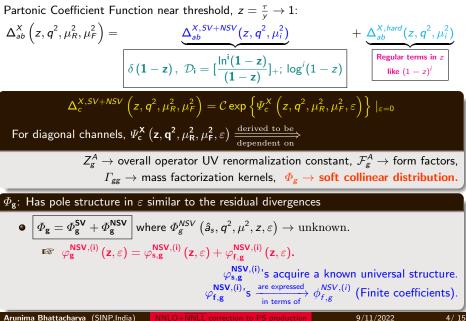
Next-to-soft-virtual resummed prediction for pseudoscalar Higgs boson production at NNLO+ \overline{NNLL} In collaboration with M. C. Kumar, Prakash Mathews and V. Ravindran.

Arunima Bhattacharya

Saha Institute of Nuclear Physics, Kolkata, India

Phys.Rev.D 105 (2022) 11, 116015

November 9, 2022



- 2 Analytical Computations
- 3 Numerical Results

4 Summary

Introduction

3 Numerical Results

4 Summary

Determining the expansion coefficients

By exploiting the similarity between pseudoscalar and scalar Higgs!

- T. Ahmed, M. Bonvini, M. C. Kumar, P. Mathews, N. Rana, V. Ravindran, L. Rottoli (2016)

$$\boldsymbol{\Delta}_{gg}^{\mathsf{A}}\left(\mathsf{z},\mathsf{q}^{2},\mu_{\mathsf{R}}^{2},\mu_{\mathsf{F}}^{2}\right) = \frac{g_{0}\left(\mathsf{a}_{\mathsf{s}}\right)}{g_{0}^{\mathsf{H}}\left(\mathsf{a}_{\mathsf{s}}\right)} \bigg[\boldsymbol{\Delta}_{gg}^{\mathsf{H}}\left(\mathsf{z},\mathsf{q}^{2},\mu_{\mathsf{R}}^{2},\mu_{\mathsf{F}}^{2}\right) + \delta\boldsymbol{\Delta}_{gg}^{\mathsf{A}}\left(\mathsf{z},\mathsf{q}^{2},\mu_{\mathsf{R}}^{2},\mu_{\mathsf{F}}^{2}\right) \bigg]$$

- $\delta\Delta_{gg}^{A,NSV}\left(z,q^2,\mu_R^2,\mu_F^2\right) \rightarrow$ Corrections to the scalar Higgs CFs,
- $g_0(a_s)$ and $g_0^H(a_s) \rightarrow \text{Known constant functions.}$

•
$$\Delta_{gg}^{A,NSV}\left(\mathbf{z},\mathbf{q}^{2},\mu_{R}^{2},\mu_{F}^{2}\right) = \frac{\mathbf{g}_{0}\left(\mathbf{a}_{s}\right)}{\mathbf{g}_{0}^{H}\left(\mathbf{a}_{s}\right)} \left[\Delta_{gg}^{H,NSV}\left(\mathbf{z},\mathbf{q}^{2},\mu_{R}^{2},\mu_{F}^{2}\right)\right]$$

To evaluate the $\phi_{f,g}^{NSV,(i)}$'s for pseudoscalar Higgs production via gluon fusion:

- Using the analytical formalism,
- Using the above relation.

- A. H. Ajjath, P. Mukherjee, and V. Ravindran (2020)
- T. Ahmed, M. Bonvini, M. C. Kumar, et. al. (2016)
- ⇒ ① yields the corresponding pseudoscalar Higgs SV+NSV CFs in terms of the $\varphi_{g,i}^{(k)}$'s which are evaluated by comparison with the result from ②.

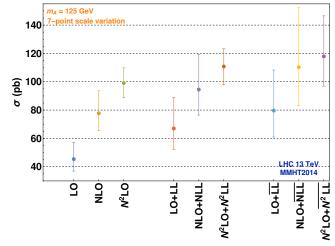
Arunima Bhattacharya (SINP,India) NNLO+NNLL correction to PS production

Our Observation: The $\varphi_{g,i}^{(k)}$'s, for the scalar and the pseudoscalar Higgs boson productions *via* gluon fusion, are identical to each other till two-loop.

Earlier Observations:

- A. H. Ajjath, P. Mukherjee, and V. Ravindran (2020)

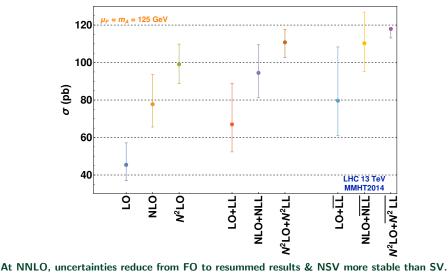
- Same was noticed for the DY process and scalar Higgs production *via* bottom quark annihilation up to two-loop level.
- This failed for the quark annihilation process at third order for k = 0, 1.


Hence, this behaviour at third order for the pseudoscalar Higgs boson production can be checked only when the corresponding explicit N^3LO results are available.

- 2 Analytical Computations
- 3 Numerical Results

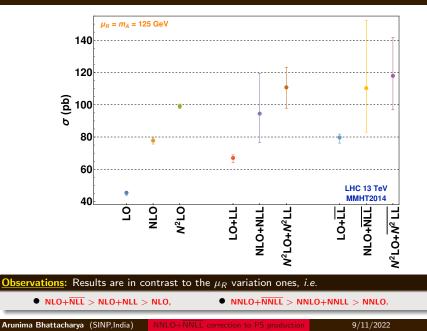
4 Summary

7-point scale uncertainty plot for $m_A = 125 \text{ GeV}$



 $\begin{array}{l} \textbf{Observation} \Rightarrow \textbf{The uncertainties reduce from NLO to NNLO, NLO+NLL to NNLO+NNLL, and NLO+\overline{NLL} to NNLO+\overline{NNLL} \xrightarrow{\textbf{Problem}} \end{array}$

NSV resummation exhibits higher uncertainties than SV.


Uncertainty plot for μ_F scale fixed at $m_A = 125 \text{ GeV}$

To comprehend this unexpected behaviour $\xrightarrow{\text{we study}}$ scale variations due to μ_R and μ_F separately by varying one and keeping the other fixed at m_A .

Arunima Bhattacharya (SINP,India) NNLO+NNLL correction to PS production

Uncertainty plot for μ_R scale fixed at $m_A = 125$ GeV

11/15

Possibility of scalar-pseudoscalar Higgs boson mixed state

Parameter: Mixing angle α .

- M. Jaquier, R. Röntsch (2019)

Consider a Higgs boson production, while neglecting its decay,

 $\begin{array}{l} \mbox{for any arbitrary value of } \alpha, \\ \hline \mbox{the results up to NNLO} \end{array} \sigma = \cos^2 \alpha \cdot \sigma_{\rm H} + \sin^2 \alpha \cdot \sigma_{\rm A}. \end{array}$

K-Factor	$\alpha = 0$	$lpha=\pi/2$	$lpha=\pi/4$	$lpha=\pi/6$
K ₍₁₎	1.6990	1.7124	1.7083	1.7048
K ₍₂₎	2.1571	2.1814	2.1741	2.1677
K ^{resum} ₍₁₎	2.0033	2.0803	2.0570	2.0368
K ^{resum} (2)	2.2785	2.4392	2.3907	2.3485
$\overline{K}_{(1)}^{resum}$	2.3425	2.4284	2.4025	2.3799
$\overline{K}_{(2)}^{resum}$	2.4737	2.5966	2.5595	2.5272

Observation: Changing α modifies the corresponding QCD corrections only by a few percent.

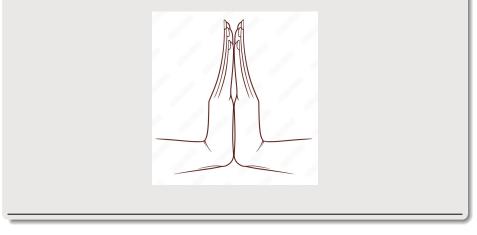
Consequence: Availibility of the pseudoscalar Higgs boson production cross-section to a precision comparable to that of the scalar Higgs

In extracting the mixing angle, α , to a better accuracy.

- 2 Analytical Computations
- 3 Numerical Results

<u>Aim</u>: NSV resummation for pseudoscalar Higgs boson production *via* gluon fusion to NNLL accuracy.

- Compute the NSV corrections up to second order, and compare them with the corresponding FO corrections.
 - <u>Conclude</u> These corrections significantly impact the pseudoscalar production cross-section compared to the conventional SV logarithms.


e Estimate theory uncertainties.

- The 7-point scale uncertainties.
- μ_F & the μ_R scale variations.

 $\underline{\textbf{Conclude}} \rightarrow \text{The need of NSV contributions from other parton channels, & beyond NSV contributions in the gluon fusion channel.}$

• Evaluate the production cross-sections for mixed scalar-pseudoscalar state for different values of the mixing angle, α which changes by a few percent.

Thank you...

