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ALICE experiment and the resonance campaign
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Why we measure resonances:

 Study the hadrochemistry of particle 
production

 Study the in-medium energy loss via RAA

 Study the hadron-gas phase of relativistic 
heavy-ion collisions

 ALICE has produced a large set of measurements on hadronic resonances for 
all collisions systems and energies provided by LHC during Run 1 and Run2

 20 published articles out of 403 submitted by ALICE as of Oct. 2022

ALICE detector → 
excellent track 

momentum resolution
and PID

Central barrel:

vertexing, tracking, PID, EM calos

|η| < 0.9

Muon spectrometer:

μ-tracking and trigger chambers

-4 < η < -2.5

Forward detectors:

multiplicity, trigger, centrality, time zero



Final stage of the collision evolution: the hadron gas
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Lorentz-contracted disks. Diameter ~14 fm, thickness ~14/γ fm, γ = 2500 @ LHC
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Temperature at chemical and kinetic freeze-outs
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At hadronization the system is close to thermal equilibrium and a
rapid hadrochemical freeze-out takes place at the phase boundary

Statistical Hadronization Model (SHM) 

Boltzmann-Gibbs Blast-Wave fits are used to determine 
parameters of the radial flow:

 Tkin – kinetic freeze-out temperature

 <βT> - transverse flow velocity

Fit parameters extracted from simultaneous fits to π, K, p spectra

• Hadron abundances described by SHM over 9 orders of magnitude!

• Total yields include contributions from resonance decays!

Tchem = 156 MeV

Tkin ≈ 100 MeV

Central Pb‒Pb 
events

Phys. Lett. B 797 (2019) 134836 



Resonance reconstruction: uncorrelated background
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 Resonances are reconstructed from their decay daughters via the invariant 
mass technique:

𝑀𝑀inv = (𝐸𝐸1 + 𝐸𝐸2)2 − 𝑝⃗𝑝1 + 𝑝⃗𝑝2
2

 Large background due to uncorrelated pairs

 Uncorrelated background is calculated via event mixing or like-sign 
techniques and normalized in a mass region far from the peak

 Uncorrelated background is subtracted from the invariant mass distribution

Eur. Phys. J. C 75 1 (2015)Phys. Rev. C 102 (2020) 024912



Resonance reconstruction: residual background (I)
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 After the subtraction of the uncorrelated background a residual background 
remains due to correlated pairs or misidentified decay products

 Residual background is usually modelled by a polynomial function

 Signal is fit with a Breit-Wigner or Voigtian function (convolution of a Breit-
Wigner for the signal and a Gaussian to account for the resolution of the 
detector)

Eur. Phys. J. C 80 (2020) 1130Phys. Rev. C 102 (2020) 024912



Resonance reconstruction: residual background (II)
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Background can include residual bkg. 
and peaks from other resonances

arXiv:2205.13998 

Eur. Phys. J. C 75 1 (2015)

Phys. Rev. C 99, 064901 (2019)

Residual background can be complicated and 
can require a more sophisticated modelling

arXiv:2206.06216



Transverse momentum spectra
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 pT spectra obtained for different multiplicity classes

 In Pb‒Pb collisions multiplicity classes correspond to 
different centralities of the collision (with 0-10% the 
most central)

arXiv:2205.13998 

Phys. Rev. C 99, 064901 (2019)

Σ(1385)

K*(892)ρ(770)
Λ(1520)



Comparison to models
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Eur. Phys. J. C 80 (2020) 1130 arXiv:2206.06216Phys. Rev. C 99, 064901 (2019)

Several models on the market: need to tune them to data to obtain reasonable predictions!

• AMPT: Phys. Rev. C 72 (2005) 064901
• PYTHIA 6 Perugia 2011: Phys. Rev. D 82 (2010) 074018
• PYTHIA 8 Monash 2013: Eur. Phys. J. C 74 (2014) 3024 
• PYTHIA 8.2: Comp. Phys. Comm. 191 (2015) 159
• HERWIG 7: Eur. Phys. J. C 76 (2016) no. 4, 196



 Radial flow: predicted by hydrodynamics in AA due to 
the higher energy density

 Hardening of the spectra with increasing multiplicity
 Mass scaling observed in central collisions

Radial flow and hardening of pT spectra
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Phys. Rev. C. 106 (2022) 034907 Models that do not include a hadronic 

afterburner do not reproduce the data 



 Qualitatively similar observations as for heavy-ion collisions 
regarding the shapes → collective flow-like effects in small 
collision systems 

 Effect observed also for other hadrons

Hardening of pT spectra in small systems (pp and p‒Pb)
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Effect observed both in p‒Pb and pp collisions, for both 
mesons and baryons, and also for resonances 
reconstructed in the di-lepton channel

f0(980)

Ξ(1530)

ω(782) ϕ(1020)



 Qualitatively similar observations as for heavy-ion collisions 
regarding the shapes → collective flow-like effects in small 
collision systems 

 Effect observed also for other hadrons

Hardening of pT spectra in small systems (pp and p‒Pb)
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 Models implementing Color Reconnection (CR) 
mechanisms are able to predict the hardening 
of spectra as function of multiplicity

 PYTHIA 8 w/o CR has a flat behaviour

Phys. Lett. B 807 (2020) 135501

Phys. Lett. B 807 (2020) 135501



Integrated yields and hadrochemistry

enrico.fragiacomo@ts.infn.it 13

 Strangeness production 
increasing with multiplicity 
until saturation (grand-
canonical plateau) is 
reached

 Steeper increase for 
particles with more 
strangeness content 

 High-multiplicity pp: same 
hadrochemistry as larger 
(p‒Pb, peripheral Pb‒Pb) 
systems

Nat. Phys 13, 535–539 (2017)

|S| = 0

|S| = 1

|S| = 1

|S| = 0
(hidden)

|S| = 2

|S| = 3

Particle production is driven by the multiplicity 
and does not depend on the collision system or 
the centre-of-mass energy → Common particle 
production mechanism for all systems?

Expect flat behaviour as a function of multiplicity 
for the yield ratio of particles with the same 
strangeness content



Suppressed signal of resonances from the hadron gas

Chemical freeze-out Kinetic freeze-out

Q
GP

Hadronic phase

K*0

Λ*

φ

t (fm/c)

Rescattering

Regeneration

 Re-scattering and regeneration modify the yield of reconstructible resonances 
 Effect more pronounced for central collisions where the duration is longer

(→ Particle yields) (→ Spectral shapes)

φ

K*0
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Phys. Rev. C 91 (2015) 024609 



Suppressed signal of resonances from the hadron gas
 Re-scattering and regeneration modify the yield of reconstructible resonances 
 Effect more pronounced for central collisions where the duration is longer
 Effect larger at low pT
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Phys. Rev. C 106 (2022) 034907



Resonance-to-long-lived-hadron yield ratios
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τ(K*) = 4.16 fm/c τ(Λ*) = 12 fm/cτ(Σ*) = 5 fm/c

Suppression at a level of 3.6σ in 0-10% 
central Pb–Pb collisions with respect to 
statistical thermal model

 Larger suppression (~70%) wrt. K* 
despite τ(Λ*) = 3 τ(K*) 

 MUSIC+SMASH reproduces the 
multiplicity suppression trend 

K*/K
Σ*/π

Λ*/Λ

Suppression of ~55% from peripheral to 
most central Pb–Pb collisions →
consistent with rescattering effects

• EPOS+UrQMD: Phys. Rev. C 93 (2016) 014911
• GCSM: Phys. Rev. C 100 (2019) 5, 054906
• PCE: Phys. Rev. C 102 (2020) 2, 024909
• MUSIC: arXiv:2105.07539 

arXiv:2205.13998 



cτres (fm)
ρ 1.3
K*   4.2

Σ*   5.5

Λ*  12.6

Ξ* 21.7

φ   46.2

Simple model for the duration of the hadron-gas phase

enrico.fragiacomo@ts.infn.it 18

Estimation of lower limit of the timespan between chemical and kinetic 
freeze-out by exponential law: 

rkin = rchem x exp(-(τkin - τchem )/ τres)

Assumptions:

i) Simultaneous freeze-out for all particles

ii) Negligible regeneration
rkin = measured yield ratios in Pb–Pb
rchem = measured yield ratios in pp
τres = lifetime of resonance



Summary
 During Run 1 and Run 2 ALICE has measured a varied set of resonances with 

different lifetime, mass, quark content 
 Resonances have proved to be a valuable probe to explore the hadron-gas 

phase at the end of the collision
 Precise measurements of resonances have allowed to study strangeness 

production and collective effects in large and small systems

 Future more precise data from Run 3 will allow multi-differential analyses, 
reconstruction of higher-mass resonances and a quantitative study of the 
hadron-gas phase via measurements of observables such as the flow of 
resonances
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