Proton Structure

 from
A Light-front Hamiltonian Approach

Xingbo Zhao, Siqi Xu, Zhi Hu, Chandan Mondal, Yang Li, James P. Vary

Institute of Modern Physics,
Chinese Academy of Sciences

Baryons 2022
7-11 November, Sevilla

BARYONS 2022, Seville, Spain, 11/7/2022

Outline

- Light-front Hamiltonian approach
- Application to the nucleon
$-|q q q\rangle \quad$ [PRD 104,094036(2021), PLB 833 137306 (2022)]
$-|q q q\rangle+|q q q g\rangle \quad[a r X i v: 2209.08584$ [hep-ph]]
- Conclusion

Fundamental Questions: Emergence

Nucleon mass

Nucleon spin

Nuclear force

3D image in terms of quarks and gluons in the EIC era

Hamiltonian Formalism

- Schrödinger equation universally describes different physics:

$$
H|\psi\rangle=E|\psi\rangle
$$

- Wave functions encode full information of the system

Nonrelativistic

atom

Nonrelativistic

nucleus

Relativistic

hadron

Light-front Time

- Hadron structure is measured by (virtual) photon

- We "see" the world at fixed light-front time $\left(t=x^{0}+x^{3}\right)$

Light-front Quantization

[Dirac, 1949]

Equal time quantization $t \quad x^{0}$	Light-front quantization $t \quad x^{+}=x^{0}+x^{3}$
x^{1}, x^{2}, x^{3}	$\begin{gathered} x^{-}=x^{0}-x^{3} \\ x^{\perp}=x^{1,2} \end{gathered}$
P^{0}, \vec{P}	$\begin{gathered} P^{-}=P^{0}-P^{3} \\ P^{+}=P^{0}+P^{3}, P^{\perp}=P^{1,2} \end{gathered}$
$i-{ }_{t}\|\quad(t)\rangle=H\|\quad(t)\rangle$	$i \underset{x^{+}}{ }\left\|\left(x^{+}\right)\right\rangle=\frac{1}{2} P\left\|\left(x^{+}\right)\right\rangle$
$P^{0}=\sqrt{m^{2}+\bar{P}^{2}}$	$P=\frac{m^{2}+P^{2}}{P^{+}}$

Advantage:

- Frame-independent light-front wave functions
- Convenience in evaluating observables defined on the light-front
- Light-front wave functions carry parton interpretation
- Hamiltonian formalism

Basis Light-front Quantization

- Nonperturbative eigenvalue problem

$$
P^{-}|\beta\rangle=P_{\beta}^{-}|\beta\rangle
$$

- P^{-}: light-front Hamiltonian
- $|\beta\rangle$: mass eigenstate
- P_{β}^{-}: eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate

$$
O \equiv\langle\beta| \hat{O}|\beta\rangle
$$

- Fock sector expansion
- Eg. \mid proton $\rangle=a|q q q\rangle+b|q q q g\rangle+c|q q q q \bar{q}\rangle+d|q q q g g\rangle+\ldots$
- Discretized basis
- Transverse: 2D harmonic oscillator basis: $\Phi_{n, m}^{b}\left(\vec{p}_{\perp}\right)$.
- Longitudinal: plane-wave basis, labeled by k.
- Basis truncation:

$$
\sum_{i}\left(2 n_{i}+\left|m_{i}\right|+1\right) \leq N_{\max }, \quad \sum_{i} k_{i}=K
$$

$N_{\text {max }}, K$ are basis truncation parameters

- Color degrees of freedom

Light-front QCD Hamiltonian (First Principle)

$$
\begin{aligned}
P_{L F Q C D}^{-} & =\frac{1}{2} \int d^{3} x \overline{\widetilde{\psi}} \gamma^{+} \frac{\left(\mathrm{i} \partial^{\perp}\right)^{2}+m^{2}}{\mathrm{i} \partial^{+}} \widetilde{\psi}-A_{a}^{i}\left(\mathrm{i} \partial^{\perp}\right)^{2} A_{i a} \\
& -\frac{1}{2} g^{2} \int d^{3} x \operatorname{Tr}\left[\widetilde{A}^{\mu}, \widetilde{A}^{\nu}\right]\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right] \\
& +\frac{1}{2} g^{2} \int d^{3} x \widetilde{\tilde{\psi}} \gamma^{+} T^{a} \tilde{\psi} \frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}} \widetilde{\widetilde{\psi}} \gamma^{+} T^{a} \tilde{\psi} \\
& -g^{2} \int d^{3} x \widetilde{\psi} \gamma^{+}\left(\frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}}\left[\mathrm{i} \partial^{+} \widetilde{A}^{\kappa}, \widetilde{A_{\kappa}}\right]\right) \widetilde{\psi} \\
& +g^{2} \int d^{3} x \operatorname{Tr}\left(\left[\mathrm{i} \partial^{+} \widetilde{A}^{\kappa}, \widetilde{A}_{\kappa}\right] \frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}}\left[\mathrm{i} \partial^{+} \widetilde{A}^{\kappa}, \widetilde{A}_{\kappa}\right]\right) \\
& +\frac{1}{2} g^{2} \int d^{3} x \widetilde{\widetilde{\psi}} \widetilde{A} \frac{\gamma^{+}}{\mathrm{i} \partial^{+}} \widetilde{A} \widetilde{\psi} \\
& +g \int d^{3} x \widetilde{\psi} \widetilde{A} \tilde{\psi} \\
& +2 g \int d^{3} x \operatorname{Tr}\left(\mathrm{i} \partial^{\mu} \widetilde{A^{\nu}}\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right]\right)
\end{aligned}
$$

Light-Front Hamiltonian (Model I)

$$
\left.\left|P_{\text {baryon }}\right\rangle=|q q q\rangle|+| q q q g\right\rangle+|q q q q \bar{q}\rangle+\cdots \cdots
$$

$\boldsymbol{P}^{-}=H_{K . E .}+H_{\text {trans }}+H_{\text {longi }}+H_{\text {Interact }}$

$$
\begin{aligned}
& H_{K . E .}=\sum_{i} \frac{p_{i}^{2}+m_{q}^{2}}{p_{i}^{+}} \\
& \text {[S. Xu et al, PRD } 104 \text { 094036(2021)] } \\
& H_{\text {trans }} \sim \kappa_{T}^{4} r^{2} \\
& \text { [S. J. Brodsky, G. de Teramond arXiv: 1203.4025] } \\
& \text { Parameters are determined } \\
& \text { through fitting nucleon mass } \\
& \text { and EMFFs. }
\end{aligned}
$$

Nucleon Form Factor

[C. Mondal, et al. PRD. 102. 016008 (2020)]

- Form factors: spatial distributions of charge and magnetization in the transverse plane
$h P^{0} ; "\left|\frac{J^{+}(0)}{2 P^{+}}\right| P ; " i=F_{1}\left(q^{2}\right)$
$h P^{0} ; \left." / \frac{J^{+}(0)}{2 P+} \right\rvert\, P ; \# i=-\left(q^{1}-i q^{2}\right) \frac{F_{2}\left(q^{2}\right)}{2 M}$
$G_{E}\left(Q^{2}\right)=\sum_{q} e_{q} F_{1}^{q}\left(Q^{2}\right)-\frac{Q^{2}}{4 M^{2}} \sum_{q} e_{q} F_{2}^{q}\left(Q^{2}\right)$,
$G_{M}\left(Q^{2}\right)=\sum_{q} e_{q} F_{1}^{q}\left(Q^{2}\right)+\sum_{q} e_{q} F_{2}^{q}\left(Q^{2}\right)$.

$m_{\mathrm{q} / \mathrm{k}}$	$m_{\mathrm{q} / \mathrm{g}}$	κ	α_{s}
0.3 GeV	0.2 GeV	0.34 GeV	1.1 ± 0.1

Truncation parameters: $N_{\max }=10 \quad K=16.5$

Parton Distribution Functions

- PDFs: longitudinal distribution of partons
$\Phi^{\left[\gamma^{+}\right]}\left(x, Q^{2}\right)$
$=\int \frac{d z^{-}}{8 \pi} e^{i x P^{+} z^{-} / 2}\langle P, \Lambda| \bar{\psi}(x) \gamma^{+} \psi(0)|P, \Lambda\rangle_{0.0}{ }^{0.2}$

- Initial scale obtained from first moments $\mu_{0}^{2}=0.19 \pm 0.02 \mathrm{GeV}^{2}$
- Qualitative agreement with global fits

Generalized Parton Distribution Functions (GPD)

- GPD: 3D distribution of partons in coordinate space

$$
\Phi^{\left[\gamma^{+}\right]}\left(x, Q^{2}\right)=\int \frac{d z^{-}}{8 \pi} e^{i x P^{+} z^{-} / 2}\left\langle P^{\prime}, \Lambda\right| \bar{\psi}(x) \gamma^{+} \psi(0)|P, \Lambda\rangle
$$

(a)

(c)

(b)

(d)

- x-dependent radius qualitatively agree with experimental data

Transverse Moment Dependent Distributions (TMD)

- TMD: 3D distribution of partons in momentum space

$$
\Phi^{[\Gamma]}\left(P, S, S^{\prime} ; x=\frac{p^{+}}{P^{+}}, p^{\perp}\right)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-} \mathrm{d} z^{\perp}}{2(2 \pi)^{3} N_{0}} e^{i p \cdot z}\left\langle P, S^{\prime}\right| \bar{\Psi}(0) \Gamma \Psi(z)|P, S\rangle\right|_{z^{+}=0}
$$

(longitudinal momentum fraction)

- Six leading twist T-even TMDs at initial scale ($\left.\mu_{i}^{2}=\zeta_{i}=0.195 \mathrm{GeV}^{2}\right)$
[Z. Hu et al, PLB 833, 137360 (2022)]

Light-Front Hamiltonian (Model II)

$$
\left|P_{\text {baryon }}\right\rangle=|q q q\rangle+|q q q g\rangle+|q q q q \bar{q}\rangle+\cdots \cdots
$$

- $H_{\text {Interact }}$
$\rightarrow \quad H_{\text {Interact }}=\quad H_{\text {Vertex }}$

$$
N_{\max }=9, K=16.5 \quad \text { Confining interaction }
$$

Parameters are determined through fitting nucleon mass and EMFFs.

m_{u}	m_{d}	κ	m_{g}	$m_{\text {int }}$	$b_{\text {inst }}$	b	g
0.32	0.25	0.54	0.50	1.80	3.00	0.70	2.40
GeV							
\downarrow				\downarrow			
Different Mass Asymmetry of u and d				UV Cutoff In Instantaneous term			

Light-Front Hamiltonian (Model I)

$$
\left.\left|P_{\text {baryon }}\right\rangle=|q q q\rangle|+| q q q g\right\rangle+|q q q q \bar{q}\rangle+\cdots \cdots
$$

$\boldsymbol{P}^{-}=H_{K . E .}+H_{\text {trans }}+H_{\text {longi }}+H_{\text {Interact }}$

$$
\begin{aligned}
& H_{K . E .}=\sum_{i} \frac{p_{i}^{2}+m_{q}^{2}}{p_{i}^{+}} \\
& \text {[S. Xu et al, PRD } 104 \text { 094036(2021)] } \\
& H_{\text {trans }} \sim \kappa_{T}^{4} r^{2} \\
& \text { [S. J. Brodsky, G. de Teramond arXiv: 1203.4025] } \\
& \text { Parameters are determined } \\
& \text { through fitting nucleon mass } \\
& \text { and EMFFs. }
\end{aligned}
$$

Connection with Light-front QCD Hamiltonian

$$
\begin{aligned}
& \begin{aligned}
P_{L \text { FFCD }}^{-} & =\frac{1}{2} \int d^{3} x \bar{\psi} \gamma^{+} \frac{\left(\mathrm{i} \partial^{\perp}\right)^{2}+m^{2}}{\mathrm{i} \partial^{+}} \widetilde{\psi}-A_{a}^{i}\left(\mathrm{i} \partial^{\perp}\right)^{2} A_{i a} \\
& -\frac{1}{2} g^{2} \int d^{3} x \operatorname{Tr}\left[\widetilde{A}^{\mu}, \widetilde{A}^{\nu}\right]\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right]
\end{aligned} \\
& \underbrace{+}_{-\frac{1}{2} g^{2} \int d^{3} x \overline{\tilde{\psi}} \gamma^{+} T^{a} \tilde{\psi} \frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}} \overline{\tilde{\psi}} \gamma^{+} T^{a} \tilde{\psi} d^{3} x \tilde{\psi} \gamma^{+}\left(\frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}}\left[\mathrm{i} \partial^{+} \widetilde{A}^{\kappa}, \tilde{A_{\kappa}}\right]\right)} \\
& +g^{2} \int d^{3} x \operatorname{Tr}\left(\left[\mathrm{i} \partial^{+} \tilde{A}^{\kappa}, \tilde{A}_{\kappa}\right] \frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}}\left[\mathrm{i} \partial^{+} \tilde{A}^{\kappa}, \tilde{A}_{\kappa}\right]\right) \\
& +\frac{1}{2} g^{2} \int d^{3} x \widetilde{\tilde{\psi}} \tilde{\tilde{i} \partial^{+}} \tilde{A} \tilde{\psi} \\
& +g \int d^{3} x \widetilde{\psi} \widetilde{A} \tilde{\psi} \\
& +2 g \int d^{3} x \operatorname{Tr}\left(\mathrm{i} \partial^{\mu} \widetilde{A}^{\nu}\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right]\right)
\end{aligned}
$$

Unpolarized Parton Distribution Functions

- Initial scale increases with the inclusion of dynamical gluon
- Overall results improve with the inclusion of dynamical gluon

Angular Momentum Distributions

- Proton spin decomposition

Helicity Parton Distribution Functions

- $\Delta \Sigma_{q} \approx 0.7 \quad \Delta \Sigma_{u} \approx 0.86 \quad \Delta \Sigma_{d} \approx-0.16$
- Valence quark distributions at $x<0.1$ and $x>0.5$ regions show improvement with DG

Helicity Parton Distribution Functions

[S. Xu, C. Mondal, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph]]

- Δg is positive over the entire x range, qualitatively agreeing with global fits
- $\Delta g / g$ increases with x , measurements of $\Delta g / g$ at EICs are promising
- $\Delta G=\int_{0}^{1} \Delta g(x)=0.131 \pm 0.003$, comparable with $\Delta G^{[0.002,0.3]}=0.2 \pm 0.1$ from PHENIX collaboration
[PRL 103012003 (2009]

Orbital angular momentum distributions

- $L_{d}=-0.0114 \pm 0.0004 \quad L_{u}=0.0327 \pm 0.0013 \quad L_{g}=-0.0065 \pm 0.0005$
- From generalized transverse momentum-dependent parton distribution functions $F_{1,4}$

Proton Spin Decomposition

- Fock Sector Expansion

$$
\mid \text { proton }\rangle=\underset{44 \%}{|q q q\rangle+|q q q g\rangle_{1}^{\prime}+|q q q q \bar{q}\rangle+|q q q g g\rangle+|q q q q \bar{q} g\rangle+\cdots}
$$

Jaffe-Manohar decomposition: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}$

Orbital angular momentum

3\%

Transversity Parton Distribution Functions

[In preparation, Siqi Xu, C. Mondal et.al]

- Tensor charge $g_{T}^{i}=\int d x h_{1}^{i}(x)$

Tensor charge	No dynamical gluon	Dynamical gluon	Extracted from exp. data
g_{T}^{u}	0.94	0.55	$0.39_{-0.12}^{+0.18}$
g_{T}^{d}	-0.20	-0.29	$-0.25_{-0.10}^{+0.30}$

[Phys. Rev. D87, 094019(2013)]

- Tensor charge of up quark with DG show improved agreement with the extracted data

Generalized Parton Distribution Functions (GPD)

Generalized Parton Distribution Functions (GPD)

$$
\tilde{H}^{u}(\mathrm{x}, 0, \mathrm{t})
$$

With dynamical gluon

Generalized Parton Distribution Functions (GPD)

$>$ Generalized Parton Distribution Functions For Gluon

- Gluon GPD at the initial scale $\mu_{0}^{2}=0.25 \mathrm{GeV}^{2}$

Conclusion

- Light-front Hamiltonian approach
\Longrightarrow 3D image of nucleon with rich details
- Coordinate and momentum (5D) space
- Spin degrees of freedom
- Correlation among partons
- Systematically expandable
- Sea quarks \Longrightarrow multiple gluons \Rightarrow first principles
- Baryons/mesons/exotic hadrons
- Light nuclei
- Next generation high performance computers bring immense possibilities

Thank you!

