Molecular $P^{\Lambda}_{\psi s}$ Pentaquarks: EFT & Phenomenological Considerations

Manuel Pavon Valderrama

Beihang University

Baryons 2022 U. Pablo de Olavide, Sevilla, 7-11 November

With FZ Peng, MJ Yan, ZY Yang, M Sánchez

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contents

Exotic hadrons, including hadronic molecules

Pentaquarks

- Molecular interpretation
- ▶ Relation between the P[∧]_{ψs}(4338) and P[∧]_{ψs}(4459) or, easier to pronounce: P_{cs}(4338) and P_{cs}(4459)

- ▶ EFT predictions & loose ends
- Phenomenology

Summary and Conclusions

FZ Peng, MJ Yan, M Sánchez, MPV; EPJC 81 (2021) 7, 666

MJ Yan, FZ Peng, M Sánchez, MPV; EPJC 82 (2022) 6, 574

MJ Yan, FZ Peng, M Sánchez, MPV; arXiv:2207.11144

Exotic hadrons

Exotic hadrons

Standard hadrons come in two varieties

But there are more types of possible hadrons...

Exotic hadrons: the X(3872)

Exotic hadrons became extremely popular thanks to a discovery by the Belle collaboration in $B^{\pm} \rightarrow K^{\pm} J/\Psi \pi \pi$ (03):

Looks molecular, but no wide consensus about its nature yet!

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Exotic hadrons: foxes and hedgehogs

Phillip Tetlock: Expert political judgement, how good it is? (hint: as good as dart-throwing chimps... except for the foxes)

Hedgehog: knows one big idea (intellectual economy)
 Fox: knows many little ideas (intellectual scavenger)

Exotic hadrons

For X(3872): contradictory/ambiguous information to be balanced

(i) Close to $D^*\overline{D}$ threshold: large coupling with it

(ii) $X o \psi(nS)\gamma$, n=1,2: $car{c}$ core guo et al. PLB 742 (2015) 394-398

(iii) $X \to J/\psi 2\pi$ and $X \to J/\psi 3\pi$ pattern easier to explain in molecular picture Gamermann, Oset PRD 80 (2009) 014003 ...but compact state can also have this branching ratio

Swanson PLB 588 (2004) 189-195

Often forgotten fact:

the wave function is not an observable

Pentaquarks

Pentaquarks: the discoveries of the LHCb

The most famous and the most recent, as found in the respective LHCb manuscripts

(日)、

э

Pentaquarks: a new era (again)

This is the dawn of a new era...

(ロ)、

Pentaquarks: a new era (again)

This is the dawn of a new era...

The shale gas shallow bound state revolution & the second pentaquark party in 20 years!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Pentaquarks: a new era (again)

This is the dawn of a new era...

The shale gas shallow bound state revolution & the second pentaquark party in 20 years!

But never forget the massive hangover after the first party

Pentaquarks: don't worry

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A@

Pentaquarks: don't worry

Unlike regular fracking, pentafracking is still legal in Europe ;)

э

Pentaquarks: current candidates

The pre- and post-pandemic pentaquark candidates as molecules:

Candidate	Molecule	$I^{G}(J^{PC}) / J^{P}$	
$P_{\psi}^{N}(4312)$	$\Sigma_c \bar{D}$	$\frac{1}{2}^{-}$	
$P_{\psi}^{N}(4440)$	$\Sigma_c \bar{D}^*$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}?$	
$P_{\psi}^{N}(4457)$	$\Sigma_c \bar{D}^*, \Lambda_{c1} \bar{D}$	$\frac{3}{2}^{-}, \frac{1}{2}^{-}, \frac{1}{2}^{+}$?	
<i>P</i> ^Λ _{ψs} (4338)	$\Xi_c \bar{D}$	$\frac{1}{2}^{-}$	
$P_{\psi s}^{\Lambda}(4459)$	$\Xi_c \bar{D}^*$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}?$	

Caveat: they are nor necessarily molecules (or even states) Also a $P_{\psi}^{N}(4337)$, but difficult to interpret as a molecule

MJ Yan, FZ Peng, M Sánchez, MPV, EPJC 82 (2022) 6, 574; Nakamura, Hosaka, Yamaguchi, PRD 104 (2021) 9

Two $P_{\psi}^{\Lambda}(c\bar{c}sqq)$ molecular pentaquark candidates:

$$\begin{split} M_1 &= 4338.2 \pm 0.7 \, \mathrm{MeV} \,, \quad \Gamma_1 = 7.0 \pm 1.2 \, \mathrm{MeV} \,, \\ M_2 &= 4458.8 \pm 2.9^{+4.7}_{-1.1} \, \mathrm{MeV} \,, \quad \Gamma_2 = 17.3 \pm 6.5^{+8.0}_{-5.7} \, \mathrm{MeV} \,, \end{split}$$

Most likely molecular explanations:

$$P^{\Lambda}_{\psi s1} \sim ar{D} \Xi_c \quad P^{\Lambda}_{\psi s2} \sim ar{D}^* \Xi_c$$

with binding energies $B_1 = -2.5$ (resonance), $B_2 = 18.8$.

What are the implications of HQSS for these two pentaquarks?

Molecule	J ^P	Without HQSS	With HQSS
$\bar{D}\Xi_c$	$\frac{1}{2}^{-}$	$V = c_1$	$V = d_a$
$\bar{D}\Xi_c^*$	$\frac{1}{2}^{-},\frac{3}{2}^{-}$	$V = c_2$	$V = d_a$

If we use the $P_{\psi s}^{\Lambda}(4459)$ as input, this will predict $B_1 = 16.9 \ (M_1 = 4319.4)$ for the $P_{\psi s}^{\Lambda}(4338)$. But:

(i) Exp. error: $B_1 = 16.9^{+2.9}_{-4.7} (M_1 = 4319.4^{+4.7}_{-2.9})$ (ii) EFT truncation error: $B = 16.9^{+9.3}_{-8.5} (M_1 = 4319.4^{+8.5}_{-9.3})$ (iii) HQSS error: $B_1 = 16.9^{+18.5}_{-13.3} (M_1 = 4319.4^{+13.3}_{-18.5})$ Together: $B_1 = 17^{+21}_{-16} (M = 4319^{+16}_{-21})$ vs $B_1 = -2.5 \pm 0.7 (M = 4338.2 \pm 0.7)$

Yet, there are more factors in play:

(iv) Breit-Wigner param not ideal for near-threshold poles: the $P_{\psi s}^{\Lambda}(4338)$ might be below threshold (bound/virtual) Albaladejo, Guo, Hidalgo-Duque, Nieves PLB755 (2016) 337-342; JPAC Coll. PRL 123 (2019) 9, 092001 (v) Nearby $\overline{D}\Xi_c^*$ CC dynamics for the $P_{\psi s}^{\Lambda}(4459)$ (if $J^P = \frac{3}{2}^-$):

$$V(\bar{D}^* \Xi_c - \bar{D} \Xi_c^*) = \begin{pmatrix} d_a & e_a \\ e_a & c_a \end{pmatrix}$$

This further reduces B_1 by a few MeV.

(vi) The $P^{\Lambda}_{\psi s}$ (4459) might be two peaks

check the LHCb paper on the $P^{\Lambda}_{\psi s}(4459)$

(vii) The $P^{\Lambda}_{\psi s}(4338)$ might be the $P^{\Sigma}_{\psi s}(4338)$

$P_{\psi s}^{\Lambda}$ as meson-baryon molecules: EFT description

We will consider contact EFT with $\bar{D}_s^{(*)} \Lambda_c - \bar{D}^{(*)} \Xi_c$ dynamics

$$V_C(P^{\Lambda}_{\psi s}) = egin{pmatrix} rac{1}{2}(d_a+ ilde{d}_a) & rac{1}{\sqrt{2}}(d_a- ilde{d}_a) \ rac{1}{\sqrt{2}}(d_a- ilde{d}_a) & d_a \end{pmatrix} \,,$$

Creates a width for $P_{\psi s}^{\Lambda}$ proportional to $\left(d_{a}-\widetilde{d}_{a}\right)^{2}$

$P^{\Lambda}_{\psi s}$ as meson-baryon molecules: predictions

Predictions for the spectrum (from mass and width):

Molecule	Potential	Set B_1	Set B ₂	Туре
$\bar{D}\Lambda_c$	<i>d</i> _a	$(4111.3)^{V}$	$(4153.7)^{V}$	P_{ψ}^{N}
$\bar{D}^*\Lambda_c$	<i>Ã</i> a	$(4256.7)^{V}$	4295.0	P_ψ^N
$\bar{D}_s \Lambda_c$	$\left(\frac{1}{2}(d_a + \tilde{d}_a) \frac{1}{\sqrt{2}}(d_a - \tilde{d}_a) \right)$	4254.8	4230.5	$P^{\Lambda}_{\psi s}$
$\bar{D}\Xi_c$	$\left(\frac{1}{\sqrt{2}} (d_a - \tilde{d}_a) d_a \right)$	Input	4316.7	$P_{\psi s}^{\Lambda}$
$\bar{D}_s^* \Lambda_c$	$\left(\frac{1}{2}(d_a + \tilde{d}_a) \frac{1}{\sqrt{2}}(d_a - \tilde{d}_a) \right)$	4398.4	4375.2	$P^{\Lambda}_{\psi s}$
$\bar{D}^* \Xi_c$	$\left(\frac{1}{\sqrt{2}} (d_a - \tilde{d}_a) d_a \right)$	4479.2	Input	$P_{\psi s}^{\Lambda}$
$\bar{D}\Xi_c$	<i>d</i> _a	$(4297.4)^{V}$	4336.3	$P_{\psi s}^{\Sigma}$
$\bar{D}^* \Xi_c$	<i>Ĩ</i> a	(4442.7) ^V	4477.5	$P_{\psi s}^{\Sigma}$
$\bar{D}_s \Xi_c$	<i>d</i> _a	$(4401.4)^{V}$	4437.3	$P_{\psi ss}^{\Xi}$
$\bar{D}_s^* \Xi_c$	$ ilde{d}_{a}$	(4548.3) ^V	4580.9	$P_{\psi ss}^{\Xi}$

We consistently predict a $P_{\psi s}^{\Lambda}(4255)$. But how solid is this? No clear consensus:

(i) LHCb manuscript: constraints on fit fractions
 (i.a) P^Λ_{ψs}(4338), f = 0.125 ± 0.007 ± 0.019
 (i.b) P^Λ_{ψs}(4255), f < 0.087 at 90% C.L.

Fit fraction of X in $A \rightarrow BCD$ $(X = P_{\psi s}^{\Lambda}, A = \Lambda_b, B = J/\psi, C = \Lambda, D = \bar{p})$

$$f(X|BC) = \frac{\mathcal{B}(A \to XD)\mathcal{B}(X \to BC)}{\mathcal{B}(A \to BCD)}$$

 $\begin{array}{l} \mbox{Problem: } \mathcal{B}(P_{\psi s}^{\Lambda}(4255) \rightarrow J/\Psi\Lambda) > \mathcal{B}(P_{\psi s}^{\Lambda}(4338) \rightarrow J/\Psi\Lambda) \\ \mbox{Solutions: production of } P_{\psi s}^{\Lambda}(4255) \mbox{ smaller (likely from couplings),} \\ P_{\psi s}^{\Lambda}(4255) \mbox{ virtual, } P_{\psi s}^{\Lambda}(4338) \mbox{ virtual} \\ \mbox{Reminder: fit fractions also problematic for } P_{\psi}^{N} \mbox{ pentaquarks} \\ \\ \mbox{Sakai, Jing, Guo, PRD 100 (2019) 7, 074007; Burns, Swanson, EPJA 58 (2022) 4, 68} \\ \end{array}$

We consistently predict a $P_{\psi s}^{\Lambda}(4255)$. But how solid is this? No clear consensus (cont'd): (ii) Analyses of the $J/\psi\Lambda$ spectrum: (ii.a) Burns & Swanson: $P_{\psi s}^{\Lambda}(4338)$ triangle singularity, no trace of a $P_{\psi s}^{\Lambda}(4255)$ d_a coupling still attractive (ii.b) Nakamura & Wu: $P_{\psi s}^{\Lambda}(4255)$ virtual Possible from small changes in our couplings

Both are possible solutions.

Or it might require better data ($P_{\psi s}^{\Lambda}(4255)$ ultra narrow).

And do not forget the Breit-Wigner issue!

 $P_{\psi s}^{\Lambda}$ as meson-baryon molecules: phenomenology

What about phenomenological models?

- (i) Saturation model w/ scalar and vector meson exchanges.
- (ii) Calibrate model to reproduce $P_{\psi}^{N}(4312)$

System	$I(J^P)$	$R_{ m mol}$	$B_{ m mol}$	$M_{ m mol}$	Candidate	$M_{ m candidate}$
$\Lambda_c \bar{D}$	$\frac{1}{2} \left(\frac{1}{2}^{-} \right)$	0.69	$(0.1)^{V}$	4153.4		
$\Lambda_c \bar{D}^*$	$\frac{1}{2}(\frac{1}{2}^{-})$	0.72	$(0.0)^{V}$	4295.0		
$\Lambda_c \bar{D}_s$	$0(\frac{1}{2}^{-})$	0.86	2.4	4252.4		
$\Lambda_c \bar{D}_s^*$	$0(\frac{1}{2}^{-})$	0.89	3.4	4395.2		
$\Xi_c \bar{D}$	$0(\frac{1}{2})$	1.00	8.9	4327.4	$P_{\psi s}^{\Lambda}(4338)$	4338.2
$\Xi_c \bar{D}^*$	$0(\frac{1}{2})$	1.04	11.0	4466.7	$P_{\psi s}^{\Lambda}(4459)$	4458.9
$\Xi_c \bar{D}$	$1(\frac{1}{2}^{-})$	0.72	$(0.0)^{V}$	4336.3	,	
$\Xi_c \bar{D}^*$	$1(\frac{1}{2}^{-})$	0.74	0.1	4477.6		
$\Xi_c \bar{D}_s$	$\frac{1}{2}(\frac{1}{2}^{-})$	0.82	1.2	4436.3		
$\Xi_c \bar{D}_s^*$	$\frac{1}{2}(\frac{1}{2}^{-})$	0.85	2.0	4579.2		

Conclusions (list)

- ▶ P^A_{ψs}(4338), P^A_{ψs}(4449) are easy to explain and relate as baryon-meson molecular candidates
- But nature of P^Λ_{ψs}(4338) obviously still under debate: it was discovered four months ago... meson-baryon state, triangle singularity, compact pentaquark?
- Predictions of a few partners, most notably $P_{\psi s}^{\Lambda}(4255)$
 - Not found in experiment, but there are constraints
 - Found in one analysis of $J/\psi \Lambda$ (Nakamura & Wu)
 - Not found in other analysis of $J/\psi \Lambda$ (Burns & Swanson)

- If it exists & is molecular: should be really narrow!
- Phenomenological model also predicts it.

The End

Thanks For Your Attention!