

Latest results on hadronic resonance production with ALICE at the LHC

ENRICO FRAGIACOMO

INFN - SEZIONE DI TRIESTE

on behalf of the ALICE collaboration

BARYONS 2022

SEVILLE, 7 NOVEMBER 2022

ALICE experiment and the resonance campaign

 ALICE has produced a large set of measurements on hadronic resonances for all collisions systems and energies provided by LHC during Run 1 and Run2

Resonance	ρ(770)0	K*(892)±	K*(892)º	f ₀ (980)	Σ(1385)±	Ξ(1820)±	Λ(1520)	Ξ(1530)º	ф(1020)
Quark composition	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	นริ, นิร	$d\bar{s}, \bar{d}s$	unknown	uus, dds	uss	uds	uss	SS
τ(fm/ <i>c</i>)	1.3	3.6	4.2	large unc.	5-5.5	8.1	12.6	21.7	46.4
Decay	ππ	K ⁰ s π	Κπ	π+π-	Λπ	ΛК	рΚ	Ξπ	KK
B.R.(%)	100	33.3	66.6	46	87	unknown	22.5	66.7	48.9

√s_{NN} (TeV) Year(s) 2010, 2011 2.76 75 µb-1 Pb-Pb 2015, 2018 5.02 800 ub-1 2017 5.44 0.3 µb-1 Xe-Xe 5.02 15 nb-1 p-Pb 5.02, 8,16 2016 3 nb-1, 25 nb-1 0.9, 2.76, 2009-2013 7, 8 1.5 pb⁻¹, 2.5 pb⁻¹ 2015, 2017 5.02 1.3 pb-1 2015-2018

111111111

20 published articles out of 403 submitted by ALICE as of Oct. 2022

Why we measure resonances:

- ✓ Study the hadrochemistry of particle production
- ✓ Study the in-medium energy loss via R_{AA}
- ✓ Study the hadron-gas phase of relativistic heavy-ion collisions

ALICE detector →
excellent track
momentum resolution
and PID

Central barrel: vertexing, tracking, PID, EM calos $|\eta| < 0.9$

Forward detectors: multiplicity, trigger, centrality, time zero

Muon spectrometer:

μ-tracking and trigger chambers

 $-4 < \eta < -2.5$

Final stage of the collision evolution: the hadron gas

Temperature at chemical and kinetic freeze-outs

At hadronization the system is close to thermal equilibrium and a rapid hadrochemical freeze-out takes place at the phase boundary

- Hadron abundances described by SHM over 9 orders of magnitude!
- Total yields include contributions from resonance decays!

Boltzmann-Gibbs Blast-Wave fits are used to determine parameters of the radial flow:

- T_{kin} kinetic freeze-out temperature
- $<\beta_{T}>$ transverse flow velocity

Fit parameters extracted from simultaneous fits to π , K, p spectra

Resonance reconstruction: uncorrelated background

Resonances are reconstructed from their decay daughters via the invariant mass technique:

$$M_{\text{inv}} = \sqrt{(E_1 + E_2)^2 - |\vec{p}_1 + \vec{p}_2|^2}$$

- Large background due to uncorrelated pairs
- Uncorrelated background is calculated via event mixing or like-sign techniques and normalized in a mass region far from the peak
- Uncorrelated background is subtracted from the invariant mass distribution

Resonance reconstruction: residual background (I)

- After the subtraction of the uncorrelated background a residual background remains due to correlated pairs or misidentified decay products
- Residual background is usually modelled by a polynomial function
- Signal is fit with a Breit-Wigner or Voigtian function (convolution of a Breit-Wigner for the signal and a Gaussian to account for the resolution of the detector)

Resonance reconstruction: residual background (II)

Residual background can be complicated and can require a more sophisticated modelling

Background can include residual bkg. and peaks from other resonances

ALI-PUB-161314

Transverse momentum spectra

- p_T spectra obtained for different multiplicity classes
- In Pb—Pb collisions multiplicity classes correspond to different centralities of the collision (with 0-10% the most central)

ALI-PUB-161346

Comparison to models

- AMPT: Phys. Rev. C 72 (2005) 064901
- PYTHIA 6 Perugia 2011: Phys. Rev. D 82 (2010) 074018
- PYTHIA 8 Monash 2013: Eur. Phys. J. C 74 (2014) 3024
- PYTHIA 8.2: Comp. Phys. Comm. 191 (2015) 159
- HERWIG 7: Eur. Phys. J. C 76 (2016) no. 4, 196

Several models on the market: need to tune them to data to obtain reasonable predictions!

Radial flow and hardening of p_T spectra

- Radial flow: predicted by hydrodynamics in AA due to the higher energy density
- Hardening of the spectra with increasing multiplicity

Mass scaling observed in central collisions

Models that do not include a hadronic afterburner do not reproduce the data

Hardening of p_T spectra in small systems (pp and p-Pb)

- Qualitatively similar observations as for heavy-ion collisions regarding the shapes → collective flow-like effects in small collision systems
- Effect observed also for other hadrons

Effect observed both in p—Pb and pp collisions, for both mesons and baryons, and also for resonances reconstructed in the di-lepton channel

Hardening of p_T spectra in small systems (pp and p-Pb)

- Qualitatively similar observations as for heavy-ion collisions regarding the shapes → collective flow-like effects in small collision systems
- Effect observed also for other hadrons

- Models implementing Color Reconnection (CR) mechanisms are able to predict the hardening of spectra as function of multiplicity
- PYTHIA 8 w/o CR has a flat behaviour

enrico.fragiacomo@ts.infn.it

Integrated yields and hadrochemistry

- Strangeness production increasing with multiplicity until saturation (grandcanonical plateau) is reached
- Steeper increase for particles with more strangeness content
- High-multiplicity pp: same hadrochemistry as larger (p-Pb, peripheral Pb-Pb) systems

Particle production is driven by the multiplicity and does not depend on the collision system or the centre-of-mass energy \rightarrow Common particle production mechanism for all systems?

Expect flat behaviour as a function of multiplicity for the yield ratio of particles with the same strangeness content

Suppressed signal of resonances from the hadron gas

- Re-scattering and regeneration modify the yield of reconstructible resonances
- Effect more pronounced for central collisions where the duration is longer

-5000

KK Invariant Mass (GeV/c2)

Suppressed signal of resonances from the hadron gas

- Re-scattering and regeneration modify the yield of reconstructible resonances
- Effect more pronounced for central collisions where the duration is longer
- Effect larger at low p_{T}

Resonance-to-long-lived-hadron yield ratios

Suppression of ~55% from peripheral to most central Pb−Pb collisions → consistent with rescattering effects

Suppression at a level of 3.6σ in 0-10% central Pb-Pb collisions with respect to statistical thermal model

- EPOS+UrQMD: Phys. Rev. C 93 (2016) 014911
- GCSM: Phys. Rev. C 100 (2019) 5, 054906
- PCE: Phys. Rev. C 102 (2020) 2, 024909
- MUSIC: arXiv:2105.07539

- Larger suppression (~70%) wrt. K* despite $\tau(\Lambda^*) = 3 \tau(K^*)$
- MUSIC+SMASH reproduces the multiplicity suppression trend

Simple model for the duration of the hadron-gas phase

Estimation of lower limit of the timespan between chemical and kinetic freeze-out by exponential law:

$$r_{\rm kin} = r_{\rm chem} \times \exp(-(\tau_{\rm kin} - \tau_{\rm chem})/\tau_{\rm res})$$

r_{kin} = measured yield ratios in Pb–Pb
 r_{chem} = measured yield ratios in pp
 t_{res} = lifetime of resonance

Assumptions:

- i) Simultaneous freeze-out for all particles
- ii) Negligible regeneration

Summary

- ✓ During Run 1 and Run 2 ALICE has measured a varied set of resonances with different lifetime, mass, quark content
- ✓ Resonances have proved to be a valuable probe to explore the hadron-gas phase at the end of the collision
- ✓ Precise measurements of resonances have allowed to study strangeness production and collective effects in large and small systems
- ✓ Future more precise data from Run 3 will allow multi-differential analyses, reconstruction of higher-mass resonances and a quantitative study of the hadron-gas phase via measurements of observables such as the flow of resonances