big scale
• Building data warehouses/lakes for structured data
• Data preparation for Machine Learning

• Weak for Online Transaction Processing system (OLTP)
• No data updates (only appends and overwrites) 
• Typically response time in minutes rather milliseconds

• Not optimal for systems with complex relational data

… and not use Hadoop for:



Emil Kleszcz | Big Data technologies and SQL-like distributed data processing 15

Typical system based on Hadoop ecosystem
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SOURCE
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Big Data ecosystem

HDFS
Hadoop Distributed File System
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Hadoop MapReduce
• The first data processing framework for Hadoop
• Programming model for parallel processing of distributed data

• Executes in parallel user’s Java code
• Optimized on local data access (leverages data locality)
• Suitable for huge datasets (PBs of data), and batch/offline data processing
• Low level interface

Data Slice 1 Data Slice 2 Data Slice 3 Data Slice 4 Data Slice 5 Data Slice X

Data 
processor

Data 
processor

Data 
processor

Data 
processor

Data 
processor

Data 
processor

Extraction 
Filtering
Transformation

Data 
collector

Result

Data shuffling

Grouping
Sorting
Aggregating

Mapping

Reducing

Node 1 Node 2 Node 3 Node 4 Node 5 Node X

Data 
collector
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“Word Count” example aka. “Hello World”

K1, K2,... List (K, V)
K, List (V) K, sum(List (V))

List (K,V)
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Hadoop MapReduce - weather data forecast
• The problem

• Question: What happens after two rainy days in the Geneva region?
• Answer: Monday :-)

• The goal: Prove if the theory is true or false with MapReduce
• Solution: Build a histogram of weekdays preceded by 2 or more bad 

weather days based on meteo data for Geneva.
Mon | Tue |Wed |Thu | Fri | Sat | Sun

D
ay

s 
co

u
n

t

?

• The data source (http://rp5.co.uk)
• Source:

• Last 5 years of weather data taken at GVA airport
• CSV format

"Local time in Geneva(airport)";"T";"Po";"P";"Pa";"U";"DD";"Ff";"ff10";"ff3";"N";"WW";"W1";"W2";"Tn";"Tx";"Cl";"Nh";"H";"Cm";"Ch";"VV";"Td";"RRR";"tR";"E";"Tg";"E'";"sss"
"07.06.2015 05:00"; <other columns> ;"State of sky on the whole unchanged. "; <other columns>
"07.06.2015 04:00" <other columns> ;" ";"";"";"";"";"";"";"";"";"";"";"16.2";"";"";"";"";"";"";
"07.06.2015 02:00"; <other columns> ;"Rain shower(s), slight. "; <other columns>
"06.06.2015 23:00"; <other columns> ;"Thunderstorm, slight or moderate, without hail, but with rain and/or snow at time of observation. "; <other columns>

• How do we define the bad weather day?
• Weather anomalies (col. num. 11) filtered between 8am and 9pm (excl. night time)

http://rp5.co.uk


2nd MR job

"06.06.2015 00:50";"18.0";
"06.06.2015 00:20";"18.0";
"05.06.2015 23:50";"19.0";
"05.06.2015 23:20";"19.0";
"05.06.2015 22:50";"19.0";
"05.06.2015 22:20";"20.0";
"05.06.2015 21:50";"22.0";
"05.06.2015 21:20";"23.0";
"05.06.2015 20:50";"23.0";
"05.06.2015 20:20";"23.0";
"05.06.2015 19:50";"28.0";
"05.06.2015 19:20";"28.0";
"06.06.2015 00:50";"18.0";
"06.06.2015 00:20";"18.0";
"05.06.2015 23:50";"19.0";
"05.06.2015 23:20";"19.0";
"05.06.2015 22:50";"19.0";
"05.06.2015 22:20";"20.0";
"05.06.2015 21:50";"22.0";
"05.06.2015 21:20";"23.0";
"05.06.2015 20:50";"23.0";
"05.06.2015 20:20";"23.0";
"05.06.2015 19:50";"28.0";
"05.06.2015 19:20";"28.0";
"06.06.2015 00:50";"18.0";
"06.06.2015 00:20";"18.0";
"05.06.2015 23:50";"19.0";
"05.06.2015 23:20";"19.0";
"05.06.2015 22:50";"19.0";
"05.06.2015 22:20";"20.0";
"05.06.2015 21:50";"22.0";
"05.06.2015 21:20";"23.0";
"05.06.2015 20:50";"23.0";
"05.06.2015 20:20";"23.0";
"05.06.2015 19:50";"28.0";
"05.06.2015 19:20";"28.0";
"06.06.2015 00:50";"18.0";
"06.06.2015 00:20";"18.0";
"05.06.2015 23:50";"19.0";
"05.06.2015 23:20";"19.0";
"05.06.2015 22:50";"19.0";
"05.06.2015 22:20";"20.0";
"05.06.2015 21:50";"22.0";
"05.06.2015 21:20";"23.0";
"05.06.2015 20:50";"23.0";
"05.06.2015 20:20";"23.0";
"05.06.2015 19:50";"28.0";
"05.06.2015 19:20";"28.0";
"06.06.2015 00:50";"18.0";
"06.06.2015 00:20";"18.0";
"05.06.2015 23:50";"19.0";
"05.06.2015 23:20";"19.0";
"05.06.2015 22:50";"19.0";
"05.06.2015 22:20";"20.0";
"05.06.2015 21:50";"22.0";
"05.06.2015 21:20";"23.0";
"05.06.2015 20:50";"23.0";
"05.06.2015 20:20";"23.0";
"05.06.2015 19:50";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";
"05.06.2015 19:20";"28.0";

Input Data:
Record: Weather 
report every hour

2016.09.11      0
2016.09.12      0
2016.09.13      0
2016.09.20      6
2016.09.26      5
2016.09.30      3
2016.10.04      3
2016.10.05      0
2016.10.06      0
2016.10.07      0
2016.10.10      2
2016.10.12      1
2016.10.15      2
2016.10.20      4
2016.10.21      0
2016.10.22      0
2016.10.27      4

Reduced data:
Record: Date of good 
weather preceded by
days of bad weather

M
o

n
d

ay 32
Tu

esd
ay 0

W
ed

n
esd

ay 3
Th

u
rsd

ay 10
Frid

ay 20
Satu

rd
ay 23

Su
n

d
ay 25Reduced data:

Record: Day of a week with 
counter of occurrences

1st MR job

21

Hadoop MapReduce - weather data forecast

21
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Weather forecast - 2nd MapReduce
public static class ByDayMapper extends Mapper<LongWritable, Text, 
IntWritable, IntWritable> {
    private IntWritable rKey = new IntWritable();
    private IntWritable rValue = new IntWritable();
    private Calendar c = Calendar.getInstance();
    private SimpleDateFormat dt = new SimpleDateFormat("yyyy.MM.dd");

    @Override
    protected void map(LongWritable key, Text value, Context context)
      throws Exception {

// Splitting the line into columns by tab 
     String[] split = value.toString().split("\t");
     try {

// Only 2 columns expected
       if (split.length==2)
          {
              // Get a day of the week (num.) out of date (1st column)
              c.setTime(dt.parse(split[0]));
              rKey.set(c.get(Calendar.DAY_OF_WEEK));

              // Value is optional for our case
              rValue.set(1);

             // Emit kv for good weather day if preceded by 2>= bad days
             if (Integer.parseInt(split[1])>=2){ 
                 context.write(rKey, rValue);
             }
        } catch (Exception e) {// ...}
    }
}

 public static class ByDayReducer<KEY> extends Reducer<KEY, 
IntWritable, KEY, LongWritable> 
{ 
    private LongWritable result = new LongWritable();
    public void reduce(KEY key, Iterable<IntWritable> values,
                     Context context) throws Exception {
      // Counting all mapped pairs for given days of a week
      long sum = 0;
      for (IntWritable val : values) {
        ++sum; // or += val.get(); always 1
      }
      result.set(sum);
      // Emit the result
      context.write(key, result);
    }
 }

public int run(String[] args) throws Exception {
    // Init the job
    Job job = Job.getInstance(getConf()); 
    job.setJarByClass(getClass());
    job.setJobName("Aggregating by week days");
    // Setting input/output paths
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    // Setting mapper and reducer class
    job.setMapperClass(ByDayMapper.class);
    job.setReducerClass(ByDayReducer.class);
    // Setting output types/classes 
    job.setOutputKeyClass(IntWritable.class);
    job.setOutputValueClass(IntWritable.class);
    return job.waitForCompletion(true) ? 0 : 1;
 }

Mapper

Reducer

MapReduce 
run
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Limitations of MapReduce 
• Not interactive

• Process of scheduling job takes significant amount of time
• Negotiation with YARN, sending client code, application master has to setup (start JVM, etc.)

• Typically separate executor for each data unit (e.g. HDFS block)
• A lot of executors have to be started (JVM & local environment have to be setup), short life-time

• Complex processing requires to launch multiple MR jobs
• Only 2 stages per job
• Intermediate results have to be dumped to HDFS and it takes time

• Each data processing task has to be implemented by a user
• Time consuming process especially for data exploration cases

• What are the other more user friendly approaches?
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Big Data ecosystem

HDFS
Hadoop Distributed File System
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Spark as the next generation MapReduce
• A framework for performing distributed 

computations
• Scalable - applicable for processing TBs of data
• User-friendly API
• Supports Java, Scala, Python, R and SQL

• Optimized for complex processing
• Not using MapReduce
• Allows complex Directed-Acyclic-Graph of 

stages
• Staged data kept in memory
• Long living executors

• processing multiple stages and jobs

• Varied APIs: DataFrames, SQL, MLib, Streaming
• Multiple computing resource schedulers supported

• YARN, Kubernetes, Mesos
• Many deployment modes on Hadoop – local, and 

cluster on YARN
• Multiple data sources: HDFS, HBase, S3, JDBC...
• Various integrations available such as notebooks
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Driver and executor concept in Spark

import scala.math.random

val slices = 3 # num of parallel executors

val n = 100000 * slices

val rdd = sc.parallelize(1 to n, slices)

val sample = rdd.map { i =>

val x = random

val y = random

# Check if inside the circle

if (x*x + y*y < 1) 1 else 0

}

val count = sample.reduce(_ + _)

# Geometric probability of a point inside the 

square to lie inside the circle

println("Pi is roughly " + 4.0 * count / n)

Driver

SparkContext
Cluster 

Managers

Machine2

Executor

Machine1

Executor

Machine3

Executor

Cluster
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SQL for the Big Data processing
• SQL is a well-defined language standard that exists since 1970s

• Everyone is familiar with
• Minimizes the learning curve of using different data processing tools

• It’s a syntax that is converted to the natively optimised code
• It’s just a way of expressing what you want to get and not how you want to get it

• Reduces the amount of code users need to write
• Allows performance optimizations transparent to the users

• SQL planner and query optimizer
• Opens the door for leveraging & integrating lots of existing tooling
• Structured data are easy to understand and maintain

select count(*) from phoenix_hadoop3.aei.sevents;

select * from AEI.EVENTS limit 10;

select * from AEI.EVENTS where EVENTNUMBER=852298541;
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SQL on HDFS needs Metastore
• Problem: SQL needs tables but on HDFS 

we have only directories & files
• Hive Metastore is a relational database 

containing metadata about objects
• Contains:

• Table definitions
• column names, data types, comments

• Data locations - partitions
• Acts as a central schema repository
• Can be used by other access tools

such as Spark, Presto, MapReduce etc.
• Supports multiple file formats:

• Parquet, ORC, Text file, etc.
• Tables can be partitioned

• each partition is a single HDFS directory

• In practice - 3 steps:
• Create your own Hive Metastore - 

database as a container for tables
• Define a table on top of your HDFS data
• Run queries on tables with Spark, etc.
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Spark SQL module
• Module for structured data processing
• There are two ways to run Spark SQL:

• Spark SQL CLI (./bin/spark-sql) (easy to use SQL)
• or DataFrame API with JDBC/Thrift Server

• Spark SQL CLI
• Convenient tool to run the Hive Metastore service in local mode and 

execute queries input from the command line :-)
• cannot talk to the Thrift JDBC server :-(

• Limitation: Natively the data can only be read from Hive Metastore
(using SparkSession)
• For other databases one needs to use JDBC protocol and Thrift server

Mixing SQL queries with Spark programs
# Apply functions to results of SQL queries

results = spark.sql("SELECT * FROM my_table")

names = results.map(lambda p: p.column_name)

# Defining dataframe with schema from parquet files stored on hdfs

> val df = spark.read.parquet("/user/ekleszcz/datasets/")

# Counting the number of pre-filtered rows with DF API

> df.filter($"l1trigchainstap".contains("L1_TAU4")).count

# Counting the number of pre-filtered rows with SQL

> df.registerTempTable("my_table")

> spark.sql("SELECT count(*) FROM my_table where l1trigchainstap like '%L1_TAU40%'").show 

Uniform data access: querying and joining different data sources
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Spark SQL - weather example
val data = spark.read.format("csv").

 option("sep", ";").

 option("inferSchema", "true").

 option("header", "true").

 load("data/*")

Read weather 
data from csv

Create a 
temporary table

Query to 
compute 
sunny days 
after two 
rainy days

Mon | Tue |Wed |Thu | Fri | Sat | Sun

D
ay

s 
co

u
n

t

?

sql("

with source as (select […] as time, ww as weather from weatherTable),

weather as (select time,[…] then 0 else 1 end bad_wather from source where hour(time) between 8 and 20),

bad_days as (select […] as time, sum(bad_wather) bad from weather […],

checked as (select time, bad, lag(bad,1) over (order by time) bad1, […] bad2 from bad_days)

select […] as day_of_a_week, count(*) from checked where bad=0 and bad1>0 and bad2>0 […]

").show(100,false)

data.registerTempTable("weatherTable")
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Running Spark in Jupyter Notebook
• Service for Web based ANalysis (SWAN) platform for interactive data analysis in the cloud developed @ CERN
• SWAN Platform: https://swan.web.cern.ch/
• Exercise to run on the workshop, Jupyter Notebook: http://cern.ch/go/X6Kj

Analytics platform outlook with HDFS, Spark and Jupyter

https://swan.web.cern.ch/
http://cern.ch/go/X6Kj
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Big Data ecosystem

HDFS
Hadoop Distributed File System
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Presto - Massively Parallel Processing (MPP)
• MPP SQL (on-anything) query engine for multiple 

datastores/databases initiated by Facebook
Similar frameworks:
- Apache Impala
- Apache Drill
- Hive LLAP

• Main benefits:
• Offers easy-to-use SQL (no other integration/code required),
• Multiple connectors to data storages with one endpoint
• Connectors are pluggable (ad-hoc adding)
• Low latency thanks to:

• Cost-Based Query Optimizer
• Leveraging data locality in Hadoop

• Characteristics:
• Low latency SQL queries (query start up time <100ms)
• Typically much faster than Spark and MapReduce

• Executing daemons/workers are up all the time
• Platform agnostic, can run anywhere

• doesn’t use Yarn
• Typically run on top of the Hadoop cluster
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Presto Architecture

1. Application, Presto CLI, Notebooks

3. Executes schedules tasks, 
sends the final result to the client

2. Receives a query from the client, analyzes, 
parses, plans, and schedules to the workers

4. Data source 
plugins
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Presto for Hadoop in practice
• Dedicated connector for HDFS

• Only the data mapped via Hive Metastore tables can be accessed from HDFS
• Existing HDFS folders can be easily mapped to Hive tables (if schema is coherent)

• Each connector can have multiple instances (called catalogs)
• Multiple hives (Hadoop clusters) can be accessed simultaneously
• select * from hive_hadalytic.my_schema.my_table

• Interfaces:
• Presto shell (CLI)
• JDBC/ODBC for binding with applications
• Web: http://coordinator-addr:8080/ui/

Hadoop 
HDFS

Hadoop
Kafka

NoSQL
Databases

Other
Databases

http://ithdp2401.cern.ch:8080/ui/
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Big Data scale-out database example with Presto

JDBC Client

Big Data Client

Ingest

High velocity 
data bus

Real time ingest

Batch ingest (lower latency)

Ingest

A
cc

es
s

A
cc

es
s

● OLTP
● Indexed data
● Fast data 

extraction
● Average analytics 

performance

● OLAP
● Columnar
● Fast analytics
● Average 

extraction time
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Presto SQL - weather forecast example

[...] // Cleaning data

weather as (select time, case when weather in ('',' ') then 0 else 1 end bad_weather
from interesting_data where extract (hour from time) between 8 and 20),

bad_days as(select date_trunc('day',time) as time, sum(bad_weather) bad from weather […]),

checked as (select time,bad,lag(bad,1) over (order by time) bad1, […] bad2 from bad_days),

select date_format(time,'%W') as day_name, count(*) from checked
where bad=0 and bad1>0 and bad2>0 group by […];

Mon | Tue |Wed |Thu | Fri | Sat | Sun

D
ay

s 
co

u
n

t

?Actual query to compute sunny 
days after two rainy days in Geneva
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Comparison of the 3 frameworks  
• MapReduce

• Requires complex coding of jobs - time consuming,
• Intended mainly for batch processing

• Spark SQL
• Covers most of the use cases (batch, long running ETLs)
• Only one native connector to the Hive Metastore
• The data from other sources can be queried only by writing

some spark code and using 3rd party connectors as jars
• Presto

• For interactive data access (low latency queries)
• Cluster starts on-demand
• Declared resources that are available all the time
• Used for:

• Generation of reports from big datasets
• Complex analytics with multiple data sources
• Querying: OLAP (HDFS/Parquet) and OLTP 

(HBase+Phoenix) systems
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The Atlas EventIndex

Events metadata 
extraction

WLCG CERN

G
ri

d
 jo

b

MetaFile Object 
Store

Data enrichment

Hadoop

Mapfiles + 
HBase

Analytics Web UI

Collisions 
data file

Event extraction 
Web UI

RDBMS

Table

• Main use-cases
• Event picking
• Count or select events based on trigger decisions
• Production completeness and consistency checks 

(corrupted, missing or duplicated events validation)
• Dataset browsing: finding dataset, generating reports

• Catalogue of all collisions in the ATLAS detector
• Over 185 billion of records, 200TBs> of data
• Current ingestion rates: 5kHz, 60TB/year
• One record has size of ~1.5kB
• Each indexed event is stored in a MapFile

• EventIndex information
• Event identifiers:

• Run and event number
• Trigger Stream
• Luminosity block
• Bunch Crossing ID

Data Production Data Collection Data Storage and Query Interface
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Instruction to execute exercises (self-guided)
• To access materials and documentation (available for everyone):

• $ git clone https://gitlab.cern.ch/db/BigDataTraining-iCSC2020.git

• Steps to run exercises on the CERN machines (requires CERN account):

• Access CERN client machines (with configuration and hadoop binaries)

• $ ssh it-hadoop-client.cern.ch  # ithdp-client0[1-6].cern.ch # Requires connection to the CERN network

• More details in Hadoop guide: http://hadoop-user-guide.web.cern.ch/hadoop-user-guide/getstart/client_edge_machine.html#connecting

• Set the environment (to point to the cluster configuration in order to interact with the CERN cluster):

• Use either Analytix or Hadoop QA cluster depending on the exercise

• $ source hadoop-setconf.sh analytix # or hadoop-qa

• Execute jupyter notebooks using SWAN service - the first example: http://cern.ch/go/X6Kj

• Check how to connect to the cluster with SWAN: http://spark-user-guide.web.cern.ch/spark-user-guide/spark-yarn/inter_user_guide.html

• The basic exercises to follow in the order: HDFS, MapReduce, Spark and YARN

• More advanced exercises (require executing first the basic ones): HBase, Parquet, Phoenix, Hive (metastore)

https://gitlab.cern.ch/db/BigDataTraining-iCSC2020.git
http://hadoop-user-guide.web.cern.ch/hadoop-user-guide/getstart/client_edge_machine.html#connecting
http://cern.ch/go/X6Kj
http://spark-user-guide.web.cern.ch/spark-user-guide/spark-yarn/inter_user_guide.html
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Thank you for your attention!
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The Atlas EventIndex - new architecture proposal

Events metadata 
extraction

WLCG CERN
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MetaFile Kafka 
cluster

Data enrichment

Hadoop

HBase 
tables

Analytics Web UI

Collisions 
data file

Event extraction 
Web UI

• Proposed changes:
• Replacing RDBMS with HBase/Phoenix and Presto layer for SQL queries
• Replacing MapFiles with HBase data storing
• In the future could be also Object Store replacement with Apache Kafka cluster
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The Atlas EventIndex - performance comparison
• Data ingestion speed improved by rate of 2-10x.
• Storage efficiency improved by factor of 10

• by using HBase + snappy compression on the data 
• Random data access using HBase

• typical random data lookup speed is below 500 ms
• for the MapFile-based solution was around 4s

• Data analytics - fast and scalable with rate of 300k 
records per CPU core (300kHz)

• Updates are possible and not only appends
• Combining with Phoenix/Presto allows querying data 

from multiple data sources with SQL
• Random lookup test is suboptimal for HBase as a 

significant amount of time is spent to set up a query 
before it really gets executed ~200ms

• Salting improves parallelism by distributing data 
(regions) between different servers (regionservers)
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The Atlas EventIndex - some queries and data structure
> show tables from phoenix_hadoop3.aei;
 datasets
 events
 sdatasets
 sevents

> use phoenix_hadoop3.aei;
> describe sdatasets;

# Typical AEI queries to find GUID of a file in Castor (with the event information)
> select * from datasets where runnumber=280753;

# Find dspid for the run # dspid = < project, runnumber, streamname, 
processingStep, version >
# Example: dspid = <data15_13TeV, 00281385, physics_Main, deriv, 
r9264_p3083_p3213>

> select * from events where dspid in (283,170) and eventnumber=4317812;
# To find the reference to the file and more metadata

# The worst scenario (scanning the whole dataset)
> select count(*) from events;


